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Gaussian optical networks for one-dimensional anyons
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We study the dynamics of bosonic and fermionic anyons defined on a one-dimensional lattice, under the
effect of Hamiltonians quadratic in creation and annihilation operators, also called Gaussian Hamiltonians. These
anyonic models are obtained from deformations of the standard bosonic or fermionic commutation relations via
the introduction of a nontrivial exchange phase between different lattice sites. We study the effects of the anyonic
exchange phase on the usual bosonic and fermionic bunching behaviors. We show how to exploit the inherent
Aharonov-Bohm effect exhibited by these particles to build a deterministic, entangling two-qubit gate and prove
quantum computational universality in these systems. We define coherent states for bosonic anyons and study
their behavior under two-mode passive, Gaussian devices. In particular we prove that, for a particular value of
the exchange factor, an anyonic mirror can generate cat states, an important resource in quantum information
processing with continuous variables.
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I. INTRODUCTION

Quantum computing models based on identical particle
systems [1,2] have been extensively studied in the litera-
ture. In the case of bosonic systems, quadratic Hamiltonians
(i.e., bosonic linear optics) are generated by beam splitters
over optical modes and, if supplemented with adaptive mea-
surements, are universal for quantum computing [1,3]. For
fermions, Hamiltonians of the same form (i.e., fermionic
linear optics) cannot be used for universal quantum comput-
ing, since they can be simulated efficiently using classical
algorithms [4]. Classical simulability also holds for a class
of quantum circuits called nearest-neighbor match gates [5],
closely related to free fermions [6], which has been interpreted
as a kind of linear optics for qubits [7].

Over the last five decades, it was shown that fermions and
bosons are not the only possible kinds of identical particles in
nature. Many physical systems in two dimensions were shown
to contain quasiparticle excitations with anyonic statistics
[8,9], where wave functions acquire a nontrivial multiplicative
phase under particle exchange. The most striking examples
of this are fractional quantum Hall states [10], topological
spin liquids [11], and semiconductor nanowire arrays [12].
These systems are possible platforms for fault-tolerant quan-
tum computing [9,13] and inspired new forms of quantum
error-correcting codes [14–16].

Although anyons are most commonly associated with two-
dimensional systems, they also exist in one dimension. Some
arise as dimensional reduction of two-dimensional anyon
states [17,18], but most are obtained as free-particle de-
scriptions of exactly solvable models with local two-body
interactions in one dimension [19–23]. The systems we con-
sider are anyons defined via deformed commutation relations
[24–31], where the ±1 bosonic or fermionic exchange phase

is replaced by a nontrivial, mode-dependent complex phase
±eiϕ , where the statistical parameter ϕ is between 0 and π .
When ϕ is zero, the deformed commutation relations revert
back to the canonical form, and thus ϕ is a measure of the
statistical deformation.

These types of anyons play a role in one-dimensional
many-body systems with three-body interactions [32–38],
which have been subject to investigations in optical lattice
implementations [39–42]. They are not known to naturally
occur, or to possess any special property with regard to fault
tolerance, so it is unclear whether they are suitable as plat-
forms for quantum computing. Nevertheless, their relation
to standard fermionic and bosonic systems via generalized
Jordan-Wigner transformations [43–45] makes them a good
case study for generalizations of quantum computing with
bosonic and fermionic linear optics.

By exploiting similarities between the anyonic and the
canonical commutation relations, we study the dynamics gen-
erated by Hamiltonians quadratic in anyonic creation and
annihilation operators (i.e., Gaussian devices). We use these
dynamics to define anyonic optical elements and networks
as generalization of bosonic and fermionic linear optics, and
study the effects of the nontrivial exchange phase on their
computational complexity. Guided by the phenomenology of
quantum optics, we define anyonic coherent states and study
their evolution under anyonic optical elements on them. In
particular, we show a simple protocol for generating anyonic
cat states [46].

We show that, in contrast to standard bosons and fermions,
optical networks of anyonic Gaussian devices are universal
for quantum computing for all values of ϕ �= 0. This is proved
by constructing an entangling two-qubit gate from a network
that exploits the nontrivial exchange phase of the anyons and
preserves the encoding of logical qubits. This implies that
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introducing nonlocal statistical interactions in either bosonic
or fermionic linear optics is equivalent, in terms of comput-
ing power, to introducing local, nonlinear interactions [3].
This could have implications for the efficiency of classical
simulations of one-dimensional anyon systems, as well as
applications to quantum simulation algorithms in general.

This paper is structured as follows. In Sec. II, we give a
brief review of bosonic and fermionic linear optics. In Sec. III
we review the definition of bosonic and fermionic anyons.
We discuss the anyonic generalization of optical networks and
solve their dynamics. In Sec. IV we show how to use optical
networks of bosonic and fermionic anyons to build a protocol
for universal quantum computing. Finally, in Sec. V we give a
brief introduction to the theory of optical coherence and the
definition of generalized coherent states, investigating their
analog for bosonic anyons.

II. LINEAR-OPTICAL NETWORKS

In this section we briefly review the theory of bosonic
and fermionic linear optics [3,47]. In Sec. II A we review
the second quantization formalism for identical particles and
the definition of linear optics. In Sec. II B, we review some
examples of the evolution of multiparticle states in multimode
linear-optical devices.

A. Review of linear optics

Consider a single spinless nonrelativistic quantum particle
on a one-dimensional lattice with open boundary conditions.
Its Hilbert space is spanned by a discrete position basis, where
we identify each position with a different mode. We denote
this Hilbert space Hm, where m is the number of modes.
From this space, the second quantization formalism gives a
procedure for generating the Fock space for a system of such
particles.

For bosons, the Fock space basis is built by acting with
a set of operators {b̂†

i , i = 1, . . . , m} on a reference vacuum
state |0〉b. These operators satisfy the following commutation
relations,

b̂ib̂
†
j − b̂†

j b̂i = δi j, (1a)

b̂ib̂ j − b̂ j b̂i = 0, (1b)

b̂†
i b̂†

j − b̂†
j b̂

†
i = 0, (1c)

for all pairs of modes i and j. The basis vectors of the bosonic
Fock space are given by

|n1, . . . , nm〉b = (b̂†
1)n1 . . . (b̂†

m)nm

√
n1! . . . nm!

|0〉b ,

where ni is the eigenvalue of the number operator n̂i = b̂†
i b̂i.

This is also called the occupation number basis.
From Eqs. (1) follows the action of the bosonic operators

on the occupation number basis:

b̂i |n1, . . . , ni, . . . , nm〉b = √
ni |n1, . . . , ni − 1, . . . , nm〉b ,

b̂†
i |n1, . . . , ni, . . . , nm〉b =

√
ni+1 |n1, . . . , ni+1, . . . , nm〉b .

These expressions explain why b̂i and b̂†
i are known as particle

annihilation and creation operators, respectively.

For fermions, the Fock space is generated by a set of
operators f̂ †

i , f̂i that satisfy the anticommutation relations

f̂i f̂ †
j + f̂ †

j f̂i = δi j, (2a)

f̂i f̂ j + f̂ j f̂i = 0, (2b)

f̂ †
i f̂ †

j + f̂ †
j f̂ †

i = 0, (2c)

for all pairs of modes i, j. The number operator for mode i
is n̂i = f̂ †

i f̂i and the vacuum state is |0〉 f . The Fock basis for
fermions comprises the states

|n1, . . . , nm〉 f = ( f̂ †
1 )n1 . . . ( f̂ †

m)nm |0〉 f , (3)

where n j are eigenvalues of the corresponding number oper-
ators. From the anticommutation relations it follows that the
fermionic occupation numbers ni can only be 0 or 1.

For both fermions and bosons, all observables can be writ-
ten in terms of the particle operators. Here we are interested
in Hamiltonians of the form

H =
∑

i

aix̂
†
i x̂i +

∑
i �= j

bi j x̂
†
i x̂ j +

∑
i �= j

(ci j x̂
†
i x̂†

j + c∗
i j x̂ j x̂i ). (4)

Operators denoted as x̂ correspond to either bosonic or
fermionic operators, and we use this notation for expressions
valid for both types of particles. Since H should be Hermitian,
the coefficients ai are all real and bi j = b∗

ji.
The set of all Hamiltonians of the type above is closed un-

der commutation and linear combinations, which gives it a Lie
algebra structure. A convenient choice of generators is given
by the quadratic operators x̂†

i x̂ j , x̂†
i x̂†

j , and x̂ix̂ j , for all pairs
i, j. In this work we focus on the subalgebra of Hamiltonians
that preserve the total number of particles. Such Hamiltonians
are called number preserving or passive, and correspond to
setting ci j = 0 for all i, j in Eq. (4). From here on, we assume
all Hamiltonians are passive unless stated otherwise.

From the commutation and anticommutation relations it
follows that the evolution operator Û = exp iθH correspond-
ing to a passive Hamiltonian H must, for any θ , act on particle
operators as

Û x̂†
i Û † =

∑
j

Ui, j x̂
†
j , (5)

with a unitary matrix of coefficients U = [Ui, j]. Transforma-
tions of this type are known as passive linear dynamical maps,
as they take creation operators into linear combinations of
themselves. We refer to them as linear dynamics or linear
optics for short. An arbitrary linear dynamics is uniquely
determined by the m × m matrix U in Eq. (5). This definition
is very useful, as we will see, since it allows us to obtain
an evolved Fock state by direct substitution of the evolved
particle operators.

In [48], it was shown that any m × m unitary matrix can
be decomposed as a product of m(m − 1)/2 elementary trans-
formations acting nontrivially only on two modes each. These
elementary transformations can be implemented by combina-
tions of simple optical devices known as phase shifters and
beam splitters, which in turn can be represented as

PSi(τ ) = exp(iτ x̂†
i x̂i ),

BSi j (θ ) = exp[iθ (x̂†
i x̂ j + x̂†

j x̂i )].
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Their action on particle operators is given by

PSi(τ )x†
j PSi(−τ ) = eiτδi j x†

j , (6a)

BSi j (θ )

[
x†

i

x†
j

]
BSi j (−θ ) =

[
cos θ i sin θ

i sin θ cos θ

][
x†

i

x†
j

]
. (6b)

In other words, the phase shifter adds a phase onto one mode
relative to the others, and the beam splitter can place one
particle in a superposition of being in different modes. The
nomenclature for these devices is borrowed from optics, but
they are well-defined transformations for any type of identical
particle. This is analogous to what happens when an incident
particle strikes a potential barrier, where its wave function
decomposes into a combination of transmitted and reflected
waves.

Phase shifters and beam splitters can be combined into
larger linear-optical networks and generate all transformations
of the type of Eq. (5). We call these networks linear multimode
interferometers, or simply interferometers for short.

So far our description was completely equivalent for both
bosons and fermions, but the action of these interferometers
over multiparticle states of each type lead to many differences,
which we explore next.

B. Two-mode transformations and bunching behavior

Consider a scenario where two particles must be sent
through a 50:50 beam splitter [i.e., θ = π/4 in Eq. (6b)],
for either fermions or bosons. The initial two-particle states
are written as |1, 1〉 f = f̂ †

1 f̂ †
2 |0〉 f and |1, 1〉b = b̂†

1b̂†
2 |0〉b, re-

spectively. We now want to compare the corresponding output
states. From Eqs. (5) and (6b) we can write

BS12

(π

4

)
|1, 1〉x = BS12

(π

4

)
x̂†

1 x̂†
2 |0〉x

= 1

2
[i(x̂†

1 )2 + x̂†
1 x̂†

2 − x̂†
2 x̂†

1 + i(x̂†
2 )2] |0〉x .

where, recall, x can denote either fermionic or bosonic op-
erators. If we replace x by f and use the anticommutation
relations, we obtain

BS12

(π

4

)
|1, 1〉 f = |1, 1〉 f .

In other words, the beam splitter is effectively transparent to
the state |1, 1〉 f . This is a manifestation of the Pauli exclusion
principle.

Similarly, exchanging x by b and using the bosonic com-
mutation relations we obtain

BS12

(π

4

)
|1, 1〉b = i√

2
(|2, 0〉b + |0, 2〉b).

In contrast to the fermionic case, the two bosons always exit
together, in one mode or the other. This is known as the
Hong-Ou-Mandel effect [49]. These two effects are particular
cases of the more general tendency of fermions and bosons to
display, respectively, antibunching and bunching behaviors.

The generalization of these results to a larger interferome-
ter U is well known and can be found in [4,50]. Specifically,
if we have n bosons (fermions) their transition amplitudes
are given by permanents (determinants) of particular n × n

submatrices of U . Interestingly, determinants are easy ma-
trix functions to compute, whereas permanents are presumed
to be very hard. This underpins a major difference in the
computational power of bosonic and fermionic linear op-
tics: fermionic linear optics can be simulated efficiently on
a classical computer [4], whereas there is evidence that a
bosonic linear-optical device cannot [51]. However, neither
is expected to be universal for quantum computing unless
supplemented with further resources.

III. ONE-DIMENSIONAL ANYONS AND OPTICAL
NETWORKS

In this section we define the anyons we consider. There are
several ways of defining anyons in one-dimensional systems
[17,18,27,32], but we are interested in the so-called bosonic
and fermionic anyons [38]. Both are described in second
quantization formalism with a Fock space basis generated by
creation and annihilation operators.

In Sec. III A we review the definition of bosonic and
fermionic anyons and how they relate to standard bosons
and fermions via generalized Jordan-Wigner transformations.
In Sec. III B we study the algebra of quadratic number-
preserving Hamiltonians for anyons. Finally, in Sec. III C we
define phase shifters and beam splitters for anyons, and how
they act on anyonic Fock states.

A. One-dimensional anyons

Given a 1D lattice with m sites, we denote the creation and
annihilation operators for bosonic anyons by β̂

†
i and β̂i with

i = 1, . . . , m. They satisfy the deformed canonical quantiza-
tion relations

β̂iβ̂
†
j − e−iϕεi, j β̂

†
j β̂i = δi j, (7a)

β̂iβ̂ j − eiϕεi, j β̂ j β̂i = 0, (7b)

β̂
†
i β̂

†
j − eiϕεi, j β̂

†
j β̂

†
i = 0, (7c)

where εi, j is the sign of j − i, or 0 if i = j. Notice that
when i = j, we reobtain the same-site bosonic commutation
relations in Eqs. (1). Particles obeying such commutation re-
lations have been defined since the 1990s [24–26]. They are
related to operators for standard bosons by a transformation
called a generalized Jordan-Wigner map Jϕ [43,44], given by

b̂†
i

Jϕ→ β̂
†
i = exp

(
−iϕ

i−1∑
k=1

b̂†
kb̂k

)
b̂†

i ,

b̂i
Jϕ→ β̂i = exp

(
iϕ

i−1∑
k=1

b̂†
kb̂k

)
b̂i.

From these equations, and using the fact that Jϕ is an alge-
bra homomorphism, i.e., Jϕ (ab) = Jϕ (a)Jϕ (b), it follows that
Jϕ (b̂†

i b̂i ) = β̂
†
i β̂i.

From Eqs. (7), it turns out that the operator β̂
†
i β̂i shares

properties of the bosonic operators n̂i = b̂†
i b̂i. Given a vacuum

state |0〉β , the Fock space basis for bosonic anyons has the
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form

|n1, . . . , nm〉β = (β̂†
1 )n1 . . . (β̂†

m)nm

√
n1! . . . nm!

|0〉β , (8)

as in the standard bosonic case, where now ni are the eigen-
values of n̂i = β̂

†
i β̂i.

The action of particle operators on Fock basis states,
however, is quite different. The exchange factors from the
commutation relations appear, leading to

β̂i |n1, . . . , nm〉β = eiϕi
√

ni |n1, . . . , ni − 1, . . . , nm〉β ,

β̂
†
i |n1, . . . , nm〉β = e−iϕi

√
ni + 1 |n1, . . . , ni + 1, . . . , nm〉β ,

where the total phase ϕi is equal to ϕ
∑i−1

k=1 nk .
Fermionic anyons are defined in a similar way. We use the

notation ξ̂
†
i and ξ̂i to refer to their creation and annihilation

operators. The deformed anticommutation relations are

ξ̂iξ̂
†
j + e−iϕεi, j ξ̂

†
j ξ̂i = δi j, (9a)

ξ̂iξ̂ j + eiϕεi, j ξ̂ j ξ̂i = 0, (9b)

ξ̂
†
i ξ̂

†
j + eiϕεi, j ξ̂

†
j ξ̂

†
i = 0. (9c)

As expected, when we take i = j we recover the single-mode
canonical anticommutation relations.

As in the case of bosonic anyons, the generalized Jordan-
Wigner transform applied on standard fermionic operators
gives us

f̂ †
i

Jϕ→ ξ̂
†
i = exp

(
−iϕ

i−1∑
k=1

f̂ †
k f̂k

)
f̂ †
i ,

f̂i
Jϕ→ ξ̂ i = exp

(
iϕ

i−1∑
k=1

f̂ †
k f̂k

)
f̂i,

and we also have Jϕ ( f̂ †
i f̂i ) = ξ̂

†
i ξ̂i. This means that the Fock

space basis states have the same structure as in the fermionic
case, simply exchanging f by ξ in Eq. (3).

B. The algebra of quadratic anyonic operators

We now consider the algebra of quadratic Hamiltonians for
anyons. As before, whenever we have an expression valid for
both bosonic and fermionic anyons we express the particle
operators using χ , which can then be replaced by β or ξ , as
appropriate.

Recall that all observables can be written in terms of the
particle operators, and we can define passive, Gaussian Hamil-
tonians as

H =
∑

i

aiχ̂
†
i χ̂i +

∑
i �= j

bi j χ̂
†
i χ̂ j . (10)

As before, the coefficients {ai, bi j} are such that ai are all real
and bi j = b∗

j,i, so that H is Hermitian.
The first difference to the standard bosonic and fermionic

Hamiltonians arises when we consider the closure of these
operators. Though they form a closed set as a vector space,
they are not closed under commutation. To see that, compare
the commutators of quadratic operators for standard (x) and

anyonic (χ ) particles:

[x̂†
i x̂ j ; x̂†

k x̂l ] = δ j,k x̂†
i x̂l − δi,l x̂

†
k x̂ j,

[χ̂†
i χ̂ j ; χ̂

†
k χ̂l ] = δ j,kχ̂

†
i χ̂l − δi,l χ̂

†
k χ̂ j + �

χ

i, j,k,l χ̂
†
i χ̂

†
j χ̂kχ̂l ,

where �
χ

i, j,k,l is given by

�
χ

i, j,k,l =
{

e−iϕε j,k − e−iϕ(εl,i−εk,i−εl, j ), if χ = β,

−e−iϕε j,k + e−iϕ(εl,i−εk,i−εl, j ), if χ = ξ .

In other words, differently from standard bosons and
fermions, the commutator of quadratic anyonic operators is
not itself a quadratic operator, and so this algebra is not closed.
Several consequences follow from this fact. The most im-
portant is that quadratic anyonic Hamiltonians are nonlinear
dynamical maps by default. In fact, the closure of the alge-
bra of passive, Gaussian anyonic Hamiltonians must include
number-preserving interaction terms of all even orders.

Let us now restrict the algebra to Hamiltonians acting only
on two modes. Define the operators

J1
i j = 1

2
(χ̂†

i χ̂ j + χ̂
†
j χ̂i ), (11a)

J2
i j = − i

2
(χ̂†

i χ̂ j − χ̂
†
j χ̂i ), (11b)

J3
i j = 1

2
(χ̂†

i χ̂i − χ̂
†
j χ̂ j ), (11c)

where i, j are fixed indices. Then we have that[
Jk

i j ; Jl
i j

] = iεklmJm
i j , (12)

for all k, l, m = 1, . . . , 3, as proven in Appendix A 1.
We conclude that it is not possible to talk about any-

onic interferometers, in general, using the algebra of passive,
Gaussian Hamiltonians. Nonetheless, we can model the action
dynamics of networks of two-mode anyonic interferometers
(the analogs of beam splitters and phase shifters), where the
dynamics acting on each mode pair can be modeled by an
SU(2) algebra. This observation forms the core of this work.

C. Optical networks for anyons

Let us now describe general optical networks for bosonic
and fermionic anyons, and investigate how their behaviors
compare to standard bosons and fermions.

Since the algebra of two-mode Gaussian Hamiltonians is
the same for standard and anyonic particles, it makes sense to
define the optical elements for anyons analogously to those of
fermions and bosons. Thus we have the anyonic phase shifters
and beam splitters described respectively by

PSi(τ ) = exp(iτ χ̂
†
i χ̂i ), (13a)

BSi j (θ ) = exp[iθ (χ̂†
i χ̂ j + χ̂

†
j χ̂i )]. (13b)

For standard particles, the result of Reck et al. [48] shows
how to build an arbitrary m-mode interferometer using a net-
work of O(m2) beam splitters and phase shifters. However, as
we discussed, the algebra of anyonic quadratic Hamiltonians
does not close. Therefore, a simple result similar to [48]
cannot hold for these particles, and so we choose to define
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multimode anyonic interferometers in terms of optical net-
works of two modes directly, even if they do not correspond
to dynamics generated by quadratic Hamiltonians.

To see the implications of this definition, we begin by ana-
lyzing the dynamics of particle operators under the two-mode
optical elements. The action of phase shifters is simple, since
it is equivalent to that of standard particles:

PSi(τ )χ̂†
j PSi(−τ ) = eiτδi j χ̂

†
j .

The action of beam splitters, on the other hand, is trickier
and requires a separate analysis for fermionic and bosonic
anyons.

In the fermionic case, the Pauli exclusion principle, to-
gether with the SU(2) algebra, implies that

BSi j (θ ) = 1+i sin θ (ξ̂ †
i ξ̂ j + ξ̂

†
j ξ̂i )+(cos θ−1)(ξ̂ †

i ξ̂ j + ξ̂
†
j ξ̂i)

2.

The canonical relations then imply the following identities:

BSi j (θ )ξ̂ †
i BSi j (−θ ) = cos θ ξ̂

†
i + i sin θ ξ̂

†
j eiϕξ̂

†
i ξ̂i ,

BSi j (θ )ξ̂ †
j BSi j (−θ ) = cos θ ξ̂

†
j + i sin θ ξ̂

†
i e−iϕξ̂

†
j ξ̂ j .

Notice that the beam splitter action is nonlinear, as ex-
pected. This gives a simpler derivation of our previous result
in [52], where we obtained these identities by solving the
Heisenberg equations of motion.

For bosonic anyons the derivation is more involved, espe-
cially because we cannot rely on the Pauli exclusion principle
to limit the degree of polynomials that appear. To begin, note
that the beam splitter Hamiltonian in Eq. (13b) is equal to 2J1

i j
from Eq. (11a). From the canonical relations we obtain(

2J1
i j

)
β̂

†
i = β̂

†
i

[
2
(

cos ϕJ1
i j − sin ϕJ2

i j

)] + β̂
†
j ,(

2J1
i j

)
β̂

†
j = β̂

†
j

[
2
(

cos ϕJ1
i j − sin ϕJ2

i j

)] + β̂
†
i .

Repeatedly multiplying these equations by 2J1
i j on the left, we

can recursively exponentiate 2J1
i j . This leads to the propaga-

tion identities (proven in Appendix A 2)

Ĝnϕ
i j (θ )β̂†

i = (cos θβ̂
†
i + ie−inϕ sin θβ̂

†
j )Ĝ(n+1)ϕ

i j (θ ), (14a)

Ĝnϕ
i j (θ )β̂†

j = (cos θβ̂
†
j + ieinϕ sin θβ̂

†
i )Ĝ(n+1)ϕ

i j (θ ), (14b)

where the operator Ĝnϕ
i j (θ ) is given by

Ĝnϕ
i j (θ ) = einϕJ3

i j BSi j (θ )e−inϕJ3
i j .

From these identities, one can propagate the action of a
beam splitter through any polynomial of particle operators.

Up to now we have investigated only the action of beam
splitter BSi j on the operators of modes i and j. For standard
particles, this is the only nontrivial dynamics, but for anyonic
particles the situation is quite different.

If i and j are not nearest neighbors, there exists at least one
mode k in between i and j. The canonical relations for both
fermionic and bosonic anyons imply that

Ĝnϕ
i j (θ )χ̂†

k = χ̂
†
k Ĝ(n+2)ϕ

i j (θ ). (15)

Here we used the general definition of beam splitters and
phase shifters to extend the definition of Ĝnϕ

i j to the fermionic
case.

We have now given all ingredients to compute the dynam-
ics of bosonic and fermionic anyon states under networks of
optical elements. Let us discuss a few examples to illustrate.

Consider first a three-mode lattice where we input one
bosonic anyon in the first mode and vacuum in the third, and a
general beam splitter acting between modes 1 and 3. Consider
that there might or not be a second particle in mode 2. We
write the input state as |1, n, 0〉β , where n ∈ {0, 1}. The action
of the beam splitter on this input state is given by

BS13(θ ) |1, n, 0〉β = cos θ |1, n, 0〉β + ie−inϕ sin θ |0, n, 1〉β ,

which follows from the repeated application of Eq. (15). Sim-
ilarly, for fermionic anyons initialized on the state |1, n, 0〉ξ ,
we have that

BS13(θ ) |1, n, 0〉ξ
= cos θ |1, n, 0〉ξ +ie−in(ϕ+π ) sin θ |0, n, 1〉ξ .

The above example shows that, when acting with beam
splitters between distant modes, the presence of anyons on
intermediate modes induces an additional relative phase. This
is analogous to what is expected from the anyonic Aharonov-
Bohm effect in two dimensions [8] and in one-dimensional
rings of lattice anyons [53]. These phases are a manifestation
of the nonlinear character of anyonic beam splitters, and show
that they are also effectively nonlocal, in the sense that they
depend on the presence of particles in modes where they
are not obviously acting. These effects have important con-
sequences that we will explore shortly.

Let us now consider whether the exchange phase affects
the bunching behaviors of bosons and fermions discussed in
Sec. II B. To that end, let us first compute the effect of a
balanced beam splitter acting on the input state |1, 1〉β of
bosonic anyons. The balanced beam splitter operator is given
by ei(π/2)J1

12 , and so we have

ei
π
2 J1

12 β̂
†
1 β̂

†
2 |0〉β = 1√

2
(β̂†

1 + iβ̂†
2 )Ĝϕ

12

(π

4

)
β̂

†
2 |0〉β

= 1

2
(β̂†

1 + iβ̂†
2 )(ieiϕβ̂

†
1 + β̂

†
2 )Ĝ2ϕ

12

(π

4

)
|0〉β

= i√
2

(eiϕ |2, 0〉β + |0, 2〉β ),

where the last equality follows from the commutation rela-
tions and the fact that Ĝ2ϕ

12 (θ ) acts trivially on the vacuum
state. Note that this recovers the original bosonic Hong-
Ou-Mandel effect when ϕ = 0, as expected. Interestingly,
however, the |1, 1〉 state is still suppressed for any value of
the exchange phase. The only difference to the bosonic case is
a relative phase between states |2, 0〉β and |0, 2〉β .

Similarly, for fermionic anyons, a general beam splitter
acting on |1, 1〉ξ produces the output

BS12(θ )ξ̂ †
1 ξ̂

†
2 |0〉ξ = (cos2 θ ξ̂

†
1 ξ̂

†
2 − sin2 θ ξ̂

†
2 eiϕξ̂

†
1 ξ̂1 ξ̂

†
2 e−iϕξ̂

†
2 ξ̂2 )|0〉ξ

= (cos2 θ ξ̂
†
1 ξ̂

†
2 − sin2 θeiϕξ̂

†
2 ξ̂

†
1 ) |0〉ξ

= ξ̂
†
1 ξ̂

†
2 |0〉ξ .

In other words, we observe the Pauli exclusion principle for
fermionic anyons in the same way as for standard fermions.
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This example shows that, at least at the level of a single
beam splitter, the bunching behavior of bosonic and fermionic
anyons matches that of their standard counterparts. We leave
it as an open question whether this remains true for multimode
interferometers (though there is evidence that the behavior
does change in that case [54]). This is also a manifestation
of an important distinction between two-dimensional anyons,
which in a sense interpolate between bosons and fermions,
and those we consider, which form two separate classes of
particles.

Though the anyonic exchange phase did not alter the HOM
and Pauli exclusion effects, it does play a crucial role in
applications for quantum computing, as we will see now.

IV. ANYONIC QUANTUM COMPUTING

In [1] it was shown that photonic linear optical networks
can be universal for quantum computing. This protocol re-
places nonlinearities by adaptive measurements, though the
entangling gates it produces are not deterministic. In contrast,
it was shown in [47] that, for fermionic linear optics, even
adaptive measurements are not sufficient, and therefore some
nonlinearity is mandatory for universal quantum computation.
On the anyonic side, in previous work [52] we showed how
to perform universal quantum computing using only optical
networks for fermionic anyons, without the need for any extra
resource. Here, we describe a protocol for universal quantum
computation that improves on the result of [52] by virtue of
(i) being simpler for fermionic anyons and (ii) working for
bosonic anyons as well.

We begin in Sec. IV A by defining a graphical represen-
tation for anyonic optical networks, and proving that they
cannot be uniquely described by their action on single-particle
states. In Sec. IV B we review the dual-rail encoding for
optical quantum computation and show how to construct
an entangling two-qubit gate for all bosonic and fermionic
anyons with nonzero statistical parameter ϕ.

A. Multimode anyonic interferometry and the one-dimensional
analog of the Aharonov-Bohm effect

Let us begin by introducing optical network diagrams to
represent how optical elements are arranged in a circuit. These
diagrams are composed of two building blocks. They are

for a phase shifter PSi(τ ), and

for a beam splitter BSi j (θ ).
If the beam splitter acts between distant modes, the in-

termediate modes that go through it will be represented by
dashed lines, as seen in Eq. (16).

In these diagrams, elements are composed from left to
right, that is,

As discussed previously, a linear-optical network for
standard bosons or fermions implements a specified linear
dynamical map Û that is completely determined by its ma-
trix elements U = [Ui, j], i.e., by its action on single-particle
subspace. Anyonic optical networks do not have this property.
To prove this, consider the network below:

(16)
For the single-particle subspace spanned by
{|1, 0, 0〉χ , |0, 1, 0〉χ , |0, 0, 1〉χ }, the network acts as the
identity for standard and anyonic particles of both types. For
standard bosons and fermions, this implies that this network
acts as the identity transformation on the whole Fock space.

In contrast, we can show that the action of this network on
states with two or three anyons (either bosonic or fermionic)
is nontrivial:

B̂ |0, 1, 1〉χ = |0, 1, 1〉χ , (17a)

B̂ |1, 0, 1〉χ = e−iϕ |1, 0, 1〉χ , (17b)

B̂ |1, 1, 0〉χ = eiϕ |1, 1, 0〉χ , (17c)

B̂ |1, 1, 1〉χ = |1, 1, 1〉χ . (17d)

This network acts diagonally on this subspace, as expected,
since each element only permutes the anyons between the
modes but does not create superpositions. However, some
diagonal elements are nontrivial and proportional to anyonic
exchange phases. The existence of such nontrivial networks
shows that the unique specification of interferometers based
on their action on single-particle states is no longer possible.

B. Dual-rail universal quantum computer

Arguably the most common way to encode a qubit for use
in linear-optical computing is the dual-rail encoding. In this
encoding, n qubits are mapped to the states of n particles in
2n modes, such that each logical qubit is supported in a pair
of neighboring modes. The logical qubit states are defined by

|0L〉 = |1, 0〉 ,

|1L〉 = |0, 1〉 .

Note that these states have at most a single particle per mode,
and so they are supported by all types of particles we consider
here. Therefore, we temporarily drop the reference to the
particle type in the notation, unless where necessary.

To encode more qubits is straightforward. A two-
qubit system needs four modes, with corresponding logical
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states

|00〉L = |1, 0, 1, 0〉 ,

|01〉L = |1, 0, 0, 1〉 ,

|10〉L = |0, 1, 1, 0〉 ,

|11〉L = |0, 1, 0, 1〉 .

With this encoding it is possible to perform any logical
single-qubit gate using only phase shifters and beam splitters.
To prove this, consider a qubit encoded in modes 1 and 2. A
phase shifter on mode 2 acts in the logical basis states as

PS2(θ ) |1, 0〉 = |1, 0〉 ,

PS2(θ ) |0, 1〉 = eiθ |0, 1〉 ,

which is a logical Z rotation on the Bloch sphere by θ . A beam
splitter between modes 1 and 2 acts in the logical basis states
as

BS12(θ ) |1, 0〉 = cos θ |1, 0〉 + i sin θ |0, 1〉 ,

BS12(θ ) |0, 1〉 = i sin θ |1, 0〉 + cos θ |0, 1〉 ,

which is a logical X rotation in the Bloch sphere by an angle θ .
With arbitrary rotations around two distinct axes in the Bloch
sphere we can perform arbitrary single-qubit gates [55] via the
decomposition

U = eiαe−i βZ
2 e−i γ X

2 e−i δZ
2 .

An optical realization of this decomposition is given by the
network

To build a universal computer, we must also have an entan-
gling two-qubit gate [56]. For standard particles, deterministic
entangling gates require nonlinear interactions. For the any-
onic particles we consider the nonlinearity is intrinsic, and so
the task of finding an appropriate gate is simpler. Consider the
optical network below,

where modes associated with Q1 encode the first qubit and
modes in Q2 encode the second qubit. Mode A is an auxiliary
mode. This network is equivalent to applying the network in
Eq. (16) to three modes in the middle, leaving the outermost
two untouched. Therefore, if we initialize the auxiliary mode
A with one particle, Eqs. (17) show that this network generates

the two-qubit gate

CP(ϕ) =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiϕ

⎤
⎥⎦.

This gate is a controlled phase gate, which is an entangling
gate for all ϕ �= 0.

In previous work [52] we showed that fermionic anyons for
any ϕ �= 0 are universal for quantum computation. The above
construction proves quantum universality for both fermionic
and bosonic anyons for any ϕ �= 0, using only optical net-
works and one auxiliary mode, with one particle that never
leaves the circuit. Besides also holding for bosonic anyons, it
improves over the construction of [52] for fermionic anyons
by being simpler.

This ends our applications of anyonic optical networks
for quantum computing with discrete variables. In the next
section we move to the realm of continuous variables.

V. COHERENT STATES OF ANYONS

Bosonic coherent states are the platform of many proposals
for quantum computing with continuous variables [46,57]. In
this section, we define the anyonic analog of bosonic coherent
states.

In Sec. V A, we review the general quantum theory of
coherence as formulated in [58–62], focusing on single-mode
coherent states, and extend it to bosonic anyons. In Sec. V B
we show how optical elements act on anyonic coherent states.

A. Quantum theory of coherence and anyons

Let us begin by considering single-mode coherent states
(and dropping the mode index from all expressions), and defer
the multimode case to the next subsection.

Coherent states are usually defined as eigenstates of annihi-
lation operators. For example, for standard bosons, a coherent
state satisfies

b̂ |g〉b = g |g〉b . (18)

Here, g, known as the amplitude of the coherent state, can be
any complex number (due to the non-Hermiticity of b̂). In the
Fock basis, the coherent state can be written as

|g〉b = e− 1
2 |g|2 ∑

n

(gb̂†)n

n!
|0〉b . (19)

The states defined by Eq. (18), however, are only a par-
ticular kind of coherent state. The theory of optical quantum
coherence arose from the task of discriminating experimen-
tally between different states of the electromagnetic field by
the amplitude of n-photon absorption events [58,59]. Given
a single-mode input state |input〉b coming from some field
source, the probability of detecting n photons is given by the
nth-order correlation function

Cb(n) = 〈input| (b̂†)n(b̂)n |input〉b .

These correlators can be used, for example, as a measure to
attest the quality of single-photon sources [63–65], since for
such sources we should have Cb(1) as high as possible. It is
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more common, however, to use the so-called nth-order single-
mode coherence functions

cb(n) = 〈(b̂†)n(b̂)n〉b

〈n〉n
b

, (20)

where cb(n) is calculated relative to some specific state. We
say that a state |ψ〉b is nth-order coherent if cb(m) = 1 for all
m � n. In the general theory of coherence, a coherent state
is one for which cb(n) = 1 for all n ∈ N. In other words,
this state has full coherence in the sense that it is nth-order
coherent for all n.

The most general coherent state is of the form

|g|{ρn}〉b = e− 1
2 |g|2 ∑

n

eiρn
(gβ̂†)n

n!
|0〉b , (21)

where ρn is an arbitrary sequence of real numbers [60,61].
Note that we recover the states defined in Eq. (18) in the
particular case of ρn = 0 for all n.

Let us now consider the analog of coherent states for
bosonic anyons. We may define eigenstates of annihilation
operators:

β̂ |g〉β = g |gβ〉 , (22)

where again g is any complex number. These states have full
coherence if we define the nth-order coherence cβ (n) function
in the analogous form

cβ (n) = 〈(β̂†)n(β̂ )n〉β
〈n〉n

β

. (23)

We thus also refer to these as coherent states.
Note that single-mode bosonic anyons satisfy the same

commutation relations as standard bosons. Therefore, as long
as we only consider a single mode, coherent states for anyonic
bosons have exactly the same properties as those of standard
bosons. Let us consider some of these properties before mov-
ing on to the distinctions between the two types of states,
which arise in the multimode setting. For the rest of this
subsection, all symbolic expressions have the same form for
both types of particles and so we use the letter �, to stand in
for both b and β, whenever possible.

Eigenstates of the annihilation operator �̂ can be created
from the vacuum by the action of the displacement operator

D̂(g) = exp{g�̂
† − g∗

�̂}, (24)

which can be written in the equivalent forms

D̂(g) = e− 1
2 |g|2 exp{g�̂

†} exp{−g∗
�̂}, (25a)

D̂(g) = e
1
2 |g|2 exp{−g∗

�̂} exp{g�̂
†}. (25b)

Note that D̂(g) is a unitary operator, with D̂†(g) = D̂(−g).
Several properties of displacement operators can be derived
from those identities. The most important is that these op-
erators “displace” the vacuum state. This follows from the
equations

D̂(−g)�̂D̂(g) = �̂ + g, (26a)

D̂(−g)�̂†D̂(g) = �̂
† + g∗, (26b)

called the displacement identities, from which we can show
that the state

|g〉� = D̂(g) |0〉� = e− 1
2 |g|2 ∑

n

(g�̂†)n

n!
|0〉� (27)

is, in fact, an eigenstate of �̂.
It can also be shown that single-mode coherent states of

both standard and anyonic bosons satisfy a minimum uncer-
tainty relation with respect to the quadrature operators

q̂ = 1

2
(�̂† + �̂), (28)

p̂ = 1

2i
(�̂† − �̂). (29)

The quadrature operators satisfy the commutation relation
[q̂, p̂] = 1, and form a representation of the quantum har-
monic oscillator. Only eigenstates of �̂ can be simultaneously
single-mode coherent states and minimum uncertainty states
[61], which is a property that sets them apart from more
general coherent states.

We finish our review by showing that displacement opera-
tors form an algebra, given by the relation

D̂(g)D̂(h) = egh∗−hg∗
D(g + h). (30)

From this algebra, one can calculate the overlap function

〈h〉 g� = e− 1
2 (|g|2+|h|2−2gh∗ ), (31)

which shows that coherent states are not orthogonal in general.
Nonetheless they still satisfy the relation∫

C

d2g

π
|g〉〈g|� = I, (32)

with I as the identity operator, which makes them an over-
complete basis for the single-mode state space.

B. Coherent states in optical networks

We now shift to discussing the differences between bosonic
anyon coherent states and their standard boson counterpart.
These differences only arise in the multimode case, and we
consider, for simplicity, only two modes, which we label 1
and 2.

Consider first the case of standard bosons. We denote two-
mode coherent states as follows:

|u; v〉b = D̂1(u)D̂2(v) |0〉b , (33)

for any u, v ∈ C and recall, D̂ are displacement operators.
Suppose now that the system is initialized in either of the

coherent states

|g; 0〉b = D̂1(g) |0〉b ,

|0; h〉b = D̂2(h) |0〉b .

The action of a phase shifter PS1(τ ) on |g; 0〉b is simply
given by

PS1(τ ) |g; 0〉b = |geiτ ; 0〉b ,

and the action of PS2(τ ) on |0; h〉b is, similarly, given by
|0; heiτ 〉.
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More interesting is the action of the beam splitter BS12(θ ),
which can be obtained using Eq. (26), resulting in

BS12(θ ) |g; 0〉b = |cos (θ )g; i sin (θ )g〉b ,

BS12(θ ) |0; h〉b = |i sin (θ )h; cos (θ )h〉b .

It is easy to see that this state is two-mode coherent, in the
sense that c1

b(n) = 1 and c2
b(n) = 1 for all n, where ci is the

natural generalization of Eq. (23) to mode i. We call any state
of the form

|{gi}〉b =
m∏

i=1

D̂i(gi ) |0〉b (34)

an exact multimode coherent state, or exact coherent state for
short. Notice that this state is also a simultaneous eigenstate
of all {bi}.

In general, the action of an arbitrary two-mode linear map
Â over an arbitrary two-mode coherent state is

Â |u; v〉b = |A1,1u + A1,2v; A2,1u + A2,2v〉b ,

where Â is determined by the coefficient matrix A = [Ai, j].
It is a simple fact of linear algebra that, for any nonzero

complex vector, there is a unitary matrix which rotates it into a
vector with a single nonzero component. Therefore, given any
|u; v〉b, one can find two linear maps Â1(u, v) and Â2(u, v),
such that

Â1(u, v) |u; v〉b = |
√

|u|2 + |v|2; 0〉b ,

Â2(u, v) |u; v〉b = |0;
√

|u|2 + |v|2〉b .

This observation motivates the following definition. When, for
a bosonic state |ψ〉b, a linear dynamic Â(ψ ) can be found such
that Â(ψ ) |ψ〉b is a single-mode coherent state, we say that
|ψ〉b is a dynamically coherent state. It is not hard to see that
all dynamically coherent states are exactly coherent.

These two notions of coherent state—dynamic and exact—
are not standard in the quantum optics literature, since there
they coincide. However, for bosonic anyons, annihilation op-
erators do not commute. This suggests that these definitions
might not agree, as we now show.

Exact single-mode coherent states for bosonic anyons have
the same form as standard bosonic ones:

|g; 0〉β = D̂1(g) |0〉β , (35a)

|0; h〉β = D̂2(h) |0〉β . (35b)

The action of a phase shifter on these states is similar to
the standard case. The action of a beam splitter operator can
be calculated from the propagation identities of Eqs. (14a) and
(14b), leading to

Ng

∑
n

1

n!

n−1∏
k=0

[gcos(θ )β̂†
1 + ie−ikϕg sin(θ )β̂†

2 ] |0〉β ,

Nh

∑
n

1

n!

n−1∏
k=0

[ieikϕh sin(θ )β̂†
1 + h cos(θ )β̂†

2 ] |0〉β ,

where Nx = e− 1
2 |x|2 for any x. We can get rid of the binomial

product by using the deformed binomial identity in Eqs. (A3).
This gives us[∑

l,k

Ngc1
l,k

[cos(θ )gβ̂†
1 ]l

l!

[i sin(θ )gβ̂†
2 ]k

k!

]
|0〉β , (36a)

[∑
l,k

Nhc2
l,k

[i sin (θ )hβ̂
†
1 ]l

l!

[cos (θ )hβ̂
†
2 ]k

k!

]
|0〉β , (36b)

where we have

c1
l,k = e−iϕ(lk+ k(k−1)

2 ),

c2
l,k = eiϕ l (l−1)

2 .

Due to the group property of beam splitters, the form of the
states in Eqs. (36) stay the same, even after successive applica-
tions of beam splitters with different angles. This observation
allows us to find at least two generalizations of the notion of
dynamical coherence, represented by the equations

|u; v〉1
β = N

∑
n

1

n!

n−1∏
k=0

(uβ̂
†
1 + e−ikϕbβ̂†

2 ) |0〉β ,

|u; v〉2
β = N

∑
n

1

n!

n−1∏
k=0

(eikϕuβ̂
†
1 + vβ̂

†
2 ) |0〉β ,

where N = exp −(|u|2 + |v|2). We refer to these states as type
1 and type 2 dynamically coherent states, respectively. The
action of a general two-mode interferometer Â is then

Â |u; v〉i
β = |(A11u + A12v); (A21u + A22v)〉i

β ,

for i = 1, 2.
By the definition, its easy to see that the unitary T̂ =

exp iϕK̂ , with K given by the anyonic Kerr Hamiltonian

K̂12 = (n̂1 + n̂2)(n̂1 + n̂2 − 1)

2
,

is such that

|u; v〉2
β = T̂ |u; v〉1

β .

Therefore, there is no passive quadratic Hamiltonian that can
convert a type 1 dynamically coherent state into a type 2
dynamically coherent state.

In the case of exactly coherent two-mode states

|u; v〉<β = D̂1(u)D̂2(v) |0〉β ,

|u; v〉>β = D̂2(v)D̂1(u) |0〉β ,

notice that they can be written as[∑
l,k

N
(uβ̂

†
1 )l

l!

(vβ̂
†
2 )k

k!

]
|0〉β ,

[∑
l,k

Ne−iϕkl (uβ̂
†
1 )l

l!

(vβ̂
†
2 )k

k!

]
|0〉β .

By inspection, we see that no exactly coherent state can
be mapped into a dynamically coherent states using passive
quadratic anyonic Hamiltonians.
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We believe that this incursion into the different kinds
of two-mode coherent states of bosonic anyons is enough
to illustrate the drastic effects the anyonic exchange phase
has on coherent state dynamics. As a last example, let
us study the effect of a mirror, i.e., the network given
by PS1(π/2)BS12(π/2)PS2(π/2), on single-mode coherent
states:

|u; 0〉β = D̂1(u) |0〉β ,

|0; v〉β = D̂2(v) |0〉β .

From our previous discussion it follows that the output states
are given by

|0; u〉1
β = Nu

∑
k

e−iϕ k(k−1)
2

(uβ̂
†
2 )k

k!
|0; 0〉 ,

|v; 0〉2
β = Nv

∑
k

eiϕ k(k−1)
2

(vβ̂
†
1 )k

k!
|0; 0〉 ,

where the first state is a reflection of |u; 0〉β and the second a
reflection of |0; v〉β .

For all values of ϕ, we can use the prescription in [58] to
define the coherent-basis wave function

�
ϕ
i (x, z) =

∑
k

ψ i
k (x)

zk

√
k!

,

which, in our case, has

ψ1
k (x) = Nxc∗

k

x̂k

√
k!

and

ψ2
k (x) = Nxck

x̂k

√
k!

,

and write the output states as a linear combination of the
appropriate single-mode coherent states, in the form

|0; u〉1
β = 1

π

∫
C

d2z |0; z〉β �2(b, z∗)e− 1
2 |z|2 ,

|v; 0〉2
β = 1

π

∫
C

d2z |z; 0〉β �1(a, z∗)e− 1
2 |z|2 .

For further illustration, let us take the simplest case ϕ = π .
We see that the mirror acts as

|0; u〉1
β = 1

N
√

2

[
(−1)

1
4 |0; −iu〉β − (−1)

3
4 |0; iu〉β

]
,

|v; 0〉2
β = 1

N
√

2

[
(−1)

1
4 |−iv; 0〉β − (−1)

3
4 |iv; 0〉β

]
,

up to a normalization factor N . Such states are called cat
states, and they have multiple applications in quantum infor-
mation theory, such as encoding logical qubits or as a resource
for teleportation protocols [46,57,66–71].

VI. CONCLUSION

We generalized the formalism of linear-optical networks,
commonly applied to standard bosons and fermions, to
fermionic and bosonic anyons on a 1D lattice. We showed that

anyonic optical networks cannot be uniquely characterized by
the matrix of single-mode transition amplitudes, in contrast
to standard bosons and fermions. This is due, in part, to the
existence of special anyonic optical networks, which take
advantage of Aharonov-Bohm phases that arise in these any-
onic systems. We also showed that the dynamics induced by
anyonic optical elements preserve the characteristic bosonic
and fermionic bunching behavior in the form of the Hong-
Ou-Mandel effect and Pauli exclusion principle, respectively.

From the anyonic linear-optical dynamics we were able to
propose a deterministic entangling two-qubit gate applicable
to both the bosonic and fermionic cases. This proposal re-
quires one auxiliary mode populated with a single particle as
a (reusable) resource, and generalizes previous results [52].

We also showed how to define coherent states of bosonic
anyons, describing how these states can be classified into
families that are not equivalent up to linear optical transforma-
tions. Finally, as an application, we discussed how an anyonic
mirror acting on a single-mode coherent state can create cat
states, which are often considered a valuable resource for
quantum information processing in continuous variables.

We believe the anyonic characteristics we have uncov-
ered reveal interesting features on the uniqueness of standard
fermionic and bosonic behavior. This framework might also
be appropriate to study the role of fractional statistics over
general types of quantum information tasks, as well as mea-
sures for resource states over such tasks. We also hope that this
work can serve as a guide to building a framework for optical
network models of more complex kinds of anyons, such as
Fock parafermions [72] and non-Abelian anyon ladders [73].
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APPENDIX: MATHEMATICAL PROOFS

Here we give the proofs for various statements made
throughout this paper.

1. SU(2) algebra of quadratic anyonic operators

Theorem 1. Define the operators

J1
i j = 1

2
(χ̂†

i χ̂ j + χ̂
†
j χ̂i ), (A1a)

J2
i j = −i

2
(χ̂†

i χ̂ j − χ̂
†
j χ̂i ), (A1b)

J3
i j = 1

2
(χ̂†

i χ̂i − χ̂
†
j χ̂ j ), (A1c)

for fixed i and j. Then[
Jk

i j ; Jl
i j

] = iεklmJm
i j , (A2)

for all k, l, m = 1, . . . , 3.
Proof. We just have to compute the three commutators

[J1
i j ; J2

i j], [J1
i j ; J3

i j], and [J2
i j ; J3

i j]. The second and third ones are
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trivial, given that χ̂
†
i χ̂i are number operators for their respec-

tive modes. Therefore, we only have to compute [J1
i j ; J2

i j].
Expanding the terms in [J1

i j ; J2
i j] we have that J1

i jJ
2
i j is given

by

−i

4
[(χ̂†

i χ̂ j )
2 − (χ̂†

j χ̂i )
2] − [χ̂†

i (χ̂ jχ̂
†
j )χ̂i − χ̂

†
j (χ̂iχ̂

†
i )χ̂ j],

while J2
i jJ

1
i j is given by

−i

4
[(χ̂†

i χ̂ j )
2 − (χ̂†

j χ̂i )
2] + [χ̂†

i (χ̂ jχ̂
†
j )χ̂i − χ̂

†
j (χ̂iχ̂

†
i )χ̂ j].

Using the commutation relations for either bosonic or
fermionic anyons we obtain

[
J1

i j ; J2
i j

] = i

2
[χ̂†

i χ̂i(χ̂ jχ̂
†
j ) − χ̂

†
j χ̂ j (χ̂iχ̂

†
i )]

= i

2
(χ̂†

i χ̂i − χ̂
†
j χ̂ j ) = iJ3

i j,

as desired. �

2. Propagation identities

By using the SU(2) structure of bilinear operators we can
effectively solve the dynamics of creation and annihilation op-
erators for bosonic anyons under the action of a beam splitter.

Theorem 2. Let G be given by

Ĝnϕ
i j (θ ) = einϕJ3

i j eiθ (2J1
i j )e−inϕJ3

i j .

Then it follows that

Ĝnϕ
i j (θ )β̂†

i =(cos θβ̂
†
i + ie−inϕ sin θβ̂

†
j )Ĝ(n+1)ϕ

i j (θ ),

Ĝnϕ
i j (θ )β̂†

j =(cos θβ̂
†
j + ieinϕ sin θβ̂

†
i )Ĝ(n+1)ϕ

i j (θ ),

and if i < k < j,

Ĝnϕ
i j (θ )β̂†

k = β̂
†
k Ĝ(n+2)ϕ

i j (θ ).

Proof. The i < k < j case is easy to see from the cal-
culation for fermionic anyons. For the cases when k = i or
k = j, let us compute the commutator between the beam split-
ter Hamiltonian HBS

i j = β̂
†
i β̂ j + β̂

†
j β̂i = 2J1

i j and the creation

operators β̂
†
i and β̂

†
j :[(

2J1
i j

)
, β̂

†
i

] =β̂
†
i

[
(cos ϕ − 1)

(
2J1

i j

) − sin ϕ
(
2J2

i j

)] + β̂
†
j ,[(

2J1
i j

)
, β̂

†
j

] =β̂
†
j

[
(cos ϕ − 1)

(
2J1

i j

) − sin ϕ
(
2J2

i j

)] + β̂
†
i .

This implies that(
2J1

i j

)
β̂

†
i =β̂

†
i

[
2
(

cos ϕJ1
i j − sin ϕJ2

i j

)] + β̂
†
j ,(

2J1
i j

)
β̂

†
j =β̂

†
j

[
2
(

cos ϕJ1
i j − sin ϕJ2

i j

)] + β̂
†
i .

Combining the two equations above we get(
2J1

i j

)
(β̂†

i + β̂
†
j ) =(β̂†

i + β̂
†
j )

[
2
(

cos ϕJ1
i j − sin ϕJ2

i j

) + 1
]
,(

2J1
i j

)
(β̂†

i − β̂
†
j ) =(β̂†

i − β̂
†
j )

[
2
(

cos ϕJ1
i j − sin ϕJ2

i j

) − 1
]
.

Multiplying the equations above by powers of (2J1
i j ) we find

the expression for commuting a beam splitter with a combina-

tion of creation operators:

eiθ (2J1
i j )(β̂†

i + β̂
†
j ) = (β̂†

i + β̂
†
j )eiθ[2(cos ϕJ1

i j−sin ϕJ2
i j )+1],

eiθ (2J1
i j )(β̂†

i − β̂
†
j ) = (β̂†

i − β̂
†
j )eiθ[2(cos ϕJ1

i j−sin ϕJ2
i j )−1].

Finally, this leads to

eiθ (2J1
i j )β̂

†
i = (cos θβ̂

†
i + i sin θβ̂

†
j )eiθ[2(cos ϕJ1

i j−sin ϕJ2
i j )],

eiθ (2J1
i j )β̂

†
j = (i sin θβ̂

†
i + cos θβ̂

†
j )eiθ[2(cos ϕJ1

i j−sin ϕJ2
i j )].

To cast this result in a more illuminating form, recall that

cos ϕJ1
i j − sin ϕJ2

i j = eiϕJ3
i j J1

i je
−iϕJ3

i j ,

and, therefore,

eiθ[2(cos ϕJ1
i j−sin ϕJ2

i j ))] = eiϕJ3
i j eiθ (2J1

i j )e−iϕJ3
i j ,

which gives us

Ĝ0
i j (θ )β̂†

i =(cos θβ̂
†
i + i sin θβ̂

†
j )Ĝϕ

i j (θ ),

Ĝ0
i j (θ )β̂†

j =(cos θβ̂
†
j + i sin θβ̂

†
i )Ĝϕ

i j (θ ),

by the definition of G. Then it is not hard to see, by induction
on n, that

Ĝnϕ
i j (θ )β̂†

i =(cos θβ̂
†
i + ie−inϕ sin θβ̂

†
j )Ĝ(n+1)ϕ

i j (θ ),

Ĝnϕ
i j (θ )β̂†

j =(cos θβ̂
†
j + ieinϕ sin θβ̂

†
i )Ĝ(n+1)ϕ

i j (θ ),

thus proving the theorem. �

3. Generalized binomial identities

Applying the propagation identities to powers of creation
operators leads to the necessity of calculating generalized
binomial identities for anyons.

Theorem 3. Let a, b be arbitrary complex numbers and i <

j; then

n−1∏
k=0

(aβ̂
†
i + e−ikϕbβ̂†

j ) = e−iϕ n(n−1)
2

n−1∏
k=0

(eikϕaβ̂
†
i + bβ̂†

j ),

(A3a)

where
n−1∏
k=0

(eikϕaβ̂
†
i + bβ̂†

j ) =
n∑

l=0

(
n

l

)
eiϕ l (l−1)

2 (aβ̂
†
i )l (bβ̂†

j )n−l .

(A3b)
Proof. The first equality is easy to prove, since

aβ̂
†
i + e−ikϕbβ̂†

j = e−ikϕ (eikϕaβ̂
†
i + bβ̂†

j ),

which implies

n−1∏
k=0

(aβ̂
†
i + e−ikϕbβ̂†

j ) =
[

n−1∏
k=0

e−iϕk

]
n−1∏
k=0

(eikϕaβ̂
†
i + bβ̂†

j ).

Then, just notice that

n−1∏
k=0

e−iϕk = eiϕ
∑k=0

n−1 k = eiϕ n(n−1)
2 .

We prove the second identity using induction over n. The
identity is trivial for n = 1. Suppose it is valid for the nth case.
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Then the (n + 1)th case can be written as
n∑

l=0

(
n

l

)
eiϕ l (l−1)

2 (aβ̂
†
i )l (bβ̂†

j )n−l (einϕaβ̂
†
i + bβ̂†

j ).

Expanding the factors and rearranging the operators such that
they are normally ordered, we obtain

n∑
l=0

(
n

l

)
eiϕ l (l+1)

2 (aβ̂
†
i )l+1(bβ̂†

j )n−l

+
n∑

l=0

(
n

l

)
eiϕ l (l−1)

2 (aβ̂
†
i )l (bβ̂†

j )n−l+1.

We proceed by separating terms l = n from the first sum and
l = 0 from the second one, writing them explicitly. After that,
we relabel k = l + 1 in the first sum and k = l in the second,

obtaining

eiϕ n(n+1)
2 (aβ̂

†
i )n+1

+
n∑

k=1

[(
n

k − 1

)
+

(
n

k

)]
eiϕ k(k−1)

2 (aβ̂
†
i )k (bβ̂†

j )(n+1)−k

+ (bβ̂†
j )n+1.

Finally we use that

(
n

k − 1

)
+

(
n

k

)
=

(
n + 1

k

)
,

from which follows the identity for the (n + 1)th case, com-
pleting the induction. �

[1] E. Knill, R. Laflamme, and G. J. Milburn, Nature (London) 409,
46 (2001).

[2] S. B. Bravyi and A. Y. Kitaev, Ann. Phys. 298, 210 (2002).
[3] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling,

and G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).
[4] B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 65, 032325

(2002).
[5] L. G. Valiant, SIAM J. Comput. 31, 1229 (2002).
[6] E. Knill, arXiv:quant-ph/0108033.
[7] L.-A. Wu and D. A. Lidar, J. Math. Phys. 43, 4506 (2002).
[8] F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982).
[9] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[10] A. Stern, Ann. Phys. 323, 204 (2008).
[11] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502 (2016).
[12] T. D. Stanescu and S. Tewari, J. Phys. Condens. Matter 25,

233201 (2013).
[13] S. D. Sarma, M. Freedman, and C. Nayak, npj Quantum Inf. 1,

15001 (2015).
[14] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,

Phys. Rev. A 86, 032324 (2012).
[15] C. G. Brell, Phys. Rev. A 91, 042333 (2015).
[16] D. Litinski and F. von Oppen, Phys. Rev. B 97, 205404

(2018).
[17] T. H. Hansson, M. Sporre, and J. M. Leinaas, Mod. Phys. Lett.

A 6, 45 (1991).
[18] Z. N. C. Ha, Nucl. Phys. B 435, 604 (1995).
[19] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
[20] F. Calogero, J. Math. Phys. 10, 2197 (1969).
[21] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[22] B. S. Shastry, Phys. Rev. Lett. 60, 639 (1988).
[23] M. A. Olshanetsky and A. M. Perelomov, Phys. Rep. 94, 313

(1983).
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