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In this paper we present the approach for description of quantum control attack based on combined protocol
and hardware loopholes. It consolidates intercept-resend attack and detection node control (detector blinding
attack). In the basic version of B92 protocol detection control is not that crucial; however, when one scales the
number of states the state imposing plays a significant role. Protocols that operate with arbitrary even symmetric
linearly independent nonorthogonal (e.g., coherent) states are of interest. The cornerstone of the considered
approach is that we combine both state discrimination by eavesdropper and different methods of state imposing.
In principle, detection control allows one to exclude any bit correlations between legitimate users, which are
unknown to Eve, and can be considered as the necessary part of most intercept-resend attacks, including a faked-
state attack impossible without a hardware loophole. Moreover, the issue related to unified quantum description
of the intercept-resend attack was solved by combining the concepts of von Neumann’s measurement scheme
and ambiguity of square root extraction for operators. We also present a generalized countermeasure based
on additional parameter estimation analysis. As an example, with some numerical estimations we investigate
the attack on quantum key distribution systems based on utilization of symmetric coherent states and consider
appropriate countermeasures.
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I. INTRODUCTION

Quantum key distribution (QKD) systems [1–3] in the past
decades extend beyond the laboratory research and go straight
ahead to the market. Nevertheless a lot of vulnerabilities for
real QKD systems are not covered in the various research
in both theoretical and experimental areas. It is commonly
assumed that equipment is nonideal. Due to this fact some
attacks can be performed on real QKD systems, although
the most theoretical security proofs are based on the com-
mon assumption that the eavesdropper has no direct access
to receiving and transmitting equipment. However, in real
life implementations Eve can influence the hardware of a
legitimate user in some way and one needs to take this into
consideration. For instance, first steps towards an approach
for security evaluation and certification of a complete quan-
tum communication system have already been done; e.g., see
Ref. [4].

Moreover, estimation of some protocol attacks also re-
quires the consideration of hardware and its loopholes. In
particular, the class of intercept-resend attacks is of interest.
The majority focus their attention only on the problem of
the state discrimination [5–9] and often neglect or crucially
simplify the problem of further state imposing, though this
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problem should also be considered since incorrect imposing
may cause violation of conditional detection probability at the
Bob’s side. The papers cited above estimate the security of
the considered systems according to the preservation of Bob’s
estimated detection rate.

To do so it is assumed that after discrimination Eve just
increases the intensity of the pulse and sends it to Bob. This
method seems reasonable for the case of B92 protocol; thus it
provides the almost perfect (≈1) detection probability. How-
ever, when the number of states is increased, this way of state
imposing has some loopholes and can in principle be revealed
on the parameter estimation step using a technique from [10].
One of the possible solutions of this problem in the case is
detection control. A crucial advantage is that it allows one to
exclude any bit correlations between legitimate users, which
are unknown to Eve, and in principle preserve the detection
statistics. Thus it should be considered as the necessary part
of most intercept-resend attacks.

Possibility of detection control was considered in the
context of a faked-state attack [11–18]. Recently, a lot of
experimental demonstrations of the attack were proposed
for different QKD systems. Many researchers are trying
to find the appropriate hardware solution to prevent it.
Most of them are based on some modifications of single-
photon detectors (SPD). However, a universal experimental
countermeasure that allows one to overcome this attack is
still missing. One of the reliable ways to deal with Eve’s
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FIG. 1. Visual interpretation of considered quantum control at-
tack. The attack is based on the fact that Eve can use unitary
decomposition of her POVM operators, which allows her to perform
the feedforward operation and change the states in the channel after
her measurement. Here V x

BE denotes the unitary operation that mod-
ifies the states.

strategy yet is measurement-device-independent (MDI)
[19–24] or twin-field (TF) [25–30] QKD systems. However,
the most of commercial systems are utilizing a point-to-point
scheme; thus the possibility of detection control should be
included in security analysis.

In this paper we propose quantum control attack (Fig. 1),
which can be considered as the generalization of intercept-
resend attacks combined with control of Bob’s detection node.
The current work is dedicated to symmetric nonorthogonal
linearly independent states, so it is more convenient to com-
pare the proposed ideas with the latter cited paper. First of all
we generalize the approach towards increase of the number of
states and their variety compared to only two coherent states
that were considered in [8]. Also there was an issue related
to the unified quantum description of the channel considered
in the latter cited paper. Hence we further demonstrate the
explicit way of how the considered attack can be described
in terms of quantum operators.

The paper is organized as follows. Section II presents the
generalized optical scheme of the considered type of QKD
systems. In Sec. III we present the mathematical description
of the proposed attack. Section IV describes the conditions
for successful eavesdropping. Section V gives an explicit de-
scription of two possible realizations of the attack based on
different initial conditions and provides their comparison for
B92 protocol. In Sec. VI we consider the security issues re-
lated to the attack and possible countermeasures. Section VII
concludes the article.

II. OPTICAL SCHEME

We suppose that all further discussion will be made taking
into account the optical scheme as follows. We would like
to consider prepare-and-measure protocol that operates with
nonorthogonal linearly independent states. In particular we
aim for phase-coded weak coherent states and other states
with similar structure.

We assume that stated further is natural for a generic QKD
protocol. All the states have equal a priori probabilities p
and are equally distributed on the phase plane, e.g., states are
encoded with a set of phases φn = π

N n. Consequently, there
is even number (2N) of states that can be combined in N
pairs (bases) and states in each pair can be discriminated by
legitimate users. It should be noted that a proposed symmet-
ric set of states is necessary only for estimation purposes;

description of the attack further still holds for an arbitrary set
of nonorthogonal linearly independent states.

Alice prepares a state with a device (it can be the
well-known unbalanced Mach-Zehnder interferometer as in
[31–33], or any other interferometric schemes, for instance
[34–37], or even more complicated interferometric schemes)
that produce the state of the following form:

|ψ〉 = |ψ1〉R ⊗ |ψ2(φA)〉S, (1)

where R denotes reference mode, S denotes signal mode (it
could be any separate modes, for instance, time-bin, polar-
ization, frequency modes, etc.), and φA denotes phase that is
relative to the reference and encodes bit. It should be em-
phasized that we do not assume any kind of general phase
randomization of the state. We believe this kind of assumption
is rather strong and its experimental implementation is quite
challenging.

Then the state travels through the quantum channel into
Bob’s module where he operates an analogous device as Alice.
The output states are functions of phase difference φA − φB,
where the latter is Bob’s induced phase. The detection scheme
might contain either one or two detectors; it depends on the
particular kind of Bob’s device. For instance, in the case of
an unbalanced Mach-Zehnder interferometer there are two
detectors (phase differences φA − φB = 0 and φA − φB = π

produce detection events in different detectors), while in the
case of electro-optical phase modulators [34] there is only one
(phase difference φA − φB = 0 produces detection events in
the detector). Probability of detection events in either scheme
is proportional to

c|α|2[1 ± cos(φA − φB)]η, (2)

where c is a proportionality coefficient dependent on a par-
ticular optical scheme (for instance, it may be 2 for the
phase-modulator case or 1

2 for the Mach-Zehnder interferome-
ter case), where |α|2 is the mean photon number (power) of an
optical signal and η is the overall losses in the system. Despite
the different technological approach the main approach of the
considered optical schemes is basically the same.

III. DESCRIPTION OF THE ATTACK

The protocol of the attack can be described as follows.
Step 1. Let A,B, E be Hilbert spaces of Alice, Bob, and

Eve, respectively. Eve exchanges the channel with a lossless
channel and makes her initial states (ancillas) |ψ〉E interact
with the states prepared by Alice {|u1〉A, . . . , |u2N 〉A} using
nonlocal unitary operator UAE as follows:

|un〉A ⊗ |ψ〉E UAE−−→ |ũn〉B ⊗ |ψn〉E , (3)

where {|ũn〉B}n and {|ψn〉E}n are the spaces of altered states
in the quantum channel and Eve’s ancillas accordingly after
Eve implies the unitary nonlocal operation UAE and n =
1, 2, . . . , 2N . This step is closely related with the first step in
von Neumann measurement. In the general case the unitary
operation should entangle states with each other. However,
there always exists the moment when the states become un-
tangled as considered in Eq. (3). We investigate the case here;
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hence it seems to be optimal from Eve’s point of view when
any set of linearly independent states is used.

Step 2. Eve needs to construct the positive-operator valued
measure (POVM) with the family of positive semidefinite
operators {Mx

EB}x∈X (inconclusive result for x = 0 is also
included in the notation):

I =
∑

x

Mx
EB, Mx

EB = IB ⊗ Ax
E , (4)

where Mx
EB act on both Eve’s ancillas and states in the chan-

nel. Using the polar decomposition technique (also called the
unitary decomposition or quantum control) [38–41] of POVM
operators

Kx
BE = V x

BE
√

Mx
EB, (5)

where Kx
BE is the Kraus operator, V x

BE is the nonlocal unitary
operator, which allows one to alter the states after measure-
ment depending on its result, and index x = 0, 1, . . . , 2N
denotes the set of possible outcomes of implemented POVM.
Due to this uncertainty in choosing the nonlocal unitary op-
erator one is able to choose the required one. Thus Eve can
provide any possible configuration of the states after the mea-
surement or, in other words, renormalize the input conditions
in the quantum channel using the active feedback.

The measurement result depends on Eve’s states after the
first nonlocal unitary operation |ψn〉E and local measurement
operator

√
Ax
E as follows:

|ψnx〉E =
√

Ax
E |ψn〉E√
P (x|n)

, (6)

where P (x|n) denotes the conditional probability matrix
described as

P (x|n) = TrE
(
Ax
E |ψn〉E〈ψn|

)
. (7)

Step 3. According to the measurement result Eve alters
the states in the channel using an appropriate unitary operator
from polar decomposition of the POVM operator as follows:

|ũn〉B ⊗ |ψnx〉E
V x
BE−−→ |ũnx〉B ⊗ |ψ̃nx〉E . (8)

According to the overlapping preservation for unitary opera-
tion and conditions in Eq. (8) we assume that

B〈ũk|ũn〉BE〈ψkx′ |ψnx〉E = B〈ũkx′ |ũnx〉BE〈ψ̃kx′ |ψ̃nx〉E . (9)

All distinguished by Eve states should be altered in a
special manner using appropriate unitary transformation and
resent directly to Bob. To stay unrevealed Eve should not only
maintain both detection and error rates regarding the presence
of errors and inconclusive results at the Bob side (they al-
ways appear due to nonorthogonality of the states, losses in
the channel, and nonideal equipment), but also preserve the
conditional detection probability. This step can be considered
as the detection control.

IV. CONDITIONS FOR SUCCESSFUL EAVESDROPPING

We would like to recall that the successful eavesdropping
strategy should be based on the following conditions.

(1) Eve should obtain at least the same information as Bob
does; otherwise, Eve’s knowledge can be removed from the
key on privacy amplification.

(2) Eve should not be noticed by legitimate users.
Further we demonstrate that it is so (or at least can be so)

for the considered attack.

A. Information supremacy

The crucial moment in the QKD scenario is that we are
transmitting the classical information using quantum states.
Thus in the case of intercept-resend attacks consideration
of classical variables (key bits) looks reasonable. If a smart
intercept-resend attack (with proper discrimination of states
and their further imposing assuming detection control, for
instance) takes place, then Bob only receives bits that are
known to Eve. Moreover, there are no clicks at Bob’s side in
case of an inconclusive result at the eavesdropper. Therefore,
mutual information between classical variables of Alice and
Eve are always not less than between Alice and Bob. For the
simplicity let us consider the tripartite probability distribution
between random variables A, E , B, which relates to Alice,
Eve, Bob values of bits after measurement, respectively. Ac-
cording to the concept of wire-tap channel [42–44] random
variables A, E , B are said to form a Markov chain in that order
A → E → B.

Thus according to the fact that the considered quantum
channel can be presented as the Markov chain of classical
variables we can use the well-known data-processing inequal-
ity and claim that

I (A; E ) � I (A; B). (10)

There I (X ;Y ) = H (X ) − H (X |Y ) is mutual information.
Thus the first condition is naturally satisfied.

B. Statistics preservation

The second important condition for successful attack is that
Eve must not be disclosed by legitimate users. It is well known
that in the case of linearly dependent states Eve can be easily
revealed by simply monitoring the error rate. The main reason
for that is the fundamental impossibility to provide discrim-
ination of linearly dependent states without errors. However,
for the case of linearly independent states Eve, for instance,
can provide unambiguous state discrimination (USD) mea-
surement [45–48] and identify states without errors, but with
only inconclusive results.

In general in order to satisfy the second condition Eve
should adjust her attack so that Bob’s detection rate should
remain almost the same, i.e., losses in the original channel
should be balanced with the probability of inconclusive results
and error rates should not be higher than before interception
(as generalization of [8]):∑

b
=0

P (b|a) �
∑
b
=0

P̃E (b|a), (11)

∑
b
=a,0

P (b|a) �
∑

b
=a,0

P̃E (b|a), (12)

P̃E (b|a) =
∑

e

PE (b|e)PE (e|a), (13)
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where P (b|a) is Bob’s expected (without Eve’s interception)
conditional detection probability (thus b is only conclusive
results), P̃E (b|a) is Bob’s actual (in case of attack) conditional
detection probability, where PE (e|a) is Eve’s conditional
discrimination probability, and PE (b|e) is Bob’s conditional
detection probability in case of discriminated states imposing.
As a consequence of Eqs. (11) and (12) one may derive an
additional inequality as follows:

P (a|a) � P̃E (a|a). (14)

V. EXAMPLE

Further we consider USD-like and faked-state attacks for
the following reasons. As stated earlier Bob’s overall condi-
tional detection probability in the case of the attack P̃E (b|a)
consists of the following two terms: PE (e|a) that is deter-
mined by chosen discrimination POVM and PE (b|e) that
is defined by the method of a discriminated state imposing
to Bob. In the case of a USD-like attack construction of
appropriate discrimination POVM (the former term) is the
most crucial part, while the exact method of imposing and its
precision have secondary priority. Otherwise, in faked-state
attack POVM is trivial (simple guess) and the most peculiar
task is to adjust detection probabilities (the latter term) as
precisely as possible. We would like to emphasize that we
highlight each term separately in following subsections in
order to consider their individual peculiarities in more details,
despite the fact that Eve should pay maximal attention to both
terms simultaneously in order to perform an ideal attack.

A. USD-like attack

In [8] a simple case was considered when Eve performs
USD POVM. It was shown that Eve can be revealed if we
satisfy the condition [that is opposite of Eq. (14)]

P (b|a) � PU δab, (15)

where PE (e|a) ≡ PU δea, PU is probability of USD, δi j is
Kronecker symbol, and PE (b|e) ≡ δbe in the worst case sce-
nario that can be achieved by detector control (for more
details, see Sec. V B) or increase of mean photon number in
the pulse. Although for USD attack∑

b
=a,0

∑
e

PE (b|e)PE (e|a) ≡
∑

b
=a,0

PU δab = 0 (16)

and Bob’s initial error rate is always nonzero; hence one
should take into account small perturbation of USD POVM
in order to maintain error rate. It also should provide higher
discrimination rate. Thus Eve has more freedom of choice in
satisfaction of a condition in Eq. (11) and it should be taken
into account in security estimation.

1. Eve’s POVM construction

Let us consider 2N states |ψn〉E that Eve should discrim-
inate; further we neglect the index due to simplicity and
the fact that we will consider only related to Eve Hilbert
space. Also we would like to recall that the case of sym-
metrical states, i.e., with equal a priori probabilities pn =
p = 1

2N , equal phase-coding distribution φn = π
N n, and, as a

consequence, equal discrimination probabilities Pn = P , is
considered. Let us introduce the POVM Ân:

Ân = P|ϕn〉〈ϕn|, (17)

where

|ϕn〉 = (1 − w)|ψ⊥
n 〉 + w|ψn〉√
C

, (18)

C = (1 − w)2ν + w(2 − w), (19)

|ψ⊥
n 〉 (non-normalized state; hence 〈ψ⊥

n |ψ⊥
n 〉 = ν, taking into

account the symmetrical case) is the state chosen to form a
biorthogonal basis with signal states |ψn〉, i.e., 〈ψ⊥

n |ψm〉 =
δnm, and w is a parameter that adjusts the error rate of POVM
(for w = 0 it is USD POVM with no errors). Each operator
Âm for m � 1 is related to identification of the signal state
|ψm〉 when state |ψn〉 was sent; the appropriate conditional
probabilities may be expressed as follows (also recalling that
imposing probability is the Kronecker delta):

P̃E (m|n) = PE (m|n) = 〈ψn|Âm|ψn〉

= P
(

(1 − w2)δnm

C
+ w2|〈ψn|ψm〉|2

C

)
, (20)

where δnm is the Kronecker symbol. Operator Â0 related to the
inconclusive result is denoted by the identity decomposition
property:

Â0 = Î −
2N∑

n=1

Ân. (21)

Eve’s POVM should be constructed in a way that probability
of an inconclusive result will be as low as possible. The op-
timization problem is to maximize P taking into account that
Â0 should remain positive semidefinite. Hence P is limited by
condition

det

(
Î − P

2N∑
n=1

|ϕn〉〈ϕn|
)

= 0, (22)

as it was introduced in [48] for USD POVM. The problem
may be satisfied if P is equal to the reciprocal maximal
eigenvalue of

2N∑
n=1

|ϕn〉〈ϕn|. (23)

One may solve the spectral problem for any Gram operator as
follows:

2N∑
n=1

|ϕn〉〈ϕn|θk〉 = λk|θk〉, (24)

λk =
2N∑

n=1

ei πk
N n〈ϕ2N |ϕn〉, (25)

|θk〉 = 1√
2Nλk

2N∑
n=1

ei πk
N n|ϕn〉, (26)

022603-4



QUANTUM CONTROL ATTACK: TOWARDS JOINT … PHYSICAL REVIEW A 104, 022603 (2021)

λk is the eigenvalue, and |θk〉 is the eigenvector. Hence

1

P = max
k

2N∑
n=1

ei πk
N n〈ϕ2N |ϕn〉

= (1 − w)2

C
max

k

2N∑
n=1

ei πk
N n〈ψ⊥

2N |ψ⊥
n 〉

+ w2

C
max

k

2N∑
n=1

ei πk
N n〈ψ2N |ψn〉 + 2w(1 − w)

C
. (27)

One may utilize property that is shown in Appendix A in
order to make the following replacement:

max
k

2N∑
n=1

ei πk
N n〈ψ⊥

2N |ψ⊥
n 〉 =

(
min

k

2N∑
n=1

ei πk
N n〈ψ2N |ψn〉

)−1

.

(28)

Thus the conditional probability may be expressed as follows:

P̃E (m|n) = (1 − w2)δnm + w2|〈ψn|ψm〉|2
(1−w)2

mink (μk ) + w2 maxk (μk ) + 2w(1 − w)
, (29)

where

μk =
2N∑

n=1

ei πk
N n〈ψ2N |ψn〉. (30)

2. Detection rate estimation for coherent states

The latter is a general expression; however, for numerical
estimations it is convenient to consider the states as coherent
[here we do not consider a reference state as in Eq. (1) because
it does not contain any phase-coded information]:

|ψn〉 ≡ |α eiφn〉, (31)

where α is the absolute value of the coherent state amplitude
and the exponential term adds phase shift φn = π

N n. Then
considering the numerical estimation shown in Appendix B
[for the overlap of the states in Eq. (B2), for maxk (μk ) in
Eq. (B8), and for mink (μk ) in Eq. (B9)] one may derive an
expression for conditional probabilities as follows:

P̃E (m|n)

= (1 − w2)δnm + w2e−2|α|2[1−cos(φn−φm )]

(1−w)2(2N−1)!
2N (|α|2 )2N−1 + w22N

(
1 − |α|2 + |α|4

2

)
+ 2w(1 − w)

.

(32)

One may consider separate terms such as correct dis-
crimination probability P̃E (n|n) and error probability∑

m 
=n,0 P̃E (m|n). Then quantum bit error rate (QBER) is as
follows (keeping in mind the symmetrical case):

QE = QE (m) =
∑

m 
=n,0 P̃E (m|n)∑
m 
=0 P̃E (m|n)

. (33)

In order to fulfill Eq. (12) value of parameter w = w0 should
be found with the following requirement:

QE = Q, (34)

FIG. 2. Relative difference � of detection rate with introduced
error

∑
m 
=0 PE (m|n) compared to unambiguous state discrimina-

tion probability PU (no errors) dependent on expected quantum
bit error rate Q for different number of signal states defined by
2N . Simulations were performed for symmetric coherent states with
phase-coding, mean-photon number |α|2 = 0.1.

where Q is Bob’s initial QBER (without interception). We uti-
lize QBER since legitimate users estimate errors by the QBER
value. Results of numerical simulation show that, surprisingly,
the relative difference of

∑
m 
=0 PE (m|n) compared to PU ,

� =
∑

m 
=0 P̃E (m|n)|w=w0 − PU

PU
, (35)

does not increase a lot (no more than one order), as it is shown
in Fig. 2. Such small increase of detection rate indicates that
countermeasures against USD attack (e.g., including [8]) are
in general as valid as countermeasures against the presented
quantum control attack (considering appropriate adjustment
of parameters).

At the end of the day in the case of a described modified
USD attack Eq. (11) can be expressed as follows [considering
substitution of Eq. (12) with Eq. (34)]:

c|α|2ηLηBηD �
∑
m 
=0

P̃E (m|n)|w=w0 , (36)

where ηL is attenuation coefficient due to losses in the chan-
nel, ηB is attenuation coefficient due to losses at Bob’s side,
and ηD is detection efficiency. Consideration of the latter
inequality as equation can be used in order to find maximal
allowed ηL. Since there is ambiguity related to c we show in
Fig. 3 difference �ηL max between maximal allowed ηL in the
case of simple USD and proposed modified USD that takes
into account errors; this value is independent of c. It can be
seen in the region with relevant Q � 10% that the typical
difference is less than 2 dB; that is not much but still should
be taken into account, especially for QKD systems that work
in channels with close to maximal allowed losses.
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FIG. 3. Difference �ηL max between maximal allowed ηL in the
case of simple USD and proposed modified USD that takes into
account errors dependent on expected quantum bit error rate Q for
different number of signal states defined by 2N . Simulations were
performed for symmetric coherent states with phase-coding, mean-
photon number |α|2 = 0.1 and ηBηD = 0.05.

B. Faked-state attack

Another possible attack, which can be described with the
formalism of quantum control, is the well-known faked-state
attack. This attack utilizes the hardware loophole caused by
the possibility of detection control. The protocol of the attack
is as follows.

(1) Eve changes the quantum channel by a lossless one.
(2) Eve blocks and then guesses the state arrived from

Alice.
(3) Eve prepares states with guessed phase and chosen |α|2

in order to blind Bob’s detector. Phase difference equal to zero
always produces a detection event, phase difference equal to
π never produces a detection event, and it depends for other
phase differences [18].

Eve guesses states then PE (e|a) = 1
2N . Let us consider sev-

eral possible outcomes for PE (b|e) depending on particular
parameters of the detector blinding, i.e., dependence of the
detection event on incident optical power. In some cases con-
sidered dependence is step-function-like with rapid growth of
detection event probability from 0 to almost 1 at some point
(for example, see Fig. 3 in [18]). The location of the step point
determines P̃E (b|a) to be between 1

2N and 2N−1
2N ; we should

emphasize that conditional probability in this case does not
depend on phase difference. However, in the case of smooth
behavior of dependence of the detection event on incident
optical power there might be dependence of P̃E (b|a) on phase
difference. In the case of four state it is always possible to
justify blinding parameters in order to preserve all conditional
probabilities. For a higher amount of utilized states it depends
on how close behavior of dependence of the detection event
on incident optical power is to harmoniclike (phase-difference
dependence); for demonstration see Fig. 4. In the particular
case the dependence is rather close to the desired one, and
Eve can attempt to stay unrevealed since the conditional prob-
ability is similar to ideal. At this point it mostly depends on

FIG. 4. Dependence of detection event probability on trigger
pulse energy. Dotted line represents actual experimental data from
[18] for 35 nW blinding power as an example that demonstrates
typical shape of the curve. Solid gray line is the desired shape of
detector response that can mimic detection probability dependent on
phase difference in the interferometric scheme.

how big Bob’s statistical data sample is (see further Sec. VI A
for more details on statistical analysis). However, there might
be a case when detection parameters are unable to achieve
distribution close to a desired one. Nevertheless, we would
like to emphasize that it is required to perform experimental
measurements in the case of any particular detector in order
to estimate precise dependence of detection events on incident
optical power.

C. Implementation to B92 protocol

Let us consider a rather simple example of B92 protocol
for explicit demonstration of proposed methods. We should
start from Eqs. (11) and (12) and define P (b|a) on one of the
detectors (for the second detector in the expression one should
change sign) as follows (or something similar depending on
particular implementation; however, the following expression
represents the most common features):

P (b|a) = c|α|2[1 − cos(πδba)]ηLηBηD. (37)

Here we neglect dark counts (and similar source of errors)
in order to simplify the example. For the left-hand side of
Eq. (11) we have several cases as follows.

1. Unambiguous state discrimination

We assume that Eve can make PE (b|e) = δbe either by de-
tection control or by amplification of resent pulses (and further
we will notice that if Eve controls detector intercept-resend
kind of attack is not optimal). Also PE (e|a) = PU δea =
2|α|2δea as it is stated at the end of Appendix B. If∑

b
=0

c|α|2[1 − cos(πδba)]ηLηBηD �
∑
b
=0

2|α|2δba (38)

is satisfied then legitimate users can in principle detect USD
attack. Even without losses (ηL = 1) the latter expression
barely can be satisfied (ηBηD � 1

c ) for the realistic system’s
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parameters. Thus sufficient reduction of PU should be intro-
duced, e.g., by increasing the number of states.

2. Faked-state attack

As it is stated earlier Eve guesses states and PE (e|a) = 1
2 .

The most crucial task for Eve is to adjust imposing of states.
First of all, she blinds the detector, e.g., by some background
light at different parts of the spectrum, in order to avoid
interference with resent signals. If we assume that the detector
has the same characteristics as in [18], then the necessary
power level could be 35 nW and further discussion can be
paired with Fig. 4. She needs to prepare states in such a way
that in case of phase mismatch with Bob his detector never
produces a detection event, e.g., it has energy equivalent to
1.5 × 10−14J . Then she has two extreme options. In the first
case she prepares the state that has resulted energy for phase
match with Bob slightly higher than 1.5 × 10−14J , where
detection event probability is numerically equal to P (b|a) in
Eq. (37). In the second case she prepares the state that has
resulted energy around 2.2 × 10−14J with guaranteed detec-
tion event. And then she triggers background light power from
where there is no detection event for chosen energy values at
all to appropriate 35 nW with probability that in total restores
P (b|a). Also she always can adjust her imposing as something
in between these two extreme cases.

VI. SECURITY ESTIMATION AND ALTERNATIVE
COUNTERMEASURES

A. Security issues

In this section we would like to consider the approach of
how one may estimate influence of the attack on security crite-
rion. Then the expanded condition of form (6) in [8] should be
examined, i.e., upper bound of the amount of detection events
in case of interception should be lower than lower bound of
the amount of initial detection events, in order to reveal the
attack. The latter conditions in general are as follows:

n0

∑
b
=0

P̃E (b|a) + z
√

σ E < n0

∑
b
=0

P (b|a) − z
√

σ , (39)

σ E = n0

∑
b
=0

P̃E (b|a)

(
1 −

∑
b
=0

P̃E (b|a)

)
, (40)

σ = n0

∑
b
=0

P (b|a)

(
1 −

∑
b
=0

P (b|a)

)
, (41)

where n0 is the number of sent states and z is the arbitrary
number of standard deviations σ and σ E within the confi-
dence interval according to the so-called “three-sigma rule.”
It should be noted that one may count not all detection events;
similar inequalities may be constructed for particular phase
choices in order to consider detection statistics in more de-
tails. Also one may apply any other statistical estimations
like Chebyshev’s inequality or Chernov bound. It allows us
to take into consideration statistical properties of the finite set
of observables. Legitimate users should adjust their system
that the latter inequality is satisfied with very high probability.
However, there is always a small chance of successful attack

and its probability εQC can be determined by

εQC = 1 − erf

(
z0√

2

)
(42)

for z0 that satisfies

z0 = n0
∑

b
=0[P (b|a) − P̃E (b|a)]√
σ E + √

σ
. (43)

It should be mentioned that Eve may intercept not all pulses
but only part pint of them. In this case one should estimate at
which point pint is significant and allows one to obtain more
information compared to other strategies (collective attack, for
instance). Taking into account the latter, Eq. (43) can then be
expressed as follows:

z0 = n0 pint
∑

b
=0[P (b|a) − P̃E (b|a)]√
σ E + √

σ
, (44)

with

σ E = n0

(
(1 − pint )

∑
b
=0

P (b|a) + pint

∑
b
=0

P̃E (b|a)

)

×
[

1 −
(

(1 − pint )
∑
b
=0

P (b|a) + pint

∑
b
=0

P̃E (b|a)

)]
.

(45)

Decent addition to the decrease of
∑

b
=0 P̃E (b|a) can be
utilization of the monitoring diode as in [18]. Estimation of
failure probability of monitoring diode εDF can be combined
with probability εQC in unified probability of the proposed
attack success as follows:

εattack = εQCεDF. (46)

B. Alternative countermeasures

Here we would like to briefly discuss alternative ap-
proaches that can be implemented by legitimate users. They
are either based on decreasing

∑
b
=0 P̃E (b|a) [mostly by de-

crease of discrimination probability considering PE (e|a); for
instance, by increase of the number of states] or obtaining
more information about imposed by Eve states.

The former type of countermeasures can be done by
utilization of uninformative states which provides better per-
formance of QKD phase-coding protocols in the presence of
quantum control attack; these additional states do not contain
any information about key and are implemented only to reveal
Eve’s interception as it is shown in [7,8]. This method does
not decrease detection rates (compare to 1

N for considered
method); however, it requires preparation of rather compli-
cated quantum states as in [8]. Also it should be noted that
combination of uninformative states utilization and increase
of the number of informative states may not in general provide
overall decrease of

∑
b
=0 P̃E (b|a) as it shown in [49].

Another type of countermeasure is obtaining more infor-
mation about states rather than the detection rate and its
direct estimation related to them. One of the possible solu-
tions is presented in [10,50,51], where coincidence detection
events are monitored. This countermeasure is natural for the
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FIG. 5. Dependencies of detection rate with introduced error∑
m 
=0 PE (m|n) from mean photon number for different types of state

imposing. Solid line corresponds to the case that PE (b|e) = 2N−1
2N .

Dotted line corresponds to the case that PE (b|e) has harmoniclike
(phase-difference dependence) behavior. Dashed line corresponds to
the case that PE (b|e) = 1

2N .

schemes containing two detectors at Bob’s side (such as
generic QKD protocol for a set of coherent states). Also an-
other way of detector control prevention is based on utilization
of a variable optical attenuator [52–54]. One more approach
to reveal Eve is based on additional detection information
from photon-number-resolving (PNR) detectors which allow
one to monitor the statistics of states with increased power
(e.g., a similar approach can be seen in [55]). Alternative
detection schemes are compatible with methods of decreasing∑

b
=0 P̃E (b|a), although they may change relations (15) or
(36), and (39) to more tight ones (based on additional detec-
tion information). However, a huge variety of different types
of peculiar detection schemes requires individual analysis.

VII. RESULTS AND DISCUSSION

In this paper we present the approach for description of
a quantum control attack based on combined protocol and
hardware loopholes; it consolidates intercept-resend attack
and detection node control. Protocols that operate with ar-
bitrary even symmetric linearly independent nonorthogonal
(e.g., coherent) states are of interest. Most intercept-resend
attacks are well studied and focus their attention only on
the problem of the state discrimination and mostly neglect
the problem of further state imposing, though this problem
should also be considered since incorrect imposing may cause
violation of conditional detection probability at Bob’s side.
One of the possible solutions in the case is detection control.
A crucial advantage is that it allows one to exclude any bit
correlations between legitimate users, which are unknown to
Eve. Thus it should be considered as the necessary part of
most intercept-resend attacks, including the faked-state attack
impossible without a hardware loophole. Figure 5 clearly
illustrates the dependencies of the detection rate with intro-
duced error

∑
m 
=0 PE (m|n) from different types of detection

control.

Thus the impact of the attack depends on both state dis-
crimination and correct state imposing. Moreover, the issue
related to unified quantum description (i.e., in terms of Kraus
operators) of the intercept-resend attack was solved by combi-
nation of von Neumann’s measurement scheme and ambiguity
of square root extraction for operators. The cornerstone of
the approach is the space extension provided by introduction
of Eve’s ancillas; then it allows one to satisfy unitarity
conditions.

As an example, we consider two different realizations of
quantum control attack on the QKD system that operate with
symmetric coherent states. In the case of USD-like attack
construction of appropriate discrimination POVM is the most
crucial part, while the method of imposing and its preci-
sion have secondary priority. Otherwise, in faked-state attack
POVM is trivial (simple guess) and the most peculiar task is to
adjust detection probabilities as precisely as possible. Special-
ized POVM construction chosen by Eve and detection node
control are considered. We provide the expressions of condi-
tional discrimination probability dependent on the number of
utilized states and their mean photon number, detection, and
error rate are expressed in terms of conditional probabilities.

Therefore, we consider the opposite conditions when Eve
cannot preserve detection statistics and introduce appropriate
countermeasures based on the analysis of conditional detec-
tion probability. From the practical point of view the optimal
solution is the increase of the number of signal states (al-
though alternative countermeasures are discussed). Numerical
simulations show that in general approach for countermea-
sures shown in [8] is valid (i.e., decrease Eve’s discrimination
probability). Besides, security issues are considered and prob-
ability of successful attack (even in the case of appropriate
countermeasures) is estimated.

ACKNOWLEDGMENTS

The work of A.K. and A.G. was supported by the
Russian Science Foundation under Grant No. 20-71-100726
and performed in Steklov Mathematical Institute of Russian
Academy of Sciences. The authors are very grateful to V.
Chistyakov for provided experimental data from [18].

Sections II, III, V, and VI of the article were written by
A.K. and A.G. and Sec. IV by G.M.

APPENDIX A: NOTE ON EIGENVALUES
OF GRAM OPERATOR

The problem considered in Sec. V A 1 is closely related to
the following useful property of Gram operator. It is known
that eigenvalues of Gram operator are the same as eigenvalues
of Gram matrix (or overlap matrix) �nm = 〈ψn|ψm〉. Further
in this Appendix we would like to share our observation about
the relation between �nm and �⊥

nm = 〈ψ⊥
n |ψ⊥

m 〉 (where |ψ⊥
n 〉

is the state chosen to form a biorthogonal basis with signal
states |ψn〉, i.e., 〈ψ⊥

n |ψm〉 = δnm) that was first shown in [49]
without proof and later proven independently in [56]. Further
we would like to provide easier and more explicit proof com-
pared to the latter citation.

Let us introduce orthonormal basis |un〉, i.e., 〈un|um〉 =
δnm, constructed from nonorthogonal states by, for instance,

022603-8



QUANTUM CONTROL ATTACK: TOWARDS JOINT … PHYSICAL REVIEW A 104, 022603 (2021)

the Gram-Schmidt process:

|un〉 =
∑

m

cmn|ψm〉, 〈un| =
∑

m

〈ψm|c∗
mn, (A1)

where (·)∗ denotes complex conjugation and cmn is the cor-
responding element of matrix C described, for instance, by
the Gram-Schmidt process. Now redefine signal states in the
orthonormal basis as follows:

|ψn〉 =
∑

m

dmn|um〉, 〈ψn| =
∑

m

〈um|d∗
mn, (A2)

where dmn is the element of matrix D = C−1. Also let us
express |ψ⊥

n 〉 in the same way:

|ψ⊥
n 〉 =

∑
m

bmn|um〉, 〈ψ⊥
n | =

∑
m

〈um|b∗
mn, (A3)

where bmn is the element of unknown matrix B. One may find
B from the condition of biorthogonality 〈ψ⊥

n |ψm〉 = δnm:∑
k

〈uk|b∗
kn

∑
l

dlm|ul〉 =
∑

k

b∗
kndkm = δnm, (A4)

B†D = B†C−1 = I, B = C†, (A5)

where (·)† denotes Hermitian conjugation. Thus Gram matri-
ces are

�nm =
∑

k

〈uk|d∗
kn

∑
l

dlm|ul〉 = (CC†)−1
nm (A6)

and

�⊥
nm =

∑
k

〈uk|cnk

∑
l

c∗
ml |ul〉 = (CC†)nm. (A7)

Therefore, �⊥
nm = �−1

nm and their eigenvalues are reciprocal to
each other.

APPENDIX B: NUMERICAL ESTIMATIONS OF GRAM
OPERATOR EIGENVALUES

Within this Appendix we may consider signal states as
phase-coded coherent states using the following notation:

|ψn〉 ≡ |α eiφn〉, (B1)

where |α〉 is the initial coherent state with amplitude α and
exponential term adds phase shift φn = π

N n. The expression
for overlap of signal coherent states is as follows:

〈ψn|ψm〉 = e−|α|2(1−e−i(φn−φm ) ). (B2)

Hence

μk =
2N∑

n=1

ei πk
N ne−|α|2(1−ei π

N n). (B3)

From the point of view of numerical calculations eigenvalues
can be easily calculated according to the latter expression.
However, from the analytical point of view this expression is
rather ambiguous since it has nontrivial dependence on |α|2
and N . Thus the idea is to express the latter equation using
Jacobi-Anger expansion and then leave only the highest terms
of the sum implying small mean photon number |α|2 in the

signal:

μk =
2N∑
j=1

ei πk
N je−|α|2(1−ei π

N j )

= e−|α|2
∞∑

n,m=−∞
In(|α|2)Jm(|α|2)

2N∑
j=1

eiπ( k+n+m
N ) j, (B4)

where Jm(|α|2) is a Bessel function of the first kind and
In(|α|2) is a modified Bessel function of the first kind. There-
fore, finite sum of exponential functions has the following
solution:

2N∑
j=1

eiπ( k+n+m
N ) j = eiπ( k+n+m

N ) 1 − ei2πN( k+n+m
N )

1 − eiπ( k+n+m
N )

. (B5)

Argument of exponential function in the numerator of the
right-hand side is proportional to i2π with any value of k, n,
and m; hence the numerator always equals zero. However, for
certain values of k, n, m, and N argument of the exponential
function in the denominator is also proportional to i2π , more
precisely when k + n + m = 2Nz for arbitrary integer z. Thus
there is uncertainty with the well-known solution:

lim
k+n+m→2Nz

1 − ei2π (k+n+m)

1 − eiπ( k+n+m
N )

→ 2N. (B6)

Finally, we obtain the following expression for eigenvalues:

μk = e−|α|2
∞∑

n,m=−∞
In(|α|2)Jm(|α|2)(2Nδ(m+n+k,2Nz) ). (B7)

One may use the following property of Bessel functions:
Jn(x) � Jn+1(x) and In(x) � In+1(x) for x < 1. Then maxi-
mal eigenvalue is denoted by z = m = n = k = 0 and it is as
follows assuming |α|2 small:

max
k

(μk ) ≈ 2N e−|α|2 I0(|α|2)J0(|α|2)

≈ 2N
(

1 − |α|2 + |α|4
2

)
. (B8)

The main contribution to the minimal eigenvalue is for
z = 1; hence the minimal value of μk is for k = 1 and m +
n = 2N − 1. Then we leave only the largest terms of minimal
eigenvalue μk as the following approximation:

min
k

(μk ) ≈
2N−1∑
q=0

2N

q!(2N − 1 − q)!

( |α|2
2

)2N−1

≈ 2N

(2N − 1)!
(|α|2)2N−1. (B9)

Also it should be noted that, in the case of USD, PU =
mink (μk ).
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