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Complete population inversion of maximally entangled states in 22N-level systems
via Pythagorean-triple coupling
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Maximally entangled states play a central role in quantum information processing. Despite much progress
throughout the years, robust protocols for manipulations of such states in many-level systems are still scarce.
Here we present a control scheme that allows efficient manipulation of complete population inversion between
two maximally entangled states. Exploiting the self-duality of SU(2), we present in this work a family of 22N -
level systems with couplings related to Pythagorean triples that make a complete population inversion from one
state to another (orthogonal) state, using very few couplings and generators. We relate our method to the recently
developed retrograde-canon scheme and derive a more general complete transfer recipe. We also discuss the cases
of (2n)2-level systems, (2n + 1)2-level systems, and other unitary groups, and give a geometrical description of
the inversion via the Majorana sphere.
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I. INTRODUCTION

Quantum coherent control currently attracts a great deal of
experimental and theoretical interest, especially toward multi-
state quantum systems [1–5]. Complete population inversion
(CPI) plays an indispensable role in this effort [4,6–12], mak-
ing it highly desirable to introduce novel efficient methods
and models for building such transfer themes. For general
time-dependent coupled dynamical equations, it is not easy to
find solutions analytically. Even for a simple two level system
there is a limited number of known time-dependent Hamilto-
nians that can be solved analytically and give a CPI [13,14].
Of special importance in this respect are maximally entangled
states, which play a central role in quantum information pro-
cessing. Despite much progress throughout the years, robust
protocols for manipulations of such states in many-level sys-
tems are still scarce. Thus, controlled manipulation between
such states and specifically CPI are naturally desirable.

Theoretical methods have been found and developed for
complete controllability of systems [15,16]. However, these
methods are nonconstructive and do not help in a concrete
system. Due to the difficulty of synthesis and analysis of
CPI schemes increases in multistate systems, multistate con-
trol problems are usually reduced to two-state ones [17–21].
Several approaches have been also proposed for CPIs in mul-
tilevel systems [22–27]. Recently, the dynamics of a four-level
atomic system has been explored from a geometrical point
of view, revealing that one can obtain CPIs in the laboratory
frame if and only if some constraints on the couplings are
obeyed [28]. In the case of periodic nearest-state coupling,
the requirements of CPI were found to be linked to primitive
Pythagorean triples [28]. Later on, the Pythagorean coupling
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scheme was verified experimentally in the realm of a four-
level superconducting Josephson circuit [29].

In this work, using the self-duality of SU(2), we derive a
general scheme for CPIs in 22N -level systems. We show that
the basis for the CPI is composed of maximally entangled
states. This observation is crucial for entangled-state manipu-
lation, and we expect it to serve as a building block for future
efficient quantum information processing protocols. It turns
out that our is a generalization of the Pythagorean-triple cou-
pling scheme [28] to higher representations of SU(2), offering
a group-theoretical perspective on CPIs. We discuss the case
of more general (2n)2-level systems, relating our method to
the recently developed retrograde canon scheme [30]. We also
explain why our method does not apply to either (2n + 1)2-
level or to higher unitary groups, but derive a general CPI
recipe for general multistate systems. At the end we show how
we can visualize the CPI on the Majorana sphere. Our scheme
employs a substantially reduced number of couplings, allow-
ing enormous simplification of its experimental realization in
maximally entangled state control in various fields, including
laser induced finite level systems [31], Josephson junctions
[29], and waveguide arrays [32].

II. THE PYTHAGOREAN COUPLING AGAIN:
THE DIAMOND FOUR-LEVEL SYSTEMS

In our current derivation, we reintroduce the Pythagorean
coupling found in Ref. [28] from a different angle, which
would allow its significant extension later on. We work with
the two spin- 1

2 Hamiltonians

h(1)
2×2 = �1σz + �1σx, (1a)

h(2)
2×2 = �2σz + �2σx, (1b)

where �1,�1,�2,�2 are nonzero real numbers. �1 and �2

represent real Rabi frequencies, and �1 and �2 represent the

2469-9926/2021/104(2)/022616(10) 022616-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.022616&domain=pdf&date_stamp=2021-08-31
https://doi.org/10.1103/PhysRevA.104.022616
http://www3.tau.ac.il/mgoldstein/index.php
https://m.tau.ac.il/~haimsu/Home.html


EREW, GOLDSTEIN, AND SUCHOWSKI PHYSICAL REVIEW A 104, 022616 (2021)

detunings. We construct the 4×4 Hamiltonian H ,

H = h(1) ⊕ h(2) = h(1)
2×2 ⊗ I (2)

2×2 + I (1)
2×2 ⊗ h(2)

2×2, (2)

and we denote this frame the tensor product (TP) frame.
With proper basis change, we obtain a laboratory-frame

picture with nearest neighbor coupling that can be realized
physically by a laser-field-driven four-level atom. This could
be done by the orthogonal symmetric transformation matrix
W composed of maximally entangled states (of which the von
Neumann entropy is ln n, where n is the dimension of the
Hilbert space [4], and here it is 2):

W = 1√
2

(V (�0),V (�1),V (�2),V (�3)), (3)

where the V (·) denotes the vectorization function described in
Appendix A, and �0 = σ0, �1 = σ1, �2 = −iσ2, �3 = σ3

(σ0 is the 2×2 unit matrix, and σ1, σ2, σ3 are the Pauli ma-
trices). A very useful property of this operator is V (AXB) =
(BT ⊗ A)V (X ), and we use it frequently in this paper.

The Hamiltonian in the two frames is

HT P =

⎛
⎜⎝

V14 �2 �1 0
�2 V23 0 �1

�1 0 −V23 �2

0 �1 �2 −V14

⎞
⎟⎠, (4)

HLab =

⎛
⎜⎝

0 V12 0 V14

V12 0 V23 0
0 V23 0 V34

V14 0 V34 0

⎞
⎟⎠, (5)

where V12,V23,V34,V14 are defined as follows:(
V12 V23

V34 V14

)
=

(
�1 + �2 �1 − �2

−�1 + �2 �1 + �2

)
. (6)

Now, the dynamics described by the Schrödinger equa-
tion ∂ψ

∂t = −iHψ lead to the unitary time-evolution oper-

ator (propagator) UT P = u(1) ⊗ u(2) = e−ih(1)t ⊗ e−ih(2)t (and
ULab = WUT PW ). We are interested in CPIs between basis
states in the laboratory frame. Let ei denote the 4×1 matrix
(column vector) which is zero everywhere except the ith com-
ponent, which is 1 [in other words (ei ) j1 = δi j]. Performing
the calculation, one can see that, starting from e1, one can fully
transfer into e3 if and only if

�1 = 1

2

k(c − a) + b√
1 + k2

, �1 = 1

2

c − a − kb√
1 + k2

,

�2 = 1

2

k(c + a) − b√
1 + k2

, �2 = 1

2

c + a + kb√
1 + k2

,

τ = π√
2c

, (7)

where τ is the CPI time, k is an arbitrary real number, and
(a, b, c) = ( p2−q2

2 , pq,
p2+q2

2 ) where p and q are odd integers
(p > q). We see that the triple (a, b, c) has the the well-known
general form of a Pythagorean triple, and it is called primitive
when p and q are coprime, gcd(p, q) = 1. Notice that not just
primitive Pythagorean triples (PPTs) give solutions, but also
nonprimitive ones. However, Hamiltonians generated from
triples that are not primitive are simply Hamiltonians that are
generated from PPTs multiplied by an odd integer constant.

FIG. 1. The couplings of the 16-level system. A CPI occurs be-
tween level 1 and level 13. One can see that the coupling structure
requires much less independent couplings than a general 16-level
system, which will allow a simplified experimental realization.

So we can restrict ourselves just to PPTs. On the other hand,
taking negative numbers, like (a, b, c) = (− p2−q2

2 , pq,
p2+q2

2 )
for example, suggests new inequivalent Hamiltonians, so
those should be included as well.

III. GENERALIZING TO OTHER REPRESENTATIONS

The way we developed the scheme of CPI suggests a natu-
ral generalization to other representations of su(2). Motivated
by the fact that the Lie algebra structure is more fundamental
than its representation, we investigate the CPI condition for
higher dimensional representations of su(2). So we consider
now the Hamiltonian

h(1)
n×n = 2�1J (n)

3 + 2�1J (n)
1 (8a)

h(2)
n×n = 2�2J (n)

3 + 2�2J (n)
1 (8b)

H = h(1)
n×n ⊗ I (2)

n×n + I (1)
n×n ⊗ h(2)

n×n, (8c)

and we want to get a CPI in n-dimensional representations.
Here the matrices {J (n)

1 , J (n)
2 , J (n)

3 } are the known basis of the
n-dimensional irreducible (spin- n−1

2 ) representation of su(2).
They satisfy [J (n)

i , J (n)
j ] = iεi jkJ (n)

k , with real J (n)
1 , imaginary

J (n)
2 , and diagonal J (n)

3 . We mention in passing that calculating
the time evolution operator of such Hamiltonians becomes
much easier when one uses the Cayley-Hamilton theorem
[33,34].

The main challenge in the higher-dimensional case is find-
ing a generalized matrix W which would give a laboratory
frame Hamiltonian with a realistic structure and symmetry of
its nonvanishing matrix elements (see for example Fig. 1).
For n = 2N , this could be achieved if one constructs W out
of maximally entangled states. This W is composed of the
vectorization of tensor products of N matrices from the set
{�0, �1, �2, �3} (with a normalization factor 1√

2N
). The re-

sulting vectors are automatically orthogonal, making W an
orthogonal matrix. One can order them in a way that makes
W symmetric as well. We can fix W by imposing the follow-
ing demands: (a) the first n columns do not contain negative
values, (b) the first half of the diagonal contains just positive
values and the second just negative values, and (c) the last
column contains alternating 1’s and (−1)’s, in addition to
zeros. This structure is a natural generalization of the 4×4
case presented above. In this laboratory frame, and because
of our convention of building the rotational matrix, we always
achieve a CPI from e1 to en2−n+1.
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FIG. 2. The dynamics of Pythagorean 16-level systems: Numerical simulations of the CPI between |1〉 and |13〉 in the labora-
tory frame of the 16-level system are shown for different PPTs: (a) p = 3, q = 1, k = 0 → (a, b, c) = (4, 3, 5), k = 0; (b) p = 5, q =
1, k = 0 → (a, b, c) = (12, 5, 13), k = 0; (c) p = 7, q = 1, k = 0 → (a, b, c) = (24, 7, 25), k = 0; (d) p = 5, q = 3, k = 0 → (a, b, c) =
(8, 15, 17), k = 0. The evolution of the population in each state is described as a function of time (measured in τ units) when the system
is prepared in the ground state |1〉.

To simplify the expressions, let us denote the column vec-
tor V (

⊗k
i=1 �ni ) by n1n2 . . . nk , where n1, . . . , nk can assume

the values 0, 1, 2, and 3. For example, by 0031 we mean
V (�0 ⊗ �0 ⊗ �3 ⊗ �1). With this notation, W for the case of
N = 1 (which means that n = 2 and we work with a four-level
system) is W4×4 = 1√

2
(0, 1, 2, 3) [see Eq. (3)].

In the language of the TP frame, the CPI we are talking
about is always from the state proportional to 00 . . . 00 to the
state proportional to 11 . . . 112 (Yn always has 1’s and (−1)’s
alternately on the antidiagonal, and 0’s elsewhere). In the case
of N = 1 it is from 0 to 2 in the TP frame, which means it is
from e1 to e3 in the laboratory frame.

As an example, when N = 2 (this means that n = 4 and
we work with a 16-level system), one may use this orthogonal
symmetric transformation to go to the laboratory frame:

W16×16 = 1
2 (00, 01, 10, 11, 31, 30, 21, 20,

23, 22, 33, 32, 12, 13, 02, 03). (9)

The matrix is written out explicitly in Appendix B.
The TP frame Hamiltonian and the laboratory frame

Hamiltonian are both presented in Appendix B. For simplicity,
we illustrate the couplings in the laboratory frame by an undi-
rected graph in Fig. 1. We can see also in Fig. 2 that numerical
results confirm the periodic CPI between |1〉 and |13〉.

The rotation matrix for the case N = 3, which means that
n = 8 and we work with a 64-level system, is presented in
Appendix C.

It is important to realize that the fact that V (In) goes to
V (e−iπJ (n)

2 ) in the TP frame through U = u1 ⊗ u2 is nothing

but a manifestation of the fact that we are working in different
representations of the same group. The question to be asked is,
Is this a CPI in every representation? In order for it to be a CPI
in every representation, the two states must be orthogonal. It is
trivial to understand that this holds when n is even, since e−iπJy

always has alternating 1’s and (−1)’s on the antidiagonal, and
0’s elsewhere.

So, for every even n we have this CPI from 1√
n
V (In) to

1√
n
V (e−iπJ (n)

2 ). Thus, any orthogonal rotation which has the

two rows 1√
n
V T (In) and 1√

n
V T (e−iπJ (n)

2 ) would lead us to a
frame in which we have a CPI there (between these two
states). What is special in the n = 2N cases is that we can
find there a laboratory frame in which the Hamiltonian has
many symmetries that can be seen via coupling diagrams or
coupling undirected graphs, and all of the states are maximally
entangled states.

IV. THE QUANTUM RETROGRADE CANON
POINT OF VIEW

We will now relate the CPI scheme we built to the quantum
retrograde canon [30], investigate the retrograde canon for
other unitary groups, and then give a more general CPI recipe.

In fact, the CPI we found here in higher dimensions is
related to the retrograde canon procedure [30]. We will discuss
it from a group theoretical perspective, which would allow its
subsequent generalization to higher unitary groups. Here we
give a one-direction claim, and from the reversibility of the
proof we deduce that the other direction also holds. If H (t ) is
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the Hamiltonian of a two level system, and its time evolution
operator,

U (t, t0) = T exp

(
− i

h̄

∫ t

t0

dt ′H (t ′)
)

, (10)

satisfies

U (T, 0)|↑〉 = |↓〉 (11)

[from unitarity we immediately see that U (T, 0) = |↓〉〈↑| −
|↑〉〈↓| = �2], then the Hamiltonian

H(t ) = −H (T − t ) ⊗ I + I ⊗ H (t ), (12)

whose propagator is

U (t, t0) = U (T − t, T − t0) ⊗ U (t, t0), (13)

satisfies

U
(

T

2
, 0

)
V (I ) = V (�2). (14)

The proof proceeds as follows: Since we know that
U (T, 0) = �2 and �2 satisfies u�2uT = �2 for every u ∈
SU(2), we can see that

U

(
T

2
, T

)
U (T, 0)U T

(
T

2
, T

)
= �2. (15)

And since the propagator satisfies U (t3, t2)U (t2, t1) =
U (t3, t1) (for every t1, t2, t3) we get

U

(
T

2
, 0

)
U T

(
T

2
, T

)
= �2, (16)

and therefore (see Appendix A)

U
(

T

2
, 0

)
V (I ) = U

(
T

2
, T

)
⊗ U

(
T

2
, 0

)
V (I )

= V

(
U

(
T

2
, 0

)
IU T

(
T

2
, T

))

= V (�2). (17)

We can see in the proof that all the steps are reversible, so
that the other direction holds. We can summarize:

U (T, 0)|↑〉 = |↓〉 ⇔ U
(

T

2
, 0

)
V (I ) = V (�2); (18)

and the Pythagorean Hamiltonian that we deal with can be
obtained from this procedure [30]. Notice that �2 = e−iπ σ2

2 =
e−iπJ (2)

2 , so we can extend our claim to other representations,
by simply replacing �2 by Yn = e−iπJ (n)

2 .
A natural question arises: Can we claim a similar retro-

grade statement for the other unitary groups SU(n) (when
n > 2)? The answer is no; and the deep reason of this lies
in the fact that the only group tht is self-dual (the dual of each
irreducible representation is isomorphic to it) among these is
just SU(2).

For every SU(n), n ⊗ n = 1 ⊕ (n2 − 1), which means that
there is a scalar state which does not change under U ⊗ U ,
which is of course the state proportional to V (I ), since U =
U ∗. With this in mind we define first the semiretrograde
Hamiltonian

H(t ) = H∗(T − t ) ⊗ I + I ⊗ H (t ) (19)

whose propagator is

U (t, t0) = U ∗(T − t, T − t0) ⊗ U (t, t0), (20)

and immediately conclude that

U (T, 0) = I ⇐⇒ U
(

T

2
, 0

)
V (I ) = V (I ), (21)

where the proof is very similar to what we did in the retrograde
canon’s proof. However, this does not give a CPI recipe.

SU(2) is special since it is self-dual: Any irreducible rep-
resentation of SU(2) is isomorphic to its dual representation.
A representative example would be the simple representation
called 2. 2 is isomorphic to 2 via the transformation Y =e−i π

2 σy .
Only because of this unique feature of self-duality of SU(2)
we could get our CPI from V (I ) to V (Y ).

In fact, for any SU(n), if we have two dual isomorphic
representations (of the same dimension) ρ and ρ∗, where the
isomorphism is the matrix Y † (it has to be unitary), i.e.,

Y †ρ(g)Y = ρ∗(g) ∀g ∈ SU(n), (22)

we get uYuT = Y for every u ∈ SU(n), and the same proof
scheme holds here too. We get in this case

U (T, 0) = Y ⇐⇒ U
(

T

2
, 0

)
V (I ) = V (Y ). (23)

where U (t, t0) and U (t, t0) are defined as in Eqs. (10) and (13),
and H (t ) ∈ ρ. This is a CPI if and only if tr(Y ) = 0, which is
equivalent to orthogonality between V (I ) and V (Y ).

Although we could not get an analogous CPI procedure in
other special unitary groups, we still can generate a similar
argument for a general multistate Hamiltonian. It is not the
same since it does not depend on a singlet state of a group,
and it also deals with any quantum mechanical system. The
similarity is for the states we use in this argument, and in
the case of two-level systems it reduces to the retrograde
canon we presented before. The statement goes as follows:
For a general multistate Hamiltonian H (t ) whose propagator
is U (t, t0) [Eq. (10)]: If there are two normalized states |i〉 and
| f 〉 such that

(1) |〈i | f 〉|< 1,
(2) U (T, 0)|i〉=| f 〉, and
(3) U (T, 0)| f 〉=eiφ|i〉, where φ is real,

then [we define the retrograde Hamiltonian and its propagator
as in Eqs. (12) and (13), and define the two states |g〉 ≡
U ( T

2 , 0)|i〉 and |h〉 ≡ U ( T
2 , 0)| f 〉]

U
(

T

2
, 0

)
(−eiφ|ii〉+| f f 〉)

= U

(
T

2
, T

)
⊗U

(
T

2
, 0

)
(−eiφ|ii〉 + | f f 〉)

= U

(
T

2
, 0

)
⊗U

(
T

2
, 0

)
(−| f i〉 + |i f 〉)

= −|hg〉 + |gh〉, (24)

and this is a CPI (normalization is needed of course).
If the Hamiltonian H (t ) is time independent, the conditions

reduce to
(1) U (2T )|i〉=eiφ|i〉 and
(2) |〈i | U (T ) | i〉| < 1,
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and we get CPIs not just from −eiφ |ii〉 + | f f 〉, but also
from U (t ) ⊗ U (t ) acting on −eiφ |ii〉 + | f f 〉 for every t (as
an initial state). From the argument presented here we can
understand that there are basic CPIs in our system, and from
them we can build our universal CPI in any even-dimensional
representation. We can also investigate the problem with odd-
dimensional representations again from another point of view.
For more details see Appendix D and Appendix E. Moreover,
for the time-independent Hamiltonian case, we always can
satisfy the two conditions if we start with a combination of
two eigenstates (with two nonzero coefficients), and hence
they are always fulfilled in two level systems. Other cases of
multilevel systems and general time-dependent Hamiltonian
may be investigated using the Poincaré recurrence theorem
[35–38].

V. GEOMETRICAL REPRESENTATION:
THE MAJORANA SPHERE FOR

THE PYTHAGOREAN FOUR-LEVEL SYSTEM

The well-known geometric visualization of the Bloch
sphere plays an important role in developing a clear intuitive
understanding of two-level dynamics [39,40]. Here we ex-
pand the standard Bloch sphere geometrical visualization: We
visualize the full “path” (of time evolution) of the system’s
state in the four-level Pythagorean system in both frames
(the TP frame and the laboratory frame) on the the Majorana
sphere (the extension of the Bloch sphere to higher dimen-
sions; see Appendix F). Based on Majorana’s decomposition,
a state with angular momentum j can be thought of as fully
symmetrized state of 2 j spin- 1

2 particles [41–43], and then
represented as 2 j points on the surface of the unit sphere
[44]. When the system evolves in time, these points follow
trajectories on the unit sphere. Another way of visualizing
the dynamics is to depict the trajectory of the propagator
evolution on the unit 3-ball (See [30]).

According to Majorana’s representation, there is a one-
to-one correspondence between the (normalized) states of an
N-level system and the (normalized) N − 1 Majorana polyno-
mials, which in turn are uniquely determined by their roots.
The number of roots can be up to N − 1. Each root, which is
a complex number, can be presented on the unit sphere S2 by
using the stereographic projection from the south pole. There-
fore, we can depict the state of the system by these points on
the unit sphere, which we will refer to as the Majorana sphere.

Thus, in an N-level system, the time evolution on the
Majorana sphere can be represented by N − 1 trajectories
(or less), where every trajectory describes the evolution of a
root. Majorana’s theorem states that, with an applied magnetic
field on the system (which has angular momentum j, where
N = 2 j + 1 and |k〉 in our notation is | j, m = k − j〉), these
representative points precess rigidly around the direction of
the field. For more details see Appendix F. Here, in this
section, we depict the trajectory itself of the state (its evolution
in time) in our system (in which N = 4 and j = 3

2 ).
In the TP frame, we start with |ψ〉 = 1√

2
(|1〉 + |4〉),

which is represented by the three roots z1 = e−i 2π
3 , z2 = 1,

z3 = ei 2π
3 , and so by the three points (θ1, φ1) = ( π

2 ,− 2π
3 ),

(θ2, φ2) = ( π
2 , 0), (θ3, φ3) = ( π

2 , 2π
3 ) on S2, and end with

|ψ〉 ∝ 1√
2
(|2〉 − |3〉), which is represented by the two roots

z1 = 0, z2 = −1, and so by the two points (θ1, φ1) = (0, 0),
(θ2, φ2) = ( π

2 , π ) on S2. The trajectories are depicted in
Fig. 3.

In the laboratory frame, we start with |ψ〉 = |1〉, which
is represented by the three identical roots z1 = 0, z2 = 0,
z3 = 0, and so by the three identical points (θ1, φ1) = (0, 0),
(θ2, φ2) = (0, 0), (θ3, φ3) = (0, 0) on S2, and end with |ψ〉 ∝
|3〉, which is represented by the single root z1 = 0, and so
by the one point (θ1, φ1) = (0, 0) on S2. The trajectories are
depicted in Fig. 3.

VI. CONCLUSION

We presented a way of manipulating maximally entan-
gled states in 22N -level systems using a generalization of the
Pythagorean-triples coupling scheme. For this we used a basis
of maximally entangled states in which the Hamiltonian has
a realistic structure and symmetry of its nonvanishing matrix
elements, with a substantially reduced number of couplings,
allowing enormous simplification of its experimental real-
ization in maximally entangled state control. We would like
to stress that this method gives complete population transfer
schemes for many pairs of specific entangled states for the
same system. It suggests many different Hamiltonians; each
one of them gives rise to a complete population inversion be-
tween two specific maximally entangled states, and between
pairs of (not maximally) entangled states.

We must clarify that the scheme does not necessarily refer
to two physical subsystems. It deals with any system that has
22N × 22N structure. This includes degenerate 22N -state sys-
tems that cannot be separated physically into two subsystems
with no interaction but can still be decomposed mathemati-
cally. This structure is not just a mathematical curiosity, but
applies to actual physical systems, as was done numerically
with transitions in 85Rb [28] and experimentally in a four-level
Josephson circuit [29] for N = 1. We strongly believe that
there are other interesting physical systems with N > 1 in
which we can perform the scheme, such as a hydrogen-like
atom, including Rydberg states, with degenerate energy sub-
spaces [45], path-qudits in integrated photonics [46], etc. In
the case of two physically separate subsystems, our discussion
assumes starting from an entangled state, which can be created
using established techniques, such as the Sørensen-Mølmer
[47] protocol for ion chains. Our scheme then allows transfer
between two maximally-entangled states without requiring
further application of entangling gates.

Other (2n)2-level systems do have the same CPI, but we
could not build for them real laboratory Hamiltonians that
had the same symmetries of the couplings. We found that this
scheme, which is based on the quantum retrograde canon, is
unique for SU(2) and gave a similar argument (which does
not give a CPI by itself) for SU(n) where n � 3. In addition,
we derived a more general CPI recipe for general multistate
systems.

Other groups and schemes could be considered in a similar
way in order to build schemes for them, if possible, but an im-
mediate case of interest is the quaternionic (or pseudoscalar)
representations of SU(n) which exist for n = 4k + 2. In this
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FIG. 3. Majorana sphere in the two frames of the four-level system: In the TP frame, we show the time evolution of (a) the Majorana sphere
(all roots together); (b) the first root; (c) the second root; (d) the third root. We start with |ψ〉 = 1√

2
(|1〉 + |4〉), which is represented by the

three roots z1 = e−i 2π
3 , z2 = 1, z3 = ei 2π

3 , and so by the three points (θ1, φ1) = ( π

2 , − 2π

3 ), (θ2, φ2) = ( π

2 , 0), (θ3, φ3) = ( π

2 , 2π

3 ) on S2, and end
with |ψ〉 ∝ 1√

2
(|2〉 − |3〉), which is represented by the two roots z1 = 0, z2 = −1, and so by the two points (θ1, φ1) = (0, 0), (θ2, φ2) = ( π

2 , π )

on S2. In the laboratory frame, we show the time evolution on the Majorana sphere of (e) all the roots; (f) the first root; (g) the second root; (h)
the third root. We start with |ψ〉 = |1〉, which is represented by the three identical roots z1 = 0, z2 = 0, z3 = 0, and so by the three identical
points (θ1, φ1) = (0, 0), (θ2, φ2) = (0, 0), (θ3, φ3) = (0, 0) on S2, and end with |ψ〉 ∝ |3〉, which is represented by the single root z1 = 0, and
so by the one point (θ1, φ1) = (0, 0) on S2.

case, the representation is self-dual (the dual representation
is isomorphic to to the representation itself), so that it is
tempting to check what happens there with the retrograde
canon scheme. Another tempting procedure to try to make
is to derive a similar scheme for other self-dual groups, for
which every irreducible representation is isomorphic to its
dual.

The geometrical depiction that we presented gives rise to
further questions for future study. We saw, for example, that
we lose a root of the Majorana polynomial (in other words,
the degree of the polynomial decreases by 1) when we ar-
rive at the south pole. Another point is the peculiar behavior
when two roots coalesce, namely that the trajectories feature
sharp turns. We have here just a few example for this, but it
might be an indicator of a more general phenomenon. A third
observation is that when we run more numerical simulations
for Pythagorean systems (four-level systems and 16-level sys-
tems, with different PTT and different k’s), we always get the
same circular trajectory which is the intersection between the
y-z plane and the unit sphere (and other trajectories of other
roots). This calls for an explanation.

We believe that our analytical schemes and our natural
maximally entangled bases will offer a platform for quantum
control and quantum information processing of multistate dy-
namics.
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APPENDIX A: VECTORIZATION FUNCTION
AND ITS INVERSE

Let X be an m × n matrix. V (X ) simply creates an mn-long
column vector by stacking X ’s columns one after the other.
We can define this more formally as follows. Let ei denote the
n × 1 matrix (column vector) which is zero everywhere except
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the ith component, which is 1 [in other words (ei ) j1 = δi j].
Define Ei to be

Ei = ei ⊗ Im. (A1)

The vectorization function is then

V (X ) =
n∑

i=1

EiXei, (A2)

and its inverse is

V −1(Y ) =
n∑

i=1

ET
i YeT

i . (A3)

A very useful property of this operator is

V (AXB) = (BT ⊗ A)V (X ), (A4)

and we use it frequently in this paper.

APPENDIX B: THE HAMILTONIAN OF THE 16-LEVEL
SYSTEM IN THE TWO FRAMES

Here we present explicitly the 16-level system Hamiltonian
in the two frames, the TP frame and the laboratory frame, as
well as the symmetric orthogonal transformation matrix W
that takes us from one basis to another:

HT P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3V14
√

3�2 0 0
√

3�1 0 0 0 0 0 0 0 0 0 0 0√
3�2 3�1 + �2 2�2 0 0

√
3�1 0 0 0 0 0 0 0 0 0 0

0 2�2 3�1 − �2
√

3�2 0 0
√

3�1 0 0 0 0 0 0 0 0 0
0 0

√
3�2 3V23 0 0 0

√
3�1 0 0 0 0 0 0 0 0√

3�1 0 0 0 �1 + 3�2
√

3�2 0 0 2�1 0 0 0 0 0 0 0
0

√
3�1 0 0

√
3�2 V14 2�2 0 0 2�1 0 0 0 0 0 0

0 0
√

3�1 0 0 2�2 V23
√

3�2 0 0 2�1 0 0 0 0 0
0 0 0

√
3�1 0 0

√
3�2 �1 − 3�2 0 0 0 2�1 0 0 0 0

0 0 0 0 2�1 0 0 0 3�2 − �1
√

3�2 0 0
√

3�1 0 0 0
0 0 0 0 0 2�1 0 0

√
3�2 −V23 2�2 0 0

√
3�1 0 0

0 0 0 0 0 0 2�1 0 0 2�2 −V14
√

3�2 0 0
√

3�1 0
0 0 0 0 0 0 0 2�1 0 0

√
3�2 −�1 − 3�2 0 0 0

√
3�1

0 0 0 0 0 0 0 0
√

3�1 0 0 0 −3V23
√

3�2 0 0
0 0 0 0 0 0 0 0 0

√
3�1 0 0

√
3�2 �2 − 3�1 2�2 0

0 0 0 0 0 0 0 0 0 0
√

3�1 0 0 2�2 −3�1 − �2
√

3�2
0 0 0 0 0 0 0 0 0 0 0

√
3�1 0 0

√
3�2 −3V14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

W16×16 = 1

2
(00, 01, 10, 11, 31, 30, 21, 20, 23, 22, 33, 32, 12, 13, 02, 03)

= 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 0 0 −1 0 0 −1 0
1 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 −1
0 0 0 1 0 0 1 0 0 −1 0 0 −1 0 0 0
0 0 1 0 0 0 0 1 −1 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 −1 −1 0 0 0 0 1 0 0
0 0 0 1 0 0 −1 0 0 −1 0 0 1 0 0 0
1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 1
0 1 0 0 −1 0 0 0 0 0 0 −1 0 0 1 0
0 0 0 1 0 0 −1 0 0 1 0 0 −1 0 0 0
0 0 1 0 0 0 0 −1 1 0 0 0 0 −1 0 0
0 1 0 0 −1 0 0 0 0 0 0 1 0 0 −1 0
1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

HLab =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

3V12 0 V12 0 2V14 0 0 0 −V12 0 0 0 0 0 V14√
3V12 0 V12 0 2V14 0 0 0 V34 0 0 0 0 0 V23 0
0 V12 0

√
3V12 0 0 0 2V23 0 0 0 V34 0 V14 0 0

V12 0
√

3V12 0 0 0 2V23 0 0 0 −V12 0 V23 0 0 0
0 2V14 0 0 0

√
3V12 0 V34 0 0 0 V23 0 V12 0 0

2V14 0 0 0
√

3V12 0 V34 0 0 0 V14 0 −V34 0 0 0
0 0 0 2V23 0 V34 0

√
3V12 0 V23 0 0 0 0 0 −V34

0 0 2V23 0 V34 0
√

3V12 0 V14 0 0 0 0 0 V12 0
0 V34 0 0 0 0 0 V14 0

√
3V34 0 V12 0 2V23 0 0

−V12 0 0 0 0 0 V23 0
√

3V34 0 V12 0 2V23 0 0 0
0 0 0 −V12 0 V14 0 0 0 V12 0

√
3V34 0 0 0 2V14

0 0 V34 0 V23 0 0 0 V12 0
√

3V34 0 0 0 2V14 0
0 0 0 V23 0 −V34 0 0 0 2V23 0 0 0

√
3V34 0 V34

0 0 V14 0 V12 0 0 0 2V23 0 0 0
√

3V34 0 V34 0
0 V23 0 0 0 0 0 V12 0 0 0 2V14 0 V34 0

√
3V34

V14 0 0 0 0 0 −V34 0 0 0 2V14 0 V34 0
√

3V34 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B3)
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APPENDIX C: THE TRANSFORMATION IN THE 64-LEVEL SYSTEM

For N = 3 (i.e., n = 8, that is, a 64-level system), we only write down explicitly the transformation matrix:

2
√

2 W64×64 =

(000, 001, 010, 011, 100, 101, 110, 111,

031, 030, 021, 020, 131, 130, 121, 120,

313, 312, 303, 302, 213, 212, 203, 202,

322, 323, 332, 333, 222, 223, 232, 233,

230, 231, 220, 221, 330, 331, 320, 321,

201, 200, 211, 210, 301, 300, 311, 310,

123, 122, 133, 132, 023, 022, 033, 032,

112, 113, 102, 103, 012, 013, 002, 003)

. (C1)

APPENDIX D: THE MORE BASIC CPIs
OF THE PYTHAGOREAN HAMILTONIAN

From the argument presented in Eq. (22) in the main text
we can understand that there are more basic CPIs in our
system, and from them we can build our universal CPI in any
even-dimensional representation. Recall that the Hamiltonian

H (t ) =
{

�1σz + �1σx, 0 � t < T
2 ,

−�2σz − �2σx,
T
2 � t � T

(D1)

has a propagator that satisfies

U (T, 0) = (−1)
p+q

2

(
0 1

−1 0

)
, (D2)

which means that in spin- 3
2 representation, for example, we

have

U (T, 0) = (−1)
p+q

2

⎛
⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠. (D3)

By our claims in the main text, the TP frame’s 16×16 Hamil-
tonian (See Appendix B) fully transfers the state 1√

2
(e1 + e16)

to another (orthogonal) state at T
2 , and so does it for the initial

state 1√
2
(e6 + e11). We will work now with tensor products

in order to clarify how we obtain our previous CPI, and we
assume, without loss of generality, that (−1)

p+q
2 = 1.

According to the CPI scheme we derived in Eq. (24) in the
main text, the (two independent) “basic” CPIs are

1√
2

(|11〉 + |44〉)

→ 1√
2

U

(
T

2
, 0

)
⊗ U

(
T

2
, 0

)
(|41〉−|14〉), (D4a)

1√
2

(|33〉 + |22〉)

→ 1√
2

U

(
T

2
, 0

)
⊗ U

(
T

2
, 0

)
(|23〉−|32〉), (D4b)

and both of them occur at t = T
2 ; and it is easy to see that our

known CPI holds at t = T
2 too:

1

2
(|44〉 + |33〉 + |22〉 + |11〉)

→ 1

2
U

(
T

2
, 0

)
⊗U

(
T

2
, 0

)
(|41〉 − |32〉 + |23〉 − |14〉)

= 1

2
(|41〉 − |32〉 + |23〉 − |14〉), (D5)

where in the last step we used the fact that uYuT = Y (in
every representation). We wrote this last CPI before in another
way: V (I4) → V (Y4). What makes this CPI unique is that it
is universal for every (even) representation, while the “basic”
CPIs we have just seen are not. It is easy to see that for every
|ψ0(α, β )〉 = α√

2
(|11〉 + |44〉) + β√

2
(|33〉 + |22〉) we have a

CPI (|α|2 + |β|2 = 1), since the basic CPI’s initial and fi-
nal states are built of different (and orthogonal) one-particle
states, so that the final state (at t = T

2 ) we get from propa-
gating |ψ0(α, β )〉 is orthogonal, by definition, to the initial
state. But, as we have mentioned, with α = β = 1

2 we have a
universal CPI.

For a general even representation n, we have n
2 basic CPIs

of the form (i ∈ {1, 2, . . . , n
2 })

1√
2

(| ii〉 + |n + 1 − i, n + 1 − i〉)

→ (−1)i 1√
2

U

(
T

2
, 0

)
⊗U

(
T

2
, 0

)

(| i, n + 1 − i〉−|n + 1 − i, i〉), (D6)

which are to be calculated in that representation. However, as
we have discussed, the sum of all these states exhibits a known
CPI, which is independent of the parameters p, q, k:

1√
n

n∑
i=1

| ii〉 → 1√
n

n∑
i=1

(−1)i| i, n + 1 − i〉 , (D7)

which is absolutely the known one.

APPENDIX E: THE ISSUE IN ODD-DIMENSIONAL
REPRESENTATIONS

From Eq. (24) in the main text and Appendix D, one can
clearly see the issue in odd-dimensional representations we
discussed in the main text from another point of view. For
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simplicity we will demonstrate the problem in the three-level
system of spin-1 representation. Assuming that U (T, 0) = Y ,
we get in the spin-1 representation

U (T, 0) =
⎛
⎝0 0 1

0 −1 0
1 0 0

⎞
⎠,

which means

U (T, 0)|1〉 = |3〉 , (E1a)

U (T, 0)|2〉 = −|2〉 , (E1b)

U (T, 0)|3〉 = |1〉 . (E1c)

According to Eq. (24) in the main text, this guarantees just one
CPI in the retrograde canon’s TP frame Hamiltonian, H(t ) =
−H (T − t ) ⊗ I + I ⊗ H (t ):

1√
2

(−|11〉+|33〉 )

→ 1√
2

U

(
T

2
, 0

)
⊗U

(
T

2
, 0

)
(−|31〉+|13〉)

at t = T

2
, (E2)

which is obviously not universal and does depend on more
details of H (t ), just like the other analogous “basic” CPIs
we have seen in even representations. So we do not have a
similar picture that allows us to repeat the same way to build a
universal CPI. It does hold that if we start with V (I ) we end in
V (Y ) at t = T

2 , but we cannot see this directly from Eq. (24)
in the main text as we did in even representations, and, in any
case, this is not a CPI since the two states are not orthogonal.

APPENDIX F: THE MAJORANA SPHERE

According to Majorana’s representation, there is a one-to-
one correspondence between the (normalized) states of an N-
level system, which are of the form

|ψ〉 =
N∑

k=1

ck|k〉 (F1)

(where
∑N

k=1 |ck|2 = 1), and the (normalized) N − 1 Majo-
rana polynomials, which are of the form

M(z) =
N∑

k=1

dk

(
N − 1

k − 1

) 1
2

(−z)N−k (F2)

(where
∑N

k=1 |dk|2 = 1). This bijection is given trivially by
[41–43]

dk = ck ∀ k. (F3)

Every polynomial of this form is defined, up to a phase, by
its roots, whose number can be N − 1 (when c1 �= 0), N − 2
(when c1 = 0 and c2 �= 0), N − 3 (when c1 = 0 and c2 = 0
and c3 �= 0), etc. Hence, there is a map from the set of these
polynomials to the set CN ,

CN = { } ∪
N−1⋃
k=1

Ck, (F4)

and every element in CN uniquely corresponds to a state |ψ〉,
up to a phase (the empty set corresponds to |ψ〉 = |N〉 up
to a phase). Now, every root z can be presented on the unit
sphere (also the Riemann sphere or the Bloch sphere or the
Majorana sphere in this context) S2 by using the stereographic
projection from the south pole [44]:

z = tan
θ

2
eiφ, (F5a)

θ = 2 arctan |z|, (F5b)

φ = −i ln
z

|z| . (F5c)

Therefore, when we discuss an N-level system, we can de-
scribe its state (up to a phase) by a Majorana sphere with 0 or
1 or 2 or ... or N − 1 points on it. Majorana’s theorem states
that, with an applied magnetic field on the system (which
has angular momentum j, where N = 2 j + 1 and |k〉 in our
notation is | j, m = k − j〉), these representative points precess
rigidly around the direction of the field.

Generally, in an N-level system, the time evolution on the
Majorana sphere can be represented by N − 1 trajectories,
where each trajectory describes the evolution of one of the
roots, and trajectories may intersect for some values of time. If
at some time there are 0 � n � N − 1 points on the Majorana
sphere, this means that the polynomial is of degree i for
some n � i � N − 1, which implies that c1, c2, . . . , cN−1−i

are zero. This hold of course for an interval of time as well.
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