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Attaining classical capacity per unit cost of noisy bosonic Gaussian channels
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I show that classical capacity per unit cost of noisy bosonic Gaussian channels can be attained by employing
a generalized on-off keying modulation format and a projective measurement of individual output states. This
means that neither complicated collective measurements nor phase-sensitive detection is required to communi-
cate over optical channels at the ultimate limit imposed by laws of quantum mechanics in the limit of low average
cost.
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Transmission of information lies at the backbone of count-
less technologies. Utilizing the quantum nature of light brings
promise to increase information transmission rates beyond
what is attainable by all conventional means [1]. In particular,
for a pure-loss channel in moderate- and low-power regimes,
as measured by the average number of photons per time bin,
na, conventional receiver architectures like homodyne and
heterodyne measurements, known to be almost optimal in the
large-power regime, are vastly outperformed by the ultimate
quantum limit on the transmission rate, known as classical
capacity [2,3]. The difference is of a qualitative nature as con-
ventional phase-sensitive detection schemes allow for rates
scaling linearly with the average number of photons per time
bin ∼na in the small-na regime, whereas classical capacity
scales as ∼na log2

1
na

in the leading order [4–6].
This discrepancy is even more evident when one looks

at the capacity per unit cost (CPC), which quantifies the
maximum amount of information that can be transmitted
per single photon for a particular protocol, i.e., assuming a
certain modulation and detection scheme [7]. CPC contains
all the information about the behavior of the conventional
capacity in the regime of small power as the latter is just
given by the CPC multiplied by the photon flux. Importantly,
CPC indicates the maximum attainable value of the photon
information efficiency (PIE) which is an important figure in
many communication scenarios [5,8–12] and quantifies how
much information can be transmitted per single photon for
a given protocol operating at a particular level of na. In the
case of a lossy channel conventional phase-sensitive schemes
allow for a constant CPC whereas the quantum-limited CPC
is infinite [4]. Although direct detection allows to attain the
latter [13], the second-order term ∼ log2 log 1

na
appearing in

the respective PIE and lacking in the quantum-limited PIE
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indicates a diverging difference between the two scenarios
[14]. For additive noise channels the maximum CPC allowed
by laws of quantum mechanics is finite but still greater than
what can be attained by conventional receivers [15,16].

It is known that in order to saturate the classical capacity
or CPC of the pure-loss and most other physical channels, it
is in principle necessary to use collective measurements on a
large number of channel outputs [14,17–21], which is usually
not feasible in practice. This is because of the superadditivity
of accessible information with respect to joint measurements;
i.e., more information per channel use can be gained by con-
sidering collective measurements on several channel outputs
than by detection of just a single output at a time [22,23].
Note that this is a different effect than superadditivity of the
classical capacity [24] which is due to the possibility of using
input states that are entangled between subsequent channel
uses. Even coherent detection schemes operating on single
symbols like the Kennedy [25] or Dolinar [26] receivers,
despite outperforming classical shot-noise-limited receivers,
cannot attain the capacity limit and have been realized only as
proof-of-principle examples [27,28]. Another issue in reach-
ing the optimal performance is that the required ensemble of
input states is a continuous family of coherent states with a
Gaussian prior distribution which may be problematic to pro-
duce in realistic applications. It is therefore crucial to identify
measurement schemes and modulation protocols that attain
the CPC bound and can be realized by current or near-future
existing technology.

In this paper I show that a realistic single-symbol projective
measurement is sufficient to asymptotically saturate CPC and
thus also classical capacity of any noisy Gaussian quantum
channel in the low-cost limit. The optimal signal modulation
format is just a binary signal alphabet known as generalized
on-off keying (OOK) and presented schematically in Fig. 1.
It is composed from an empty time bin (vacuum state) and an
infrequently sent signal in a coherent state. To my knowledge
this is the first result in which it is shown how to attain clas-
sical capacity of realistic communication channels without
using a highly complicated receiver architecture employing
sophisticated quantum measurements. Note that some partial
results on the attainability of CPC were obtained in Refs. [15]
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FIG. 1. A scheme presenting communication with generalized
OOK modulation. A coherent state signal or a zero-cost state rep-
resented by an empty time bin are sent with probabilities λ and
1 − λ, respectively. The states evolve through a Gaussian channel
that changes the amplitude and adds noise. The detection stage im-
plements a projective measurement onto the eigenbasis of an output
of a zero-cost state which can be realized by placing an antisqueezing
operation and a subsequent photon-number-resolving measurement.

and [16], in which it was shown respectively that binary or
pulse position modulation formats are enough; however, the
optimal positive operator valued measures (POVMs) were
found either only in the trivial case of the noiseless channel
or were collective.

For a communication setup described by a quan-
tum channel � with a given ensemble of input states
ρx used with an input symbol probability distribution
p(x) and receiver performing a measurement described
by a POVM {�y}, the maximal information transmission
rate is quantified by the mutual information I = H (Y ) −
H (Y |X ), where H (Y ) = −∑

y p(y) log2 p(y) and H (Y |X ) =
−∑

x

∑
y p(x)p(y|x) log2 p(y|x) with a conditional probabil-

ity distribution evaluated through the Born rule, p(y|x) =
Tr(�[ρx]�y). Importantly, each use of one of the states ρx

is usually assumed to possess some kind of cost, determined
by a properly chosen cost function b[ρx], e.g., the energy of
the state. Mutual information optimized over the input sym-
bol probability distributions is known as the capacity of the
channel and quantifies the best rate for a given communication
protocol, i.e., assuming particular modulation and detection
schemes. Capacity further optimized over input states en-
sembles and, possibly collective, measurements performed on
many channel outputs return the maximal information trans-
mission rate for the channel, known as the classical capacity
C. Finding classical capacity is in general a formidable task;
however, for a special class of channels that I will consider,
known as Gaussian channels, this problem can be solved
under the constraint of fixed average cost per channel use,
na = ∑

x p(x)b[ρx] [6,29,30].
A convenient quantity to analyze communication in the

low-cost regime is CPC, which is given by the maximum
ratio of the capacity and average cost per channel use. CPC
characterizes the maximum amount of information that can be
carried out per unit cost, i.e., the efficiency of communication
rather than just the information rate. In the case of Gaussian
channels the usual cost figure is the average energy of the
state and I will focus on this scenario. For a quantum channel
that allows one to use a zero-cost state, or in other words a
vacuum ρ0 = |0〉〈0|, the CPC can be expressed by a compact
formula [7]

Cclass = max
x �=0

D[p(y|x)||p(y|0)]

ns
, (1)

where ns = b[ρx] is the cost of state ρx and
D[p(y|x)||p(y|0)] = ∑

y p(y|x) log2
p(y|x)
p(y|0) is the Kullback-

Leibler divergence between distributions p(y|x) and
p(y|0) = Tr(�[ρ0]�y). Note that maximization in Eq. (1) is
taken over input symbols but not the input states since the set
of the latter is considered fixed. If one adds optimization over
input state ensembles and measurements on top of Eq. (1)
one obtains the classical capacity per unit cost (CCPC) Cquant

which quantifies the best possible PIE attainable for a given
quantum channel [15,16] and is equal to

Cquant = max
ρ �=|0〉 〈0|

D[�[ρ]||�[ρ0]]

ns
. (2)

Both CPC and CCPC are attained in the limit of vanishing av-
erage cost per channel use, na → 0 [7,15,16]. Therefore, since
they are defined as maximum ratios of respective capacities
per channel use and average cost, in the low-cost limit one
obtains for the classical capacity C ≈ naCquant and similarly
for the regular capacity. Importantly, in the low-cost regime,
CCPC is exactly equal to the PIE of the optimal protocol
saturating the classical capacity of the channel.

A basic model of an optical communication channel is a
Gaussian bosonic channel. Gaussian channels describe var-
ious effects that are characterized by evolution quadratic in
creation and annihilation operators of the system, such as
linear losses, thermal noise, phase-sensitive noise, or squeez-
ing [31]. They can be characterized as the most general type
of operations that preserve Gaussian character of quantum
states on which they act. A general Gaussian channel can
be specified by a real matrix X and a real symmetric and
non-negative matrix Y which satisfy certain conditions [32]
to ensure complete positivity and trace preservation by the
channel. The output state first moments and covariance matrix
are given by

dout = Xdin, Vout = XVinXT + Y, (3)

where din and Vin are respectively the first moments vector
and the covariance matrix of the input state. Any Gaussian
channel can be decomposed into a fiducial channel and pas-
sive (i.e., conserving the energy) Gaussian unitary operations
preceding and following the former [33]. For a channel speci-
fied by X and Y the fiducial channel is given by matrices

XF =
√

|η|
(

1 0
0 sgn(η)

)
, YF = y

(
e2s 0
0 e−2s

)
, (4)

where η = det X, y = √
det Y, and s can be interpreted as

intrinsic channel squeezing. The original channel matrices can
be written as

X = MXF�, Y = MYFMT, (5)

where M is some symplectic operation and � denotes phase-
space rotation. The exact relations between matrices in this
decomposition and the original channel can be found in
Ref. [33]. The parameter η can be interpreted as a characteris-
tic transmission coefficient of the channel; note, however, that
it can be a number with an absolute value larger than 1 which
describes phase-conjugating and amplifying channels.

The CCPC of any Gaussian channel is equal to CCPC of
its corresponding fiducial channel. This is because the phase-
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space rotation � in Eq. (5) does not change the energy of input
states and the symplectic transformation M can be always
undone by incorporating a proper unitary transformation at
the channel output. It is known that for any Gaussian channel
CCPC is saturable in the low-cost limit by the generalized
OOK modulation format [15]. For general quantum Gaussian
channels it was shown in Refs. [15,16] that CCPC is equal to

Cquant = |η|ωmax log2

(
1 + 1

nb

)
, (6)

where the parameter η is defined in Eq. (4) and nb and
ωmax = e2r are respectively the average thermal energy and
the squeezing of the output state of the fiducial channel if the
input was in a vacuum state:

nb + 1

2
=

√( |η|
2

+ ye2s

)( |η|
2

+ ye−2s

)
, (7)

ωmax = e2r =
√√√√ |η|

2 + ye2s

|η|
2 + ye−2s

. (8)

Importantly, for any Gaussian channel with additive noise
CCPC has a finite value, meaning that in the low-cost regime
classical capacity is equal to C ≈ naC. Therefore, it is enough
to show that a receiver attains the CCPC to show its opti-
mality also from the point of view of the actual capacity per
channel use.

I will consider the generalized OOK modulation format,
shown schematically in Fig. 1. The input message is encoded
in a series of time bins, each of which can be either empty
with probability 1 − λ or can carry a coherent state with
an average energy ns with corresponding probability λ. The
average cost per channel use of such an input ensemble is
given by na = λns. The phase-space rotation � appearing in
the decomposition in Eq. (5) changes just the phase of the
input state and thus can be neglected without loss of generality
by tuning the phase of the coherent state properly. For input
in a coherent state with amplitude α the output of the fiducial
channel of a general single-mode Gaussian channel is given
by a density matrix

ρ = D̂(
√

|η|α)Ŝ(r)ρnb Ŝ
†(r)D̂†(

√
|η|α), (9)

where D̂(·), Ŝ(·) are displacement and squeezing operators

and ρnb = ∑∞
k=0

nk
b

(nb+1)k+1 |k〉〈k| is a thermal state with the
average energy nb and I have chosen the phase of α such that
the state is aligned with the position quadrature.

The order of the squeezing and displacement operators in
Eq. (9) can be exchanged by the rule [34]

D̂(
√

|η|α)Ŝ(r) = Ŝ(r)D̂(γ ), γ =
√

|η|αer . (10)

Note that since r for a fiducial channel is defined to be a real
parameter, the phase of γ depends only on the phase of α,
which I set to zero. Therefore the output state in Eq. (9) can
be written as

ρ = Ŝ(r)D̂(γ )ρyD̂†(γ )Ŝ†(r). (11)

The state in Eq. (11) undergoes then evolution through the
unitary transformation ÛM corresponding to symplectic oper-

ation M in Eq. (5) which gives eventually

ρ = ÛMŜ(r)D̂(γ )ρyD̂†(γ )Ŝ†(r)Û †
M. (12)

Importantly, any one-mode symplectic transformation can be
realized by a combination of two phase-space rotations and
squeezing. Therefore, one can write ÛM = Ûθ2 Ŝ(z)Ûθ1 , where
Ûθi denotes the unitary rotation by phase θi and z is the squeez-
ing introduced by M.

The POVM that I will consider is a projective measurement
onto the eigenbasis of an output of the zero-cost state. In the
case of Gaussian channels with average number of photons
per channel use constraint the latter is the vacuum state’s
output, given by Eq. (12) with γ = 0. The measurement is
therefore given by projections onto squeezed number states
�k = Ûθ2 Ŝ(z)Ûθ1 Ŝ(r)|k〉〈k|Ŝ†(r)Û †

θ1
Ŝ†(z)Û †

θ2
. It can be experi-

mentally realized by a photon-number-resolving measurement
preceded by an antisqueezing operation in the right direc-
tion or by a proper combination of phase-space rotations and
squeezing (see Fig. 1).

For the coherent state with amplitude α the measurement
statistics is given by a conditional probability distribution [34]

p(k|α) = nk
b

(nb + 1)k+1
e− |γ |2

nb+1 Lk

(
− |γ |2

nb(nb + 1)

)
, (13)

where Lk denotes the kth Laguerre polynomial and γ is given
by Eq. (10). In the generalized OOK modulation format α can
take only two values: α0 = 0 for the vacuum state and αs =√

ns for the signal state. Plugging Eq. (13) into Eq. (1), the
capacity per unit cost is equal to

Cclass = 1

ns

{ ∞∑
k=0

p(k|√ns) log2
1

p(k|0)
− H[p(k|√ns)]

}
,

(14)

where H[p(x)] = −∑
x p(x) log2 p(x) is the Shannon entropy

of distribution p(x). The first term in the bracket in Eq. (14) is
equal to

∞∑
k=0

p(k|√ns) log2
1

p(k|0)

= (nb + |γs|2) log2

(
1 + 1

nb

)
+ log2(1 + nb), (15)

where γs is the displacement defined in Eq. (10) evaluated
for αs = √

ns. Since |γs|2 = |η|nsωmax in Eq. (10), for large
ns the expression in Eq. (15) is in the leading order equal
to |η|nsωmax log2(1 + 1

nb
), which is exactly the CCPC of the

channel multiplied by the cost of the signal state. The remain-
ing term in the bracket in Eq. (14) is upper bounded by

H[p(k|√ns)] � g(nb + |γs|2), (16)

where g(x) = (x + 1) log2(x + 1) − x log2(x) is the entropy
of a thermal state with an average energy x. This is because the
right-hand side is the maximal possible entropy for any dis-
tribution with a fixed expected value 〈k〉 = nb + |γs|2. Since
|γs|2 ∼ ns in Eq. (10) in the large-ns limit the expression on
the right-hand side of Eq. (16) is equal to log2 |γs|2 + O(1).
Plugging these results into Eq. (14) and going with signal cost
to infinity, ns → ∞, one obtains that the term corresponding
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FIG. 2. Capacity per unit cost normalized to channel transmis-
sion |η| as a function of the cost of the output signal state |η|ns for
generalized OOK modulation and projective measurement onto ap-
propriately squeezed number state (solid curves), threshold detector
(dotted curves), and the ultimate quantum bound given by classical
capacity per unit cost (dashed lines). Results for phase-insensitive
channels are nb = 1 (black), nb = 0.1 [red (dark grey)], nb = 0.01
[orange (gray)], while the phase-sensitive channel with nb = 0.1 and
r = ln 2/2 ≈ 0.34 is depicted by yellow (light gray) curves.

to Eq. (16) vanishes and the capacity per unit cost is equal to
the quantum bound in Eq. (6), i.e.,

Cclass = Cquant = |η|ωmax log2

(
1 + 1

nb

)
. (17)

Note that the result in Eq. (17) is asymptotic; i.e., it applies
in the limit of vanishing average cost per time bin na → 0,
since this is the limit in which capacities per unit cost can
be attained. However, if one chooses an average cost per
time bin at the output |η|na as a figure instead, the conclu-
sions remain unchanged; i.e., the capacity per unit cost is
still equal to Eq. (17) but normalized to the transmission |η|
and it is saturated for small output average cost per time bin
|η|na → 0. The CPC in Eq. (17) diverges logarithmically with
decreasing additive noise nb meaning that for channels that do
not introduce any additive noise, such as pure-loss and lossless
channels, there is no limit on the attainable CPC. This was
observed in Refs. [4,13,14,35] where it was shown that direct
detection together with generalized OOK in principle allows
attaining unbounded CPC for lossy channels.

Figure 2 shows classical capacity per unit cost normalized
to the channel transmission |η| obtained for the discussed
communication strategy as a function of the cost of the output
signal state. It is seen that respective capacities converge to
the asymptotic values given by the ultimate quantum limit,
Eq. (6), both for phase-sensitive and phase-insensitive chan-
nels. In the considered range of phase-insensitive noise nb =
0.01–1 the saturation happens around the signal output cost
|η|ns ≈ 10 which confirms the assumption of a necessary
large signal state cost. The latter is always possible since
na = λns and the probability of sending a coherent state can
be freely chosen. It is seen in Fig. 2 that for full saturation
of the CCPC it is necessary to send strong coherent states
ns → ∞, very rarely λ → 0. Note that this means that the to-
tal transmission time of a message may be large, although this

is expected since in the small-na regime the capacity is low.
From a practical point of view, this time may be decreased by
increasing the bandwidth of the link.

The detection scheme I proposed above assumed no de-
pendence on the average cost. If such dependence is allowed
one may propose an even simpler binary detection scheme that
still allows to attain CCPC asymptotically. Consider a thresh-
old detector with two-component POVM �

(th)
0 = ∑k(th)

k=0 �k

and �
(th)
1 = 1 − �

(th)
0 . The threshold value k(th) can be freely

adjusted by the receiver to the average cost of the incoming
signal. With such a choice, one obtains two outcomes with
respective probabilities

p0(α) =
k(th)∑
k=0

p(k|α), p1(α) = 1 − p0(α), (18)

where p(k|α) are defined in Eq. (13). Plugging the above
distribution evaluated for the signal state and the zero-cost
state into Eq. (1), one gets

C(th) = 1

ns

{
h2[p0(

√
ns)]

+
[

p0(
√

ns) log2
1

p0(0)
+ p1(

√
ns) log2

1

p1(0)

]}
,

(19)

where h2(x) denotes the binary entropy function. The first
term in Eq. (19) has to be smaller than the entropy on the
left-hand side of Eq. (16) due to the data processing in-
equality and thus gives a vanishing contribution to CPC for
large ns. The distribution in Eq. (13) converges to a Gaussian
distribution in the large-ns limit and its variance is equal to
Var(k) = |γs|2(1 + 2nb) + nb(nb + 1). Therefore if one takes
k(th) = (1 − ε)|γs|2 with any ε > 0 one can always find a
coherent state cost value n1 such that for any ns > n1 one
has k(th) < E(k) − c

√
Var(k), where E(k) = |γs|2 + nb is the

expectation value of the distribution in Eq. (13) and c is an
arbitrary constant. This means that for sufficiently large ns

the probability p(k|√ns) takes non-negligible values only for
k > k(th). As a consequence, p1(

√
ns) ≈ 1 and p0(

√
ns) ≈ 0,

which gives

C(th) ≈ k(th) + 1

ns
log2

(
1 + 1

nb

)

= (1 − ε)|γs|2 + 1

ns
log2

(
1 + 1

nb

)
, (20)

where I have plugged the expression for p1(0) from Eq. (18).
Since Eq. (20) is valid for any ε > 0, CPC has to converge to
the ultimate quantum limit, Eq. (2), with ns → ∞. It is seen
in Fig. 2 that the threshold detector also allows for saturation
of the quantum CPC bound, although the necessary signal
cost ns is much larger than for projection onto zero-cost state
output eigenvectors. Unlike the previous case, the CPC for the
threshold detector is not a monotonic function of ns because
of the discrete nature of the threshold k(th).

In conclusion I have showed that the ultimate quantum
bound on the information transmission rate per unit of energy
of a general noisy bosonic Gaussian channel can be asymp-
totically attained by the generalized OOK modulation and a
projective measurement on the individual channel outputs in
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the form of projection onto squeezed number states. As an
implication the classical capacity of noisy Gaussian channels
in the low-cost limit can also be saturated by the considered
protocol. This is a qualitatively different situation than in the
pure-loss case in which there appears a nonvanishing gap be-
tween the classical channel capacity and what can be achieved
with individual measurements.

I thank K. Banaszek, L. Kunz, W. Zwoliński, and M.
Lipka for insightful discussions. This work is part of the
project “Quantum Optical Communication Systems” carried
out within the TEAM programme of the Foundation for Polish
Science co-financed by the European Union under the Euro-
pean Regional Development Fund.
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