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Simulated quantum annealing as a simulator of nonequilibrium quantum dynamics
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Simulated quantum annealing based on the path-integral Monte Carlo is one of the most common tools to
simulate quantum annealing on classical hardware. Nevertheless, it is in principle highly nontrivial whether or
not this classical algorithm can correctly reproduce the quantum dynamics of quantum annealing, particularly
in the diabatic regime. We study this problem numerically through the generalized Kibble-Zurek mechanism of
defect distribution in the simplest ferromagnetic one-dimensional transverse-field Ising model with and without
coupling to the environment. We find that, in the absence of coupling to the environment, simulated quantum
annealing correctly describes the annealing-time dependence of the average number of defects, but a detailed
analysis of the defect distribution shows clear deviations from the theoretical prediction. When the system is
open (coupled to the environment), the average number of defects does not follow the theoretical prediction but
is qualitatively compatible with the numerical result by the infinite-time-evolving block decimation combined
with the quasiadiabatic propagator path integral, which is valid in a very-short-time region. The distribution
of defects in the open system turns out to be not far from the theoretical prediction. It is surprising that
the classical stochastic dynamics of simulated quantum annealing ostensibly reproduces some aspects of the
quantum dynamics. However, a serious problem is that it is hard to predict for which physical quantities in which
system it is reliable. Those results suggest the necessity to exert a good amount of caution in using simulated
quantum annealing to study the detailed quantitative aspects of the dynamics of quantum annealing.

DOI: 10.1103/PhysRevA.104.022607

I. INTRODUCTION

Quantum annealing was originally proposed as a meta-
heuristic to solve classical combinatorial optimization prob-
lems [1–10]. Recent years have seen its further development
as a quantum simulator of materials [11–20]. In both of these
applications, it is important to check the reliability of outputs
from real quantum devices against the data obtained on clas-
sical computers by numerical solutions of the Schrödinger
equation for closed systems (isolated from the environment)
and those of quantum master equations for open systems
(coupled to the environment). It is however difficult to carry
out those numerical studies on classical hardware beyond
moderate sizes because the dimension of the relevant Hilbert
space increases exponentially with the number of qubits.

Classical simulations of quantum annealing using stochas-
tic processes are often considered as an alternative tool to
study the properties of quantum annealing for large systems.
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In the spin-vector Monte Carlo (SVMC) [21], one replaces
spin- 1

2 Pauli operators in the Hamiltonian by classical rotors
of unit length and stochastically updates the system state.
This method is known to reproduce some features of the out-
puts from the quantum device, the D-Wave quantum annealer
[22–24]. Simulated quantum annealing (SQA) is another pow-
erful classical tool that uses the path-integral Monte Carlo
[2,5,18,23,25–35]. The latter method is in principle designed
to simulate equilibrium properties of quantum systems with-
out a sign problem [36]. However, in the context of quantum
annealing, it is used to simulate dynamical behaviors of the
transverse-field Ising model as initially attempted in Ref. [2].
Recent examples include Ref. [35], where the dynamics of
a random Ising chain with transverse field was studied by
SQA, and Refs. [37,38], where the performance of various
embedding schemes was compared using SQA.

There are few a priori reasons to expect that the classical
stochastic dynamics of SQA faithfully reproduces the quan-
tum dynamics of quantum annealing, which often operates in
the regime out of equilibrium or away from the adiabatic limit.
It is nevertheless known that some aspects of the nonequi-
librium dynamics of quantum annealing can be understood
by SQA, notably in relation to incoherent quantum tunneling
[34]. The present paper tries to shed light on this problem
through the analysis of the simplest case of the nonrandom
one-dimensional ferromagnetic Ising model in a transverse
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field. In particular, we study how far SQA reproduces the
predictions of the generalized Kibble-Zurek mechanism on
the distribution of defects after the system is driven across
a critical point at a finite rate [39,40]. We also compare
SQA with the direct numerical method for low-dimensional
quantum systems, the infinite-time-evolving block decimation
(iTEBD) combined with the quasiadiabatic propagator path
integral (QUAPI) [41,42], which is believed to produce accu-
rate results in a very-short-time region.

The problem of the generalized Kibble-Zurek mechanism
in one dimension was studied extensively in Ref. [17], where
it was seen that the behavior of the D-Wave device can be
understood in terms of a quantum system under the influence
of an environment. The present paper has a different point
of view, i.e., not to examine the behavior of the D-Wave
device but to study how far SQA is useful to explain the
dynamical properties of the quantum system through compar-
ison of the SQA data with the predictions of the generalized
Kibble-Zurek mechanism as well as with the data from the
iTEBD-QUAPI.

The next section describes the problem and the methods of
analysis. Section III reports the results. Section IV is devoted
to a summary and discussion.

II. PROBLEM AND METHODS

In the present section we describe the problem to be stud-
ied, the methods of analysis, and the physical quantities to be
observed.

A. Closed- and open-system Hamiltonians

We study the nonequilibrium dynamics, in particular the
properties related to the original [43,44] and the general-
ized Kibble-Zurek mechanisms [39,40], of the ferromagnetic
transverse-field Ising model in one dimension with a free
boundary,

H (t ) = −J (t )
L−1∑
i=1

σ̂ z
i σ̂ z

i+1 − �(t )
L∑

i=1

σ̂ x
i . (1)

Here L is the number of sites (qubits), σ̂
μ
i (μ = x, z) is the

μ component of the Pauli matrix at site i, and J (t ) and �(t )
are the time-dependent coefficients for the target and driver
terms, respectively. We use the linear time dependence of the
coefficients for simplicity,

J (t ) = t

ta
, (2)

�(t ) = 1 − t

ta
, (3)

where ta is the annealing time and the time t runs from 0 to
ta. This system in the ground state undergoes an equilibrium
second-order phase transition at a critical point J = � in the
limit of infinite system size [45].

In addition to the above Hamiltonian representing a closed
quantum system, we also study the open system described by

the Hamiltonian

H (t ) = − J (t )
L−1∑
i=1

σ̂ z
i σ̂ z

i+1 − �(t )
L∑

i=1

σ̂ x
i

+
L∑

i=1

∑
k

[
Vk (âi,k + â†

i,k )σ̂ z
i + ωi,kâ†

i,kâi,k
]
, (4)

where Vk is the coupling constant with the kth bosonic
modes â†

i,k and âi,k representing the environment, which is
assumed to have the standard Ohmic spectral density J (ω) =
4π

∑
k Vk

2δ(ω − ωi,k ) = 2παω. Following Ref. [46], we as-
sume J (ω) to be cut off at some ωc, beyond which J (ω) is set
to 0. The coefficient α describes the magnitude of dissipation
caused by the coupling to the environment. The whole system
of Eq. (4) is isolated from other degrees of freedom, kept at
zero temperature, and in principle running under the unitary
Schrödinger dynamics without the constraint of adiabaticity.
Simulated quantum annealing is supposed to simulate the
dynamical behavior of this system.

B. Method

The problem defined above has been studied extensively
for many years. Directly pertinent to the present paper are,
first, the path-integral Monte Carlo simulation by Werner et al.
[46], who studied the equilibrium phase diagram and critical
exponents of the open system of Eq. (4) and found that critical
exponents are different from those of the closed system (1) but
are independent of the coupling strength α (>0). Also, Bando
et al. [17] carried out experiments on the D-Wave quantum
annealers and compared the data with the generalized Kibble-
Zurek mechanism [39,40] to conclude that the data from the
devices can be understood in terms of a system under the
bosonic environment of Eq. (4), not of the closed system (1),
and also that the classical SVMC is unable to explain the
dynamical properties of the D-Wave devices.

We combine these two contributions and study the sys-
tems of Eqs. (1) and (4) by SQA, path-integral Monte Carlo
simulations with time-dependent coefficients J (t ) and �(t ),
and compare the data with those from the generalized Kibble-
Zurek mechanism as well as from the more direct numerical
method of the iTEBD-QUAPI [41,42], in which the time-
dependent density operator is expressed by a matrix-product
state after a Trotter decomposition and tracing out the bosonic
degrees of freedom. Then a controlled truncation of basis
states allows one to perform evaluation of physical quantities.
See Refs. [41,42] for details.

To perform SQA, we first apply the Suzuki-Trotter decom-
position [36] to the expression of the partition function for
the Hamiltonian of Eq. (4). The partition function is then ex-
pressed as the corresponding partition function of a classical
Ising model in two dimensions with long-range interactions in
the Trotter (imaginary-time) direction [46],

Z (t ) = Z0

∑
{Si (τ )=±1}

e−βeff Heff (t,S), (5)
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where Z0 is the partition function of free bosons and

Heff (t, S) = − J (t )
L−1∑
i=1

P∑
τ=1

Si(τ )Si+1(τ )

− γ (t )

βeff

L−1∑
i=1

P∑
τ=1

Si(τ )Si(τ + 1)

− α

2βeff

L−1∑
i=1

∑
τ>τ ′

(π

P

)2 Si(τ )Si(τ ′)
sin2

(
π
P |τ − τ ′|) . (6)

Here βeff = β/P, with β the inverse temperature and P
the number of Trotter slices along the imaginary-time
axis. The coefficient in the second line is defined as
γ (t ) = − 1

2 ln{tanh[βeff�(t )]}. A periodic boundary condition
Si(P + 1) = Si(1) is imposed along the Trotter axis. The
closed system of Eq. (1) is recovered by setting α = 0.
Zero-temperature properties of Eq. (4) can be simulated with
sufficiently large values β and P with a fixed finite value of
the ratio βeff = β/P [2,5,6]. We choose βeff = 1 and P = 4L
to satisfy this condition as described in more detail below.

Although cluster updates have sometimes been used in
related studies [32,35,46], we use the simple single-flip
Metropolis-update dynamics because, first, it is nontrivial
which stochastic dynamics better simulates quantum dynam-
ics and, second, we do not expect to encounter the problem
of slow relaxation, which hampers simulations of disordered
systems based on simple single-spin updates [35], or we do
not need to reach the equilibrium necessary for the study of
critical exponents [46]. The annealing time ta is identified with
the total number of Monte Carlo steps divided by the number
of sites LP and will be denoted by τMCS (=ta). Values of time-
dependent coefficients J (t ) and �(t ) are updated according to
Eqs. (2) and (3) after a unit time (a Monte Carlo update trial
per spin) t → t + 1.

C. Physical quantities

Following Ref. [17], we measure several quantities by SQA
to be compared with predictions of the generalized Kibble-
Zurek mechanism and the iTEBD-QUAPI. All quantities are
measured at the end of computation where �(ta) = 0.

The main quantity of interest is the number of defects
(spatially misaligned spin pairs) n,

n =
L−1∑
i=1

P∑
τ=1

[1 − Si(τ )Si+1(τ )]. (7)

Notice that the true ground state of the effective Hamiltonian
of Eq. (6) is perfectly ferromagnetic with n = 0.

We measure the statistics of defects to be denoted by
PSQA(n) and compare it with the prediction of the generalized
Kibble-Zurek mechanism [39,40]. According to this theory,
the defect distribution is bimodal and is well approximated by
the Gaussian function Q(n) for large systems L � 1,

Q(n) = 1√
2πκ2

exp

(
− (n − κ1)2

2κ2

)
, (8)

where κ1 ≡ 〈n〉 and κ2 ≡ 〈(n − 〈n〉)2〉. Here angular brack-
ets denote the average. We quantify the difference between

PSQA(n) and Q(n) by the L1-norm,

L1 = 1

2

∑
n

|Q(n) − PSQA(n)|. (9)

We also follow Ref. [17] and check the proximity of PSQA(n)
to the Boltzmann distribution of the classical Ising part of the
original Hamiltonian in Eq. (1),

PBL(n) =
(L−1

n

)
e−βBLE (n)

Z
, Z =

∑
n

(
L − 1

n

)
e−βBLE (n),

(10)

where E (n) is the energy of the classical Ising model with n
defects. We optimize the effective inverse temperature βBL in
PBL(n) by minimizing the L1-norm of Eq. (9) [after replacing
Q(n) with PBL(n)] such that PBL(n) approximates PSQA(n)
as faithfully as possible. Notice that βBL is unrelated to any
physical temperature but is a parameter to fit Eq. (10) to the
data.

The number of defects n in Eq. (7) is essentially equivalent
to the residual energy per site Eres, the difference between the
achieved energy and the true ground-state energy, for which
we use the expression of Ref. [35],

Eres = 1

L

L−1∑
i=1

(
1 − 1

P

P∑
τ=1

Si(τ )Si+1(τ )

)
. (11)

Note that Eres can also be regarded as the average number of
defects, the average over the statistics of PSQA(n), which was
denoted by κ1 (the first cumulant or the average) above.

The data for Eres are to be compared with the predictions of
the Kibble-Zurek mechanism, which is described qualitatively
as follows. As the system approaches a critical point, the
correlation length and relaxation time grow rapidly. When the
system is not close enough to the critical point, the relaxation
time is large but still shorter than the timescale of annealing
and the system has time to relax to equilibrium. As the system
comes closer to the critical point, the relaxation time becomes
long enough and the system has no time to relax and is effec-
tively frozen with a nonvanishing residual energy. This picture
leads to the asymptotic power law of the residual energy [47],

Eres ∝ (ta)−dν/(1+zν). (12)

Here d = 1 is the spatial dimension and z and ν are the
dynamical and correlation-length critical exponents, respec-
tively.

III. RESULTS

We now present our results obtained by SQA.

A. Closed system

We first report the results for the closed system of Eq. (1).
Figure 1 shows the residual energy Eres defined in Eq. (11)
as a function of the annealing time τMCS for system sizes
L = 64, 128, 256, and 512. We set βeff = β

P = 1 and P = 4L.
As shown in Appendix A, we have confirmed that the residual
energy as a function of P converges for P = 4L. This condi-
tion is used throughout this paper.
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FIG. 1. Residual energy Eres for the closed system with sizes
L = 64, 128, 256, and 512 as a function of the annealing time of
SQA. The solid lines are fits to the power law Eres ∝ (τMCS)−b in
the range 16 � τMCS � 8192. Error bars represent the standard error
of the mean computed from 100 samples, which is the case for all
graphs below for the residual energy.

It is clearly shown in Fig. 1 that the residual energy fol-
lows a power law as predicted by the original Kibble-Zurek
mechanism,

Eres ∝ (τMCS)−b. (13)

The values of the exponent b are found as b = 0.543 ±
0.007 (L = 64), 0.519 ± 0.004 (L = 128), 0.506 ± 0.003
(L = 256), and 0.500 ± 0.003 (L = 512). These values, par-
ticularly the last one, are in close agreement with the
prediction of the Kibble-Zurek mechanism (12) for this one-
dimensional closed system, which has z = 1, ν = 1, and thus
b = dν/(1 + zν) = 1

2 . This agrees with previous reports by
the direct numerical method of the iTEBD-QUAPI [41,42] as
well as by SQA [32,35]. By contrast, as found in Ref. [17], the
SVMC shows close, but slightly deviated, values b = 0.477 ±
0.005 and b = 0.482 ± 0.006, depending on the choice of
the simulation temperature, 12.1 mK for the former value
corresponding to the device at NASA Ames Research Center
and 13.5 mK for the latter value for the device at Burnaby.

We proceed to the analysis of the distribution function of
defects PSQA(n). Figure 2 shows the qth cumulants κq (q =
1, 2, 3) of the defect distribution obtained from the final state
at τMCS of SQA for L = 64, 128, 256, and 512.

The generalized Kibble-Zurek mechanism [39,40] predicts
that the second- and higher-order cumulants are proportional
to the first-order cumulant (average) κ1. The data show that
this is indeed the case for τMCS up to about 102 for any
system size L, but the tendency changes beyond τMCS ≈ 102.
Comparison of data for different system sizes suggests that
this deviation may possibly be a finite-size effect.

Figure 3 shows the ratios of cumulants κ2/κ1 and κ3/κ1

for τMCS up to about 102 for L = 512, which indicates the
validity of proportionality of κ2 and κ3 to κ1 up to τMCS ≈
102. More quantitatively, we find κ2/κ1 = 0.688 ± 0.005 and
κ3/κ1 = 0.394 ± 0.019. These values clearly deviate from the
theoretical prediction for the closed system, κ2/κ1 = 0.578
and κ3/κ1 = 0.134 [39,40]. We therefore conclude that SQA
does not faithfully reproduce the statistics of the defect distri-
bution for the present closed system, although the average or
the residual energy is well described by SQA.
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FIG. 2. The qth cumulants κq of defect distribution as functions
of annealing time τMCS for (a) L = 64, (b) L = 128, (c) L = 256, and
(d) L = 512 for the closed system.

It may be useful to recall in passing that the data from
the D-Wave devices showed similar proportionality but with
values closer to the theory, κ2/κ1 = 0.61 ± 0.03 and κ3/κ1 =
0.23 ± 0.15 on the device at NASA and κ2/κ1 = 0.63 ± 0.05
and κ3/κ1 = 0.25 ± 0.18 on the device at Burnaby [17]. In
contrast, the SVMC data marginally indicate proportionality
of κ2 to κ1 in the short-time region but with significant devi-
ations for longer annealing times [17]. The ratio κ2/κ1 out of
SVMC is close to 0.6 for the short-time region but the ratio
κ3/κ1 has large error bars and it is impossible to determine its
value with reliability.

We further follow Ref. [17] and test if the defect distri-
bution is closer to the Boltzmann or Gaussian distribution.
Figure 4 is the distribution function at τMCS = 16, 256, and
4096 and the dashed line is the Boltzmann distribution (10)
with the effective inverse temperature βBL optimized for each
τMCS.

Though the data appear to be close to the optimized Boltz-
mann distribution PBL(n), we see a slight deviation especially
at τMCS = 16, which is more clearly observed in the enhanced
figure in Fig. 5, where we see a better fit by the Gaussian (8),
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FIG. 3. Cumulant ratios κ2/κ1 and κ3/κ1 in the range of τMCS ∈
[4, 118] for L = 512 for the closed system. The constants are
evaluated as κ2/κ1 ≈ 0.688 ± 0.005 and κ3/κ1 ≈ 0.394 ± 0.019,
respectively.
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FIG. 4. Probability distribution of defects by SQA at τMCS = 16,
512, and 4096 for L = 512. The dashed lines are the Boltzmann
distribution defined in Eq. (10) with the optimized value of the
effective inverse temperature βBL.

similarly to the previous study by the D-Wave devices and
SVMC [17].

Figure 6 shows the L1-norm of the difference between
the defect distribution of SQA, PSQA(n), and the optimized
Boltzmann distribution PBL(n) in Eq. (10) and the Gaussian
distribution Q(n) in Eq. (8) as a function of the annealing time
τMCS for L = 512. In the time range up to τMCS ≈ 102, where
the proportional relationship of cumulants is established, the
L1-norm with the Gaussian is smaller, and thus SQA works as
a Gaussian sampler rather than as a Boltzmann sampler, but
for longer annealing times, e.g., τMCS ≈ 103, two functions
show similar degrees of proximity to the data.

Those results for the closed system indicate that the
classical stochastic dynamics of SQA partly succeeds in re-
producing the predictions on the quantum dynamics related to
the original and generalized Kibble-Zurek mechanism. How-
ever, detailed quantitative analysis of the distribution function
shows deviations from the theory for the closed system.

B. Open system

We next discuss the results obtained for the open system
defined in Eq. (4) and simulated by Eq. (6).

Figure 7 shows the residual energy Eres as a function of
τMCS for L = 64, 128, 256, and 512 under the same parameters
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FIG. 5. Defect distribution at τMCS = 16 for L = 512. The solid
line is the Gaussian distribution defined in Eq. (8) and the dashed line
is the optimized Boltzmann distribution defined in Eq. (10).
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FIG. 6. The L1-norms between the defect distribution of SQA
PSQA(n) and the optimized Boltzmann distribution QBO(n) (circles)
and the normal distribution QGA(n) (squares) for L = 512.

as before, βeff = β

P = 1 and P = 4L. Here we fix the coupling
strength with the boson field to α = 0.6 for all L. It can
be seen that the power decay predicted by the Kibble-Zurek
mechanism (13) holds up to τMCS ≈ 103. Deviations are ob-
served even for the largest system with L = 512 beyond this
annealing time, in contrast to the case of the closed system
in Fig. 1. It is anticipated from the behavior beyond τMCS ≈
103 that these deviations may be due to finite-size effects.
Quantitatively, the exponents extracted from the linear region
are b = 0.433 ± 0.013, 0.437 ± 0.006, 0.431 ± 0.008, and
0.425 ± 0.007 for L = 64, 128, 256, and 512, respectively,
indicating deviations from the closed-system value b = 0.5.
Critical exponents z = 1.985 and ν = 0.638 from equilibrium
Monte Carlo simulation of the open system in Ref. [46] lead
to b = dν/(1 + zν) = 0.28. Our estimate b ≈ 0.43 from SQA
with α = 0.6 is not close to either of those theoretical values
0.5 and 0.28 for closed and open systems, respectively.

Extensive numerical simulations of open quantum systems
by the iTEBD-QUAPI, which is expected to faithfully re-
produce quantum dynamics for the very short-time region,
showed a clear dependence of the exponent b on several
factors, including the coupling strength α and the range of
annealing time [17,41,42]. We therefore checked the α de-
pendence of the residual energy by SQA, and the result is in
Fig. 8 for L = 256. It can be seen that the exponent b is a de-
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FIG. 7. Residual energy Eres obtained by SQA for the open sys-
tem with L = 64, 128, 256, and 512 as a function of annealing time
τMCS. The solid lines are fits to (τMCS)−b in the range 16 � τMCS �
1024 with b ≈ 0.43 for all L.
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FIG. 8. Residual energy for different coupling constants with the
environment α for L = 256 as a function of annealing time τMCS.

creasing function of α (from b = 0.50 for α = 0 to b = 0.26
for α = 1.0), consistently with the results of iTEBD-QUAPI
reported in Refs. [17,41,42]. For the reader’s convenience, we
reproduce a figure from Ref. [17] as Fig. 15 of Appendix B
of this paper, where the defect density (proportional to the
residual energy) is drawn as a function of the annealing time.
One observes there that b changes from b = 0.50 for α = 0 to
b = 0.25 for α = 1.28, close to the values from SQA.

As suggested in Ref. [17], taking into account the fact that
the iTEBD-QUAPI reproduces quantum dynamics for very
short times, this nonuniversality (dependence of the exponent
on α) of the SQA data may imply that the system is still in
a transient state and much longer annealing times for much
larger systems may show a value of b independent α as ex-
pected from universality seen in the equilibrium Monte Carlo
simulation [46]. Viewed differently, this consistency with the
quantum-mechanical simulation by the iTEBD-QUAPI may
imply that SQA, a classical stochastic process, reproduces
some aspects of the nonequilibrium quantum dynamics in the
short-time region for the present open system.

We proceed to test if the distribution function of defects
PSQA(n) for a typical fixed value of α = 0.6 is consistent with
the prediction of the generalized Kibble-Zurek mechanism
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FIG. 9. Cumulants of defect distribution of open systems with
coupling constant α = 0.6 for (a) L = 64, (b) L = 128, (c) L = 256,
and (d) L = 512.

�

FIG. 10. Cumulant ratios κ2/κ1 and κ3/κ1 for L = 512 for the
open system with the coupling constant α = 0.6.

as we did for the closed system. Figure 9 shows the qth
cumulants of the distribution as functions of the annealing
time for L = 64, 128, 256, and 512. It can be seen that the
second cumulant is proportional to the first cumulant almost
up to τMCS ≈ 103, a longer-time range of proportionality than
in the closed system depicted in Fig. 2. The behavior of the
third cumulant is unstable due to insufficient statistics.

Figure 10 shows the ratios of cumulants with the results
κ2/κ1 ≈ 0.598 ± 0.008 and κ3/κ1 ≈ 0.185 ± 0.048. These
values for the open system are closer to the theoretical pre-
diction of the generalized Kibble-Zurek mechanism (κ2/κ1 =
0.578 and κ3/κ1 = 0.174 [40]) than in the case of SQA for
the closed system discussed in the preceding section (κ2/κ1 ≈
0.688 ± 0.005 and κ3/κ1 ≈ 0.394 ± 0.019). We have also
calculated cumulant ratios with a different coupling strength
α = 1.0 in L = 512 to see the α dependence. The result is
κ2/κ1 ≈ 0.569 ± 0.015 and κ3/κ1 ≈ 0.196 ± 0.135, indicat-
ing a very weak dependence on α.

It was found in Ref. [17] that the numerical data by
the iTEBD-QUAPI for the open system indicate a similar
value 0.6 for κ2/κ1 independent of α, but it is difficult to
evaluate κ3/κ1. We have thus found that SQA for the open
system successfully reproduces the prediction of the gener-
alized Kibble-Zurek mechanism for the cumulant ratios, but
the behavior of the average (residual energy) is nonuniversal,
which is not compatible with the theory. Also, agreement with
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FIG. 11. Distribution of defects at τMCS = 16, 512, and 4096 for
L = 512 for open systems with the coupling constant α = 0.6. The
dashed lines are the optimized Boltzmann distribution.

022607-6



SIMULATED QUANTUM ANNEALING AS A SIMULATOR … PHYSICAL REVIEW A 104, 022607 (2021)

 40  45  50  55  60  65  70  75  80

 0

 0.02

 0.04

 0.06

 0.08

 0.1

P 
(n

)

n

SQA

Gaussian

Boltzmann

FIG. 12. Defect distribution at τMCS = 16 for L = 512 of the
open system with α = 0.6. The solid line is the Gaussian distribution
in Eq. (8) and the dashed line is the optimized Boltzmann distribution
of Eq. (10).

the data of the iTEBD-QUAPI in the short-time region has
been observed.

As in the case of the closed system, we further check
whether the distribution function is closer to the Gaussian
or Boltzmann. Figure 11 shows the distribution function for
τMCS = 16, 256, and 4096 for L = 512 with the coupling
constant α = 0.6 fitted to the Boltzmann distribution (10) with
optimized effective temperature. Although the gross feature is
captured by the Boltzmann distribution, we find clear devi-
ations. In fact, as seen in Fig. 12, the Gaussian distribution
better matches the data, as anticipated from the smallness of
the third cumulant.

Figure 13 shows the L1-norm between the defect dis-
tribution of SQA, PSQA(n), and the optimized Boltzmann
distribution PBL(n) in Eq. (10) and the Gaussian distribution
Q(n) of Eq. (8) as a function of the annealing time τMCS for
L = 512. It can be seen that the data are closer to the Gaussian
distribution than to the Boltzmann, similarly to the case of the
closed system and in agreement with the generalized Kibble-
Zurek mechanism which predicts small values of higher-
order cumulants than the second order, meaning Gaussian
approximately. Thus SQA is closer to a Gaussian sampler
rather than a Boltzmann sampler in the present open system as
well. A similar conclusion was drawn for the D-Wave device
[17], and therefore we should be careful when we use quantum
annealing (simulated or on the real device) for sampling pur-
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FIG. 13. Distance, L1-norm, between the defect distribution
PSQA(n) of SQA and the optimized Boltzmann distribution PBL(n)
(circles) and the Gaussian distribution Q(n) (squares) for L = 512.

poses at least as long as the present one-dimensional system
is concerned.

IV. DISCUSSION

We have performed numerical tests to check if simulated
quantum annealing is able to describe the nonequilibrium
quantum dynamics of the simple one-dimensional ferromag-
netic transverse-field Ising model across its critical point
using the generalized Kibble-Zurek mechanism and the direct
quantum numerics of iTEBD-QUAPI as tools to measure the
degree of success of SQA. This is a highly nontrivial problem
because SQA, a classical algorithm, has no a priori reason to
reproduce quantum dynamics, although SQA has often been
used to simulate quantum annealing, in particular for large
systems. It is nevertheless known that the phenomenon of
incoherent quantum tunneling is well simulated by SQA if
there exists a finite number of energy barriers between local
minima [34], a prototypical energy landscape of a simple
first-order phase transition. We have studied the problem from
the point of view of nonequilibrium dynamics across a critical
point (second-order transition point) in the open system keep-
ing in mind that the data from SQA is known to agree with
the prediction of the original Kibble-Zurek mechanism in the
closed one-dimensional system without disorder [35].

We presented a detailed quantitative comparison of defect
distribution with the asymptotically exact theory of the gener-
alized Kibble-Zurek mechanism and the iTEBD-QUAPI, the
latter of which is expected to faithfully reproduce quantum
dynamics in the very-short-time region in the present one-
dimensional system. Our results indicate that some, but not
all, of the dynamical properties of the quantum system can
be reproduced by SQA for the one-dimensional system: In
the absence of coupling to the environment, SQA correctly
describes the annealing-time dependence of the residual en-
ergy, but the ratios of cumulants of defect distribution clearly
deviate from theoretical values. When the system is open, the
residual energy does not follow the prediction of the Kibble-
Zurek mechanism but shows compatibility with the numerical
result by the iTEBD-QUAPI. The ratios of cumulants for the
open system turn out to be closer to the theoretical values
of the generalized Kibble-Zurek mechanism than in the case
of the closed system. The distribution of defects is closer to
the Gaussian function than to the Boltzmann distribution in
both closed and open systems, which is also the case in the
D-Wave quantum annealers [17], meaning that SQA and the
D-Wave device serve as Gaussian samplers, not as Boltzmann
samplers.

It is remarkable that the classical stochastic dynamics of
SQA ostensibly reproduces some of the properties of quan-
tum dynamics for the present system. Nevertheless, it is hard
to predict when it is reliable for what physical quantities,
which is a serious problem in practical applications. It is
therefore necessary to stay very cautious when one uses SQA
to clarify the dynamical properties of quantum annealing in
a detailed quantitative way. It is also desirable to establish a
theoretical framework to explain the present numerical ob-
servations. Though there exists a formal mapping between
classical stochastic dynamics and a quantum-mechanical sys-
tem [48,49], this is still far from sufficient to understand the
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FIG. 14. Residual energy Eres for (a) L = 64, (b) L = 128,
(c) L = 256, and (d) L = 512 as a function of Monte Carlo steps
or annealing time τMCS. We change the Trotter size from P = L to
P = 8L.

results found in the present paper. It is also known that the
convergence condition of SQA in the long-time limit has an
expression very similar to that of quantum annealing [8,50].
Whether or not this is a coincidence is an interesting topic
closely related to the present work.
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FIG. 15. Density of defects (proportional to the residual energy)
obtained by iTEBD-QUAPI. Here ta is the annealing time measured
in units of h̄ divided by the final coupling strength J (t = ta ) [denoted
by B(1)/2 in the figure] for various values of α. (Figure is from
Ref. [17].)

APPENDIX A: TROTTER-SIZE DEPENDENCE

Here we show the Trotter-size dependence of the residual
energy. Figure 14 shows the residual energy for L = 64, 128,
256, and 512 as a function of τMCS for a series of Trotter
sizes P. This figure shows that P = 4L is enough to reach
convergence of the residual energy for those system sizes and
annealing time.

APPENDIX B: RESIDUAL ENERGY BY THE ITEBD QUAPI

In Fig. 15 we reproduce Fig. 4(b) of Ref. [17], where the
density of defects (kinks), proportional to the residual energy,
is plotted as a function of the annealing time obtained from
the extensive numerical computation of iTEBD-QUAPI. The
exponent b for the decay of the residual energy (13) is seen to
depend on the coupling constant α with the bosonic environ-
ment in reasonable agreement with the SQA result described
in Sec III B.
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