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Quantum communication capacity transition of complex quantum networks
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Quantum network is the key to enable distributed quantum information processing. As the single-link commu-
nication rate decays exponentially with the distance, to enable reliable end-to-end quantum communication, the
number of nodes needs to grow with the network scale. For highly connected networks, we identify a threshold
transition in the capacity as the density of network nodes increases: below a critical density the rate is almost
zero, while above the threshold the rate increases linearly with the density. Surprisingly, above the threshold
the typical communication capacity between two nodes is independent of the distance between them, due to
multipath routing enabled by the quantum network. In contrast, for less connected networks such as scale-free
networks, the end-to-end capacity saturates to constants as the number of nodes increases, and always decays
with the distance. Our results are based on capacity evaluations, therefore the minimum density requirement for
an appreciable capacity applies to any general protocols of quantum networks.
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I. INTRODUCTION

Quantum information (QI) science has brought advantages
in various applications [1–4]. To unleash the full power of QI
processing in distributed tasks [5,6], a quantum network (QN)
[7–11] aiming at entanglement distribution and QI transmis-
sion is the key.

The internet is mainly built upon fiber networks, with pho-
tons as the information carrier. Similarly, photons as the only
known flying qubits will likely be the information carrier in
a QN. In both cases, channel loss is the major challenge to
communication. Therefore, networking protocols that make
use of intermediate nodes or repeaters are important for both.
Unlike classical information, QI cannot be simply cloned and
amplified, and therefore increasing the number of nodes, even
repeater nodes [12–22], is costly. In this regard, a key question
for designing a QN is to understand the tradeoff between the
density of nodes and the entanglement distribution rate: how
many nodes are necessary to guarantee reliable QI transmis-
sion between multiple users in a fixed region?

The answer not only depends on the overall distances be-
tween the users, but also on the topology of the QN to be
built [23]. As it is likely that well-developed classical fiber
networks can be adopted as the base of QNs, Ref. [24] de-
veloped a model for QN on the probabilistic transmission of
single photons and took a classical network science approach
to study its connectivity by the giant component. However, for
QNs exploiting quantum technologies such as quantum error
correction [25] and nonclassical state generation [26,27], the
semiclassical approach has a limited implication. In particular,
Ref. [24]’s critical density highly depends on the number of
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repetitions of each channel use and thus blurs the essential
constraints. More recently, Refs. [28,29] considered effects
from repeater nodes. As the results rely on specific protocols,
the fundamental limits of the tradeoff remain unclear. We
address the same question with a full QI approach based on
the fundamental limits [30–34] and obtain a minimum density
requirement that generally applies to any protocols.

As the exact architecture and protocols of QNs are unclear,
we take the information-theoretical approach and evaluate the
end-to-end capacity [33] of QI transmission. To account for
different possibilities of the future QNs, we consider typical
types of network models [40], based on the Waxman networks
[36,37], Erdős-Rényi model, and scale-free networks [38,39].
Our results provide an upper bound to characterize the quan-
tum capacity of QNs and the analysis applies to all kinds of
quantum communication. In Waxman and Erdős-Rényi QNs,
the ensemble-averaged capacity abruptly transits from almost
zero to nonzero values at a critical density of nodes. Above
the threshold, it grows with the density linearly, at a rate de-
pending on the statistical properties of the QN. Surprisingly, in
this region the end-to-end capacity typically does not depend
on the distance between the two end nodes, due to the mul-
tipath routing enabled by the coordination of the entire QN.
In scale-free QNs, the ensemble-averaged capacity saturates
to a constant depending on the scale of the network as the
density of nodes increases, due to the limited connectivity in
the network that prevents efficient multipath routing.

II. MODEL OF QNs

The skeleton of a QN can be described by a graph, with
vertices G being the network nodes and edges E representing
the transmission links [41]. As nodes are located geograph-
ically, we can assign a two-dimensional (2D) coordinate x
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FIG. 1. (a) The degree distribution of a Waxman network, with
density ρ = 10−5 km−2, fits well with a Poisson distribution (red
curve) with A = 3.0 × 105. (b) The cumulative degree distribution
of the scale-free model, with density ρ = 10−5 km−2, fits well with
a power law (red curve). (c) A four-node QN, with the axes as the
geographical coordinates. The blue color indicates a cut between
X1 and X2 and the number on each edge equals the edge capacity
in Eq. (1). For the cut indicated by blue edges, the cut capacity
of Eq. (2) C(Ux,x′ ) = 1.75 + 0.93 = 2.68, which turns out to be
the minimum cut. (d1)–(d2) Examples of entanglement distribution
protocols. (d1) Direct communication strategy with potential error
correction. (d2) Entanglement-swap strategy. After an entanglement
swap measurement on a1b1, nodes X1 and X2 can share an entangled
state in a2b2.

to each node. The transmission link along each edge Ex,x′ is
modeled as a bosonic pure loss channel, with a transmissivity

η(x, x′) = 10−γ D(x,x′ ) for fiber length D(x, x′) at a state-of-
the-art rate γ = 0.02 per kilometer (km). For simplicity, we
assume that for each edge, the fiber length D(x, x′) and the
geographical distance ‖x − x′‖2 are identical.

With the transmission links on each edge defined, one
needs to specify the graph structure—the coordinates and
connections of the vertices—to specify the QN. Without loss
of generality, we choose the coordinates of the N nodes uni-
formly random in a square �R ≡ [−R, R] × [−R, R], with an
area of |�R| = 4R2.

In the random Waxman model [36,37], each pair of nodes
is connected with a probability �(x, x′) = e−D(x,x′ )/αL decay-
ing exponentially with the distance. Here L = 2

√
2R is the

maximum possible distance in a square; the constant α con-
trols the typical fiber length and is fixed so that αL = 226 km
to model the U.S. fiber-optics networks [37]. It is worthy to
point out that Ref. [24] adopted the same Waxman QNs. In
the scale-free model [39], the network is built up dynamically:
when each node x is being added, it is connected to m nodes
out of all the previous added nodes. The probability of node x′
being connected to node x is proportional to the current degree
Dg(x′) and inversely proportional to the distance D(x, x′),
i.e., �(x, x′) ∝ Dg(x)/D(x, x′), in contrast to the Waxman
model’s exponential decay with distance.

To obtain a direct impression, we visualize the two
models in Fig. 2(a) and Fig. 4(a), respectively. Immedi-
ate differences in the connectivity can be seen, e.g., by
comparing Fig. 2(a2) and Fig. 4(a1): for the same N =
1585 nodes in a region of scale R � 800 km, the Waxman
model is much more connected and homogeneous, while
the scale-free model is less connected and heterogeneous.

FIG. 2. Waxman QNs, α = 0.1 (R � 800 km). (a1)–(a5) Visualizations with different number of nodes N . The darkness and opacity of
the color of the nodes and edges indicate the relative amplitude of the capacity (darker means larger). The blue edges are the minimum cut
solution to random pairs of end nodes indicated by the red dots. (b1)–(b5) The end-to-end capacity C(x, x′) between random nodes x, x′ for
QNs with fixed N, α. The x axis is the graph distance between two nodes dG(x, x′), in terms of the shortest fiber path. The scattered circles are
50 random pairs in a single QN sample and the red dashed lines indicate the average obtained from 5000 random data.
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FIG. 3. (a) Average end-to-end capacity 〈C〉 vs. nodes density ρ. The dark green solid line and the light green dashed line give the upper
bounds 〈C(x)〉 � ζρ and its shifted fitting 〈C〉 = ζ (ρ − ρc ) + 1, respectively. The arrows indicate critical densities for the birth of giant
connected component (ρG), for the prediction of Ref. [24] (ρB) and ρc � 4.25 × 10−4 km−2 is when 〈C〉 = 1. (b) The average of the ratio of
end-node edges inside the minimum cut. It shares the same legend as in (a). (c) Average end-to-end capacity 〈C〉 of Erdős-Rényi model vs
node density ρ. The green lines from top to bottom correspond to the asymptotic upper bound 〈C〉 = ζER pρ for α = 1, 0.5, 0.2.

These differences can be captured by their statistical prop-
erties. As shown in Figs. 1(a), 1(b) the Waxman QN model
has a Poisson degree distribution and the average degree
grows with the number of nodes linearly [45]; while the
scale-free QN model has a long-tailed power-law degree

FIG. 4. Scale-free QNs with N = 1585 nodes, with similar
arrangements and ensemble averaging to Fig. 2. (a1)–(a2) Visual-
izations of the QN model with different scales R = 800, 160 km,
with fixed N = 1585 nodes. (b1)–(b2) The corresponding end-to-end
capacity.

distribution and a bounded average of 2m. It is also wor-
thy mentioning that the Waxman model has a percolation
phase transition (see Appendix A), where the percentage of
the giant component of the graph increases sharply from
close to zero to unity as the density ρ = N/|�R| increases
above a critical value of ρG � 7 × 10−6 km−2. However,
we show that this necessary condition is far from being
sufficient.

While we base our QN models on the internet, a QN will
be essentially different from internet. In particular, classi-
cal repeaters [42] are not counted as network nodes in the
study of internet [40], as they are universally deployed and
cheap. In contrast, quantum repeaters are nontrivial and there-
fore directly considered as network nodes in this study. In
this regard, the Waxman model’s exponential decay of long

(a)

(b)

(c)

FIG. 5. Scale-free model. (a) Average end-to-end capacity 〈C〉
vs. the number of nodes N for various scales R’s. (b) The average
of the ratio of end-node edges inside the minimum cut. (c) Capacity
vs. the scale of the QN. The orange curve is the upper bound 〈C(x)〉
from numerical integration (see Appendix E).
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(a) (b)

FIG. 6. Average degree of (a) Waxman and (b) Yook models and
its dependence on the number of nodes N . (a) Solid lines give linear
fitting results of 〈k〉 = Aρ where ρ is the density of nodes. (b) Dashed
lines show the theory curve 〈k〉 = (2N − 1 − m)m/N .

direct links will be more likely for QNs. However, our goal is
not to determine which model can better represent a QN, an
emerging technology, but to characterize each model in terms
of quantum communication.

III. PROTOCOLS AND CAPACITY FORMULA

To distribute entanglement between two nodes X1 and X2

in a QN, the nodes can transmit quantum states between all
links and perform two-way classical communication in com-
bination of local operations at each node. To begin with, let
us consider an instance of a four-node network in Fig. 1(c). In
a single-path routing strategy, one can choose a path from X1

to X2 (e.g., X1 − X4 − X2, X1 − X3 − X2, or X1 − X3 − X4 −
X2) and utilize all the channels along the path once to dis-
tribute the entanglement. With the path fixed, one can either
perform direct communication or adopt entanglement swap
[43], as shown in Fig. 1(d). A more efficient approach is to
adopt multipath routing. For example, nodes X1 and X2 in
Fig. 1(c) can utilize multiple non-overlapping paths simulta-
neously (X1 − X3 − X2 and X1 − X4 − X2) and achieve a better
performance.

As protocols vary, to obtain universal results, we consider
the ultimate achievable entanglement distribution rate among
all protocols [32,33]. In contrast to classical communication
[2,44], the QI transmission capacity for each edge is funda-
mentally limited by the channel loss to be

CE (Ex,x′ ) = − log2(1 − η) = − log2 (1 − 10−γ D(x,x′ )), (1)

regardless of the energy, where η = 10−γ D(x,x′ ) is the channel
loss [32].

(a) (b)

FIG. 7. Degree distribution and mean degree of Erdős Rényi
model. (a) Degree distribution of Erdős-Rényi model with α = 0.1.
The red curves represent the analytical expression for it. (b) Mean
degree of Erdős-Rényi model with different α.

To characterize the importance of a single node, we define
the node capacity CN (x) = ∑

x′∈N (x) CE (Ex,x′ ), as the sum of
the edge capacities. Consider the graph with edge capacities
{CE (Ex,x′ )} as the weights [e.g., Fig. 1(c)], the problem of
solving the end-to-end capacity is reduced to solving the min-
imum cut [33]. Let us first introduce a cut Ux,x′ between two
nodes x and x′ as the set of edges such that their deletion will
disconnect the two nodes. For example, in Fig. 1(c), the blue
part indicates a cut for A and B. Then the capacity between
end nodes x and x′ is given by the edge connectivity between
them [33]

C(x, x′) = min
Ux,x′

CU (Ux,x′ ) ≡ min
Ux,x′

∑
Ey,y′ ∈Ux,x′

CE (Ey,y′ ). (2)

To obtain further insights, we derive an upper bound of
the end-to-end capacity by the node capacities of the two
end nodes, C(x, x′) � min{CN (x), CN (x′)}, as one can always
choose the cut that consists of all edges connected to one of
the end nodes.

We take a statistical approach and evaluate the average end-
to-end capacity 〈C(x, x′)〉 in an ensemble of network models,
where the average is over the choices of the end nodes x, x′
and the random realization of the network, with fixed numbers
of nodes N and scale R. In this regard,

〈C(x, x′)〉 � 〈min {CN (x), CN (x′)}〉 � 〈CN (x)〉 , (3)

upper bounded by the ensemble-averaged node capacity.
Compared to the edge connectivity approach based on proba-
bilistic single-photon transmission in Ref. [24], our quantum
capacity approach applies to all protocols and reveals essential
features of a network.

IV. RATE TRANSITION OF WAXMAN QNs

To study Waxman QNs, we first fix the scale R � 800 km
and vary the number of nodes N . In Fig. 2(b), we plot the
end-to-end capacity C(x, x′) of random pairs vs. the graph dis-
tance dG(x, x′) (the shortest path length) between them. When
the number of nodes is small [e.g., Fig. 2(b1)], the capacity
decays with the graph distance drastically; while surprisingly,
when the number of nodes becomes larger [e.g., Fig. 2(b2)],
the capacity is almost independent of the graph distance [35].
This is due to the effect of multipath routing—the number of
possible paths increases significantly with distance when the
nodes are dense.

To systematically evaluate the transition in the end-to-
end capacity, we evaluate the ensemble-averaged capacity
〈C(x, x′)〉 for different values of R and N . We expect the
density of nodes ρ to be the crucial parameter. Indeed, we
can show that when R is large, the ensemble-averaged node
capacity 〈CN (x)〉 � ζρ, as the upper bound in Eq. (3), is linear
in density ρ with the coefficient ζ � 4358 (see Appendix C).

In Fig. 3(a), we plot the average capacity vs the node den-
sity ρ for different system size R. Overall, for a fixed density
ρ, the capacity 〈C〉 converges as the scale R increases. When
the density is small, the capacity is mostly close to zero (see
Appendix B); as the density increases, we see a sudden tran-
sition from almost zero capacity to o(1) capacity at a critical
density. The transition happens at around 〈C〉 ∼ 1 correspond-
ing to a density ρc � 4.25 × 10−4 km−2, which is much larger

022608-4



QUANTUM COMMUNICATION CAPACITY TRANSITION OF … PHYSICAL REVIEW A 104, 022608 (2021)

(a) (b) (c)

FIG. 8. (a) The relative size NG/N of the largest component in the Waxman QN model vs. the density of nodes, α, L are both determined
by N and density. To obtain the average, we sampled 10,10,5 graphs for N = 500, 1000, 104 separately. The dashed vertical line at a density
∼7 × 10−6 indicates the transition point. (b) Clustering coefficients vs α for Waxman QN model, in the large number of nodes N � 1 limit.
(c) Clustering coefficients of the scale-free QN model.

than the giant component transition ρG � 7 × 10−6 km−2 and
the result ρB � 6.82 × 10−5 km−2 from Ref. [24].

After this transition, the average capacity increases linearly
with node density ρ, approaching the upper bound ζρ (dark
green line). The reason of the convergence can be observed
from Fig. 2(a): when the connectivity is high, the minimum
cut (blue edges) becomes a cut formed by all the edges con-
necting to one of the end points. To be more quantitative, we
calculate the ratio of the edges in the minimum cut that contain
at least one end node. As shown in Fig. 3(b), the ratio transits
from close to zero to unity at the same time as the end-to-end
capacities approach the upper bounds. In fact, we find that a
shifted upper bound ζ (ρ − ρc) + 1 fits the overall numerical
results well, as shown by the green dashed line in Fig. 3(a).

Note that Ref. [24]’s critical density depends on the proto-
col parameters, e.g., the number of repetition np for each link;
therefore the value of their critical density is not an essential
characterization of the QN. Their results have to obey the
constraint in our paper, as any protocol has its rate bounded
by the capacity. We can confirm as follows: as they consider
np = 1000 repeated use of each channel to successfully estab-
lish one single Bell pair, the end-to-end capacity per channel
use in their protocol is merely 10−3 for density ρ = ρB, which
is in fact within the vanishing capacity region in our results.

V. RATE SATURATION OF SCALE-FREE QNs

Now we switch the focus to scale-free QNs (see Fig. 4).
Similarly, we evaluate the end-to-end capacity for the same

set of choices of R and N . In Fig. 5(a), the ensemble-averaged
capacity 〈C(x, x′)〉 grows as N increases and saturates to a
constant dependent on the scale R of the network. This is due
to the limited degree of scale-free networks, which constrains
the upper bound of the node capacity to be bounded by a
constant ∝ m and dependent on R (see Appendix E). As we
can see in Fig. 5(b), the ratio of edges of end points being
in the minimum cut is now determined by the network scale,
and gets close to unity when the network is small. Indeed, in
Fig. 5(c) we see the gap between the saturated capacity and the
upper bound from node capacity is small for small R, while
larger with R increasing. Overall, the capacity decays with R
exponentially, even when the number of nodes is large.

In additional to the saturation of capacity, the graph-
distance independence of the capacity is absent for scale-free
QNs. In Fig. 4(b), regardless of the capacity being large or
small, there is a sharp decrease of the end-to-end capacity
as the graph distance increases, in contrast to the Waxman
QNs in Fig. 2(b). This is due to the lack of multipath routing,
constrained by the connectivity of the scale-free networks.
Indeed, we can find the average clustering coefficient 〈rc〉 de-
caying with the system size, instead of saturating to constants
with number of nodes in the Waxman case (see Appendix A).

VI. RATE TRANSITION OF ERDÕS-RÉNYI QNs

We also extend our analyses to the Erdős-Rényi model, a
network model with uniform edge connection probability p.
To compare with the Waxman model, we match the number

(a) (b) (c) (d) (e)

FIG. 9. More details on Figs. 2(b1)–2(b5). We have used the same numbering of the subplots for consistency. The gray scale PDF represents
the statistical distribution (plotted in nonlinear scale

√
ñ for visualization) of end-to-end capacity over 5000 random pairs of end nodes (50

pairs from each of the 100 random QNs). The red lines are the average end-to-end capacity in each of the distance window. We sort the 5000
samples according to the graph distances from small to large and divided them into 20 groups of 250 points accordingly. We take the average
of the capacity and graph distance in each group and obtain a data point.
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(a) (b)

FIG. 10. More details on Fig. 4(b1), 4(b2) in the main paper.
We have used the same numbering of the subplots for consistency.
The grayscale PDF represents the statistical distribution (plotted in
nonlinear scale

√
ñ for visualization) of end-to-end capacity over

5000 random pairs of end nodes (50 pairs from each of the 100
random QNs). The red lines are the average end-to-end capacity in
each of the distance window. We sort the 5000 samples according
to the graph distances from small to large and divided them into 20
groups of 250 points accordingly. We take the average of the capacity
and graph distance in each group and obtain a data point.

of edges in Erdős-Rényi model to the Waxman model with
the same α and N , via choosing a proper p. The corresponding
degree distribution is binomial (see Appendix A).

We evaluate the transition of average end-to-end capacity
〈C〉 with node density in Fig. 3(c), and identify similar trend to
the Waxman model: when ρ is large, 〈C〉 grows linearly with
ρ; while when ρ is small, there is still a sharp decrease in the
capacity. While in the Waxman model, the capacity 〈C〉 agrees
among different α in the linear transition, Erdős-Rényi model
shows a clear dependence on α, and thus on the connection
probability p. We can also explore further the dependence
on α through the upper bound of node capacity in Eq. (3).
〈CN (x)〉 � ζER pρ, where ζER � 5137.9 (see Appendix D). We
can directly see the dependence of 〈C〉 on connection proba-
bility p from the asymptotic upper bound and we show them
in Fig. 3(c).

VII. CONCLUSION AND DISCUSSIONS

In this paper, we examine the end-to-end quantum com-
munication capacity in Waxman, Erdős-Rényi QNs, and
scale-free QNs. Our results provide guidance on the design of
QN infrastructure, as the capacity places an achievable upper
bound on rates of quantum communication protocols.

In particular, our results suggest that when the connectivity
of the QN is high (as in the Waxman case), multipath routing
will enable reliable quantum communication. On the practical
side, considering that quantum repeaters might be as costly
and expensive as user nodes, this indicates that at a moderate
metropolitan scale where users are dense and direct links are
possible, it might be better to simply build more direct links
between the users and utilize the multipath routing for reliable
quantum communication.

Our results are based on network capacity results and there-
fore reveal essential property of a QN, independent of the
protocol. We reveal more detailed properties of QNs, other
than the simple connectivity properties in Ref. [24]. Our re-
sults address the entanglement generation capacity, which is
the most relevant quantity in a QN. In particular, our results

allow unlimited two-way classical communication (via an un-
derlying classical network) as assistance in the entanglement
generation process. Reference [24] limits the protocols to be at
a single photon level, and is strongly dependent on the specific
protocol parameters to generate entanglement. The density
of nodes to guarantee reliable communication would depend
on the exact meaning of reliable communication, however, a
network above the threshold we identified is preferable as the
capacity starts to become distance independent.
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APPENDIX A: BASIC PROPERTIES NETWORKS

As shown in Fig. 6, in the Waxman model, the average
degree 〈k〉 of the nodes increases with the number of nodes
N linearly, at a rate depending on the scale α; in the scale-
free network, the average degree saturates to 〈k〉 = (2N − 1 −
m)m/N � 2m as the number of nodes N increases. Here m is
the number of edges brought by the addition of each single
node. We plot the degree distribution of Erdős-Rényi model
and mean degree in Fig. 7.

The Waxman model has a giant component transition as the
density of nodes ρ increases. As shown in Fig. 8(a), the ratio
of the size of the largest connected component NG over the
total number of nodes N increases from close to zero to unity
abruptly at a density of ρG � 7 × 10−6 km−2. The transition
becomes sharper as the number of nodes increase.

To understand the connectivity of the networks, we plot
the clustering coefficient’s dependence network parameters.
For a single node, the single-node local clustering coefficient
rc(x) = t/[k(k − 1)/2] identifies the existence of connections
between its k neighbors N (x). Here t is number of triangles
that is attached to the node x. We can define the graph cluster-
ing coefficient 〈rc〉 by averaging over all nodes. For Waxman
networks, 〈rc〉 converging to a constant dependent on α as the
number of nodes increases, as shown in Fig. 8(b). While for
the scale-free networks, 〈rc〉 decays to zero as the number of
nodes N increases, as shown in Fig. 8(c).

APPENDIX B: ADDITIONAL DATA
FOR THE END-TO-END CAPACITY

We provide additional data of the numerical calculations.
First, we show the distribution of the end-to-end capacity
between random pairs of nodes in each ensemble of net-
works. Figure 9 shows the Waxman case, corresponding to
Figs. 2(b1)–2(b5); while Fig. 10 shows the scale-free case,
corresponding to Figs. 4(b1), 4(b2) of the main paper. The
average of the data utilized here gives the red curves in the
corresponding plots of the main paper, which are also shown
as red curves in these plots.

Next, we present an in-depth analysis of Fig. 3 in the main
paper. Figure 11(a) shows each curve of capacity vs. number
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(a)

(b)

(b) (c)

FIG. 11. (a) Average end-to-end capacity 〈C〉 vs. number of nodes N for various α’s. The system size R � 80/α km. We see a critical drop
at small N when α is not too large, indicated by the dashed lines going down to zero. The green solid lines gives the upper bounds in Eq. (C1).
(b) The average of the ratio of end-node edges inside the minimum cut. It shares the same legend as in (a). (c) We plot the critical number of
nodes vs α. The green curve indicates a lower bound from solving 〈C(x)〉 = 1 in Eq. (C1). In comparison, we plotted the results predicted from
Ref. [24] (black open circles) and the critical number of nodes NG for the appearance of giant components. (d) Average end-to-end capacity
〈C〉 vs. density of nodes ρ for various α’s in a linear scale. The system size R � 80/α km. The green line represents the asymptotic upper
bounds 〈C〉 � ζρ and the dashed lines with same colors as dots show the linear fitting in the range 〈C〉 > 0.1. The inset is the dependence of
average end-to-end capacity with density in the range ρ ∈ (10−5, 10−3). The dark blue solid line presents a power-law relation as 〈C〉 ∼ ρ3.

of nodes for different scales individually, without collapsing
everything in plotting with density. In the main paper, we
do not show the long tails, as these tails are mainly due to
rare cases of random pairs of nodes lying very close to each
other. Indeed, if we plot the median instead of the mean, as
shown in Fig. 12, these long tails are not present and we
see a clear sharp drop. To avoid burying the main takeaway
in such technical details, we do not present the entire data
in the main paper. Here we also evaluated the exact upper
bound from Eq. (C1) for each curve, which converges to
the asymptotic results shown in the main paper (see Fig. 13
for details of the convergence). In Fig. 11(b), we calculate

(a) (b)

FIG. 12. (a) Average end-to-end capacity 〈C〉 vs. density of
nodes ρ for various α’s. The system size R � 80/α km. We see a
critical drop at small N when α is not too large, indicated by the
dashed lines going down to zero. The green solid lines gives the
upper bounds in Eq. (C1). (b) The median end-to-end capacity 〈C〉 vs.
density of nodes ρ for various α’s. It shares the same legend as in (a).
Instead of a long tail, we see clear sharp drop around the transition
point.

the critical number Nc for 〈C〉 = 1, which is much larger
than the giant component transition point NG or the results
from Ref. [24]. We can also solve 〈C(x)〉 = 1 in Eq. (C1)
to obtain a lower bound estimate on Nc, which works well
when R is large as shown in Fig. 11(c). In Fig. 11(d), we plot
the capacity in linear scale to show the deviations between

FIG. 13. Comparison of the exact upper bound in Eq. (C1) and
its asymptotic limit 〈C〉 � ζρ for the Waxman model. We plot those
upper bound by dashed lines with different α and asymptotic limit in
orange line.
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the actual capacities and the upper bounds in more detail. The
major reason for the deviation at large R and high density is
due to the second inequality of Eq. (3) of the main paper,
which we also print here

〈C(x, x′)〉 � 〈min {C(x), C(x′)}〉 � 〈C(x)〉 , (B1)

as interchanging the order of ensemble averaging and mini-
mization is not tight.

APPENDIX C: DERIVATION OF THE ASYMPTOTIC
RESULTS FOR WAXMAN MODEL

Due to the independence between the edges between
nodes, we have

〈C(x)〉 = (N − 1)

|�R|2
∫

�R

d2x
∫

�R

d2x′�(x, x′)C(Ex,x′ ) (C1)

− (N − 1)

|�R|2
∫

�R

d2x
∫

�R

d2x′e−D(x,x′ )/αL log2 (1 − 10−γ D(x,x′ )) (C2)

− (N − 1)

|�R|2
[∫

�R

d2x
∫

�∞
d2x′e−D(x,x′ )/αL log2 (1 − 10−γ D(x,x′ )) + O(R)

]
(C3)

− (N − 1)

|�R|
∫

�∞
d2x′e−D(x,x′ )/αL log2 (1 − 10−γ D(x,x′ )) + O(NR−3) (C4)

− (N − 1)π

2R2

∫ ∞

0
r dr e−r/αL log2(1 − 10−γ r ) + O(NR−3) (C5)

− (N − 1)π

2R2

∫ ∞

0
r dr e−r/αL log2(1 − 10−γ r ) + O(NR−3) (C6)

−2πρ

∫ ∞

0
r dr e−r/αL log2(1 − 10−γ r ) + O(NR−3) + O(R−2). (C7)

Inputting αL = 226 and γ = 0.02 we have the asymptotic
expansion of

〈C(x)〉 = ζρ, (C8)

ζ = −2π

∫ ∞

0
dr re−r/226 log2

(
1 − 10−0.02r

) � 4357.9.

(C9)

In Fig. 13, we compare the asymptotic results with the ex-
act numerical integration in Eq. (C1). A good convergence
towards the asymptotic result is found with the increasing
scale R.

APPENDIX D: DERIVATION OF NODE CAPACITY
IN ERDÕS RÉNYI MODELS

〈C(x)〉 = (N − 1)

|�R|2
∫

�R

d2x
∫

�R

d2x′�(x, x′)CE (Ex,x′ )

= − (N − 1)p

|�R|2
∫

�R

d2x
∫

�R

d2x′ log2 (1 − 10−γ D(x,x′ ))

= − (N − 1)p

|�R|
∫

�∞
d2x′ log2 (1 − 10−γ D(x,x′ ))

+ O(NR−3)

= − (N − 1)pπ

2R2

∫ ∞

0
r dr log2(1 − 10−γ r )+O(NR−3)

= ζER pρ + O(NR−3) + O(R−2), (D1)

APPENDIX E: DERIVATION OF THE ASYMPTOTIC
RESULTS FOR SCALE-FREE MODEL

Considering the on average 2m neighbors as independent,
the ensemble-averaged node capacity is

〈C(x)〉 = 2m

|�R|2
∫

�R

d2x
∫

�R

d2x′ 〈�(x, x′)C(Ex,x′ )〉 (E1)

= 2m

A

∫
�R

d2x
∫

�R

d2x′
〈

Dg(x′)
D(x, x′)

C(Ex,x′ )

〉
(E2)

where the normalization constant

A =
∫

�R

d2x
∫

�R

d2x′
〈

Dg(x′)
D(x, x′)

〉
. (E3)

The 〈·〉 inside the integral now denotes average over the degree
distribution of neighbors, conditioned on the neighbor being
at x′. We can approximate the distribution of the degree as
independent of the distance to node x, then 〈Dg(x′) f (x, x′)〉 =
〈D〉 f (x, x′), where 〈D〉 is a constant and f (x, x′) is an
arbitrary function of x, x′. We can cancel out the constant and
equivalently calculate

〈C(x)〉 = 2m

A′

∫
�R

d2x
∫

�R

d2x′
〈

1

D(x, x′)
C(Ex,x′ )

〉
(E4)

A′ =
∫

�R

d2x
∫

�R

d2x′
〈

1

D(x, x′)

〉
. (E5)

The above integral can be numerically calculated. It is clear
that 〈C(x)〉 does not grow with the number of nodes N , as m
is now a constant.
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