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Random density matrices: Analytical results for mean root fidelity
and the mean-square Bures distance
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The Bures distance holds a special place among various distance measures due to its several distinguishing
features and has applications in diverse problems in quantum information theory. It is related to fidelity, and
among other things, it serves as a bona fide measure for quantifying the separability of quantum states. In this
work, we calculate exact analytical results for the mean root fidelity and mean-square Bures distance between a
fixed density matrix and a random density matrix and also between two random density matrices. In the course
of derivation, we also obtain the spectral density for the product of the above pairs of density matrices. We
corroborate our analytical results using Monte Carlo simulations. Moreover, we compare these results with the
mean-square Bures distance between reduced density matrices generated using coupled kicked tops and find
very good agreement.
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I. INTRODUCTION

Various distance measures between quantum states play a
crucial role in quantum information theory and have appli-
cations in diverse problems, such as quantum communication
protocols, quantification of quantum correlations, quantum al-
gorithms in machine learning, and quantum-state tomography
[1–18]. Roughly speaking, distance measures quantify the de-
gree of closeness of two given quantum states. Some examples
of prominent distance measures are the trace distance, Hilbert-
Schmidt distance, Bures distance, and Hellinger distance.
Among these, the Bures distance holds a special place due to
its several notable features. For instance, it is Riemannian and
also a monotone. The latter feature signifies that it does not
grow under an arbitrary completely positive trace-preserving
quantum operation. Due to this monotonicity, among other
things, the Bures distance serves as a bona fide measure of
distinguishability between two quantum states [18–20]. The
Bures distance was introduced by Bures during his investi-
gations pertaining to the infinite products of von Neumann
algebras [21]. It was further studied by Uhlmann in his works
related to the transition probability of states [22,23].

Given two quantum states represented by the respective
density matrices ρ1 and ρ2, the Bures distance is defined by
[2,3,21,22]

dB(ρ1, ρ2) =
√

2 − 2
√
F (ρ1, ρ2), (1)

where

F (ρ1, ρ2) =
(

tr
√√

ρ1ρ2
√

ρ1

)2

(2)

is the fidelity [21–24], with tr representing the trace. Although
not obvious from the above definition, the Bures distance, like
any other distance measure, is symmetric in its argument, i.e.,
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dB(ρ1, ρ2) = dB(ρ2, ρ1). It assumes values from the interval
[0,

√
2]. The minimum value of zero is obtained when the two

states coincide, and the maximum value of
√

2 is achieved
when the two states are supported on orthogonal subspaces.

In the course of investigation of properties exhibited by
certain quantum states under consideration, it is quite often
desirable to have some reference states for comparison. In
this regard, random states constitute a natural choice and
provide the most typical or generic characteristic [25–30].
They can be associated with quantum states affected by
noise. Furthermore, they relate to quantum chaotic systems in
which one examines states whose classical analogs are chaotic
[25,31,32]. Considering finite-dimensional Hilbert spaces, as
far as pure states are concerned, there is a natural measure
associated with them, viz., the Haar measure on the unitary
group. However, for mixed states, there is no such unique
measure [25–28]. One extremely popular and useful prob-
ability measure is the so-called Hilbert-Schmidt measure.
This probability measure on the set of finite-dimensional
mixed states is realized via the operation of a partial trace
on a bipartite system [26,27], as is described in Sec. II. The
Hilbert-Schmidt probability measure is also induced by the
Hilbert-Schmidt distance [26,27]. Due to its fundamental im-
portance, investigation of these Hilbert-Schmidt distributed
random density matrices has remained a very active area of
research, and many important results related to their various
aspects have been worked out [27–30,33–44]. An example
is the celebrated Page formula which gives the average von
Neumann entropy associated with a bipartite system [35].
For distance measures, there has also been some notewor-
thy progress in the context of random density matrices [20,
45–52]; however, much remains to be explored.

In a recent work [51], one of the present authors considered
the Hilbert-Schmidt distance dHS(ρ1, ρ2) =

√
tr(ρ1 − ρ2)2

and derived exact analytical expressions for its mean square
between a fixed density matrix and a random density ma-
trix and also between two random density matrices. These
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results serve as useful references for comparing the Hilbert-
Schmidt distance between quantum states and are relevant
in applications such as the construction of entanglement wit-
ness operators [13,14], variational hybrid quantum-classical
algorithms in machine learning [7,15–17], precision quantum-
state tomography [4–6], etc. Unfortunately, as far as the
distinguishability criterion is concerned, the Hilbert-Schmidt
distance has its limitations since it is not a monotone
[1–3,53,54]. In the present work, using random-matrix-theory
(RMT) techniques, we calculate exact analytical results for the
mean-square Bures distance,〈

d2
B(ρ1, ρ2)

〉 ≡ D2
B(ρ1, ρ2) = 2 − 2〈

√
F (ρ1, ρ2) 〉, (3)

where the averaging 〈·〉 is with respect to the probability
measure followed by the random density matrices involved.
Similar to Ref. [51], we consider the above quantity for a fixed
density matrix and a random density matrix and also for two
random density matrices. For the former case, the Laplace
transform approach helps us to reformulate the problem in
terms of the semicorrelated Wishart random matrix. On the
other hand, for the latter, it allows us to establish the connec-
tion with the statistics of the product of two Wishart-Laguerre
random matrices. In the course of the derivation, we also
calculate the spectral density of the product of a fixed density
matrix and a random density matrix and also of two random
density matrices.

The rest of this paper is organized as follows. In Sec. II
we derive exact results for the mean root fidelity and mean-
square Bures distance between the pairs of density matrices as
described above. These results are corroborated using Monte
Carlo simulations. In Sec. III we compare our analytical re-
sults for the mean-square Bures distance with those computed
from coupled-kicked-top systems. Section IV is devoted to
a summary and outlook. Details of some of the calculations
appear in the Appendixes.

II. MEAN ROOT FIDELITY AND MEAN-SQUARE BURES
DISTANCE FOR RANDOM DENSITY MATRICES

Consider a random bipartite pure state |ψ〉 taken from
an nm-dimensional Hilbert space Hn ⊗ Hm, where Hn and
Hm are the n- and m-dimensional Hilbert spaces associated
with the constituent systems. Without loss of generality, we
take n � m and consider the random reduced state ρ induced
by the operation of partial tracing over the m-dimensional
constituent, viz.,

ρ = trm(|ψ〉〈ψ |)
〈ψ |ψ〉 . (4)

This n-dimensional reduced density matrix ρ is distributed
according to the Hilbert-Schmidt probability measure with
the corresponding probability density function (PDF) given
by [27]

P (ρ) = C(det ρ)m−n δ(trρ − 1)�(ρ). (5)

Here, the notation det(·) stands for determinant, and tr(·) is
the trace, as already indicated earlier. The Dirac delta func-
tion δ(·) in the above equation constrains the density matrix
ρ to have unit trace, and the Heaviside theta function �(·)

enforces the positive-semidefiniteness condition. The normal-
ization factor is given by

C = �(nm)
(
πn(n−1)/2

n∏
j=1

�(m − j + 1)
)−1

. (6)

As per the random-matrix theory, the above reduced density
matrix belongs to the fixed-trace Wishart-Laguerre ensemble
and has the construction [27,28]

ρ = W

trW
, (7)

where W is a matrix taken from the (unconstrained) Wishart-
Laguerre ensemble with PDF

P(W ) = [�(nm)]−1C (det W )m−ne−trW �(W ). (8)

It should be noted that the PDF of ρ, as in Eq. (5), can be
obtained using that of W as

P (ρ) =
∫

d[W ]P(W ) δ

(
ρ − W

trW

)
, (9)

where the flat measure d[W ] is defined in terms
of the matrix elements of W as d[W ] =∏i dWii ·∏

j<k d Re(Wjk ) d Im(Wjk ). As can be seen, the above
equation essentially normalizes the Wishart-Laguerre random
matrix W to have unit trace and thereby gives the distribution
of the random density matrix ρ.

In the following, we evaluate the mean root fidelity and
hence the mean-square Bures distance between (i) a fixed
density matrix σ and a random density matrix ρ and (ii)
two independent random density matrices ρ1 and ρ2 which,
in general, may differ in the dimension of the traced-out
subsystem, say, m1 and m2. In the process, we also compute
the spectral density of the product matrices τ = √

σρ
√

σ

and χ = √
ρ1ρ2

√
ρ1. We note that since density matrices are

Hermitian as well as positive semidefinite, the matrices τ and
χ are also because of their symmetrized product structure.
Moreover, the matrices ρσ (or σρ) and ρ1ρ2 (or ρ2ρ1), al-
though not Hermitian in general, have the same eigenvalues
as τ and χ , respectively.

A. A fixed density matrix σ and a random density matrix ρ

1. Spectral density of τ = √
σρ

√
σ

In this case only one of the density matrices is random.
Therefore, we can evaluate the PDF for the product matrix τ

as

Pτ (τ ) =
∫

δ(τ − √
σρ

√
σ )P (ρ) d[ρ], (10)

where d[ρ] is defined similar to d[W ]. As demonstrated in
Appendix A, the above can be written in terms of an inverse
Laplace transform (s → t = 1) over an integral involving the
Wishart-Laguerre density (8),

Pτ (τ ) =L−1

[
�(nm)s−nm

×
∫

δ(τ − s−1√σW
√

σ )P(W ) d[W ]

]
t=1

, (11)

with s > 0. The above equation provides a strategy to calcu-
late the statistics of τ using the statistics of W̃ = √

σ W
√

σ .
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The latter is identified as a semicorrelated Wishart random
matrix with a covariance matrix equal to σ and with its PDF
proportional to (det W̃ )m−ne−tr(σ−1W̃ ) [55].

The joint PDF Px({x}) for the unordered eigenvalues
x1, . . . , xn of W̃ is known to be [56,57]

Px({x}) = (−1)n(n−1)/2

n!

(∏
r>l

xr − xl

ar − al

)

×
(

n∏
i=1

am
i xm−n

i �(xi )

�(m − i + 1)

)
det[e−a j xk ]n

j,k=1, (12)

where a−1
j ’s are the eigenvalues of the matrix σ (i.e., a j’s are

the eigenvalues of σ−1). The fact that only the eigenvalues of
σ appear in this expression is a consequence of the invariance
of the distribution of W under unitary conjugation, which im-
plies that

√
σ W

√
σ is statistically equivalent to A−1/2WA−1/2,

where A = diag(a1, . . . , an). Now, since the joint PDF Px({x})
is symmetric with respect to the eigenvalues, we can examine
the behavior of a generic eigenvalue by integrating out n − 1
eigenvalues and obtaining its marginal density [58,59]. If x
and λ are the generic eigenvalues of W̃ and τ , with their re-
spective marginal probability densities px(x) and pλ(λ), then
it follows from Eq. (11) that

pλ(λ) = L−1

[
�(nm)s−nm

∫ ∞

−∞
δ(λ − s−1x) px(x)dx

]
t=1

= L−1[�(nm)s1−nm px(sλ)]t=1. (13)

Now, the marginal density px(x) is known to be [56,57,60]

px(x) = 1

n

∏
r>l

1

(ar − al )

n∑
i=1

det[ζ (i)
jk ]n

j,k=1, (14)

where

ζ
(i)
jk =
{

am
j xm−ie−a j x

�(x)
�(m−i+1) , k = i,

ak−1
j , k 	= i.

(15)

We use Eq. (14) in Eq. (13) and push the factor s1−nm

inside the ith column of the matrix [ζ (i)
jk ], and then the

Laplace variable s occurs only in this ith column. We
also note that �(sλ) = �(λ) for s > 0. Consequently, the
Laplace inversion can be conveniently carried out using the
standard result L−1[s−αe−βs]t = (t − β )α−1�(t − β )/�(α).
Therefore, we obtain the desired expression as

pλ(λ) = �(nm)

n

∏
r>l

1

(ar − al )

n∑
i=1

det
[
η

(i)
jk

]n
j,k=1, (16)

where

η
(i)
jk =
{

am
j λm−i (1−a jλ)i+nm−m−2�(λ)�(1−a jλ)

�(m−i+1)�(i+nm−m−1) , k = i,
ak−1

j , k 	= i.
(17)

If there are multiplicities in the eigenvalues of σ , we obtain
the 0/0 form. In such cases, analytical results can be obtained
from Eq. (16) using a limiting procedure, for example, using
L’Hôpital’s rule.

Of special interest are the cases when the fixed density
matrix represents either a pure state or a maximally mixed
state. In the former case, one of the eigenvalues of σ is 1, and

the rest are 0. In the latter case, all eigenvalues are n−1, and
correspondingly, σ = n−11n. The spectral densities for these
cases can be obtained from Eq. (16) using limiting procedures;
however, it is much more straightforward to derive them di-
rectly, as done below.

Pure state σ . Based on our discussion regarding the in-
variance of the distribution of W under unitary conjugation,
it is evident that the only nonzero eigenvalue of the ma-
trix

√
σ W

√
σ equals one of the diagonal elements of W .

Moreover, in this case, the nonzero eigenvalue of the matrix
τ = √

σρ
√

σ coincides with the fidelity itself. Therefore, we
can write

F =
(

tr

√√
σ

W

trW

√
σ

)2

= W11∑n
k=1 Wkk

. (18)

The diagonal elements Wkk of W are independent and iden-
tically distributed as Gamma random variables with the PDF
(see, e.g., [52]),

pw(w) = 1

�(m)
wm−1e−w�(w) ≡ Gamma(m). (19)

Further noticing that R =∑n
k=2 Wkk is distributed as

Gamma(nm − m), the fidelity F = W11/(W11 + R) turns out
to be distributed as Beta(m, nm − m), i.e.,

pF (F ) = �(nm)Fm−1(1 − F )nm−m−1

�(m)�(nm − m)
�(F )�(1 − F ).

(20)

Alternatively, we can apply the Laplace-inversion
trick to obtain the PDF of the fidelity, viz., pF (F ) =
L−1[�(nm)s1−nm pw(sF )]t=1. This again leads to Eq. (20),
as it should. The above expression for fidelity distribution
is in complete agreement with the expression obtained by
Życzkowski and Sommers using a different, albeit equivalent,
approach [46].

Maximally mixed state σ . In this case, as σ = n−11, the
eigenvalues of

√
σW

√
σ will be n−1 times the eigenvalues of

W . As such, the marginal density of a generic eigenvalue of√
σW

√
σ follows using the standard result for the Wishart-

Laguerre eigenvalue density. Similarly, the eigenvalues of
τ = √

σρ
√

σ will be n−1 times the eigenvalues of ρ. The
distribution of the marginal density of a generic eigenvalue
of ρ is already known (see, e.g., [39]), which leads us to

pλ(λ) =
n∑

i=1

ci (nλ)i+m−n−1(1 − nλ)−i+nm−m+n−1

× [(n − i)F−n,i−nm+m−n
m−n+1 − nF 1−n,i−nm+m−n

m−n+1

]
× �(λ)�(1 − nλ). (21)

Here, Fα,β
γ := 2F1(α, β; γ ; nλ

nλ−1 )/�(γ ), with 2F1(· · · ) being
the Gauss hypergeometric function. The coefficient ci is given
by

ci = (−1)i �(m + 1)�(nm)

�(i)�(n − i + 1)�(i + m − n + 1)�(nm − m + n − i)
.

(22)

In Fig. 1 we show the plots of random-matrix-based an-
alytical results for the spectral density of τ for different
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FIG. 1. Plots of the spectral density of the matrix τ = √
σρ

√
σ . The dimensions (n, m) and eigenvalues (1/a1, . . . , 1/an ) of σ are (a) (3, 8)

and (0.15,0.33,0.52), (b) (4, 9) and (0.07,0.17,0.35,0.41), and (c) (5, 10) and (0.09,0.12,0.21,0.28,0.30). The solid curves represent analytical
results, and the histograms are based on simulations.

combinations of n and m values and three choices of the fixed
density matrix σ . Figure 2 displays the results when the fixed
density matrix corresponds to a pure state or a maximally
mixed state. For the former, as indicated above, the only
nonzero eigenvalue of the product matrix τ coincides with the
fidelity, for which the PDF has been plotted. For the case of σ ,
a maximally mixed state, the spectral density of τ is shown.
In Figs. 1 and 2, along with the analytical predictions, Monte
Carlo–based simulation results are also displayed, and we find
very good agreement.

2. Mean root fidelity and mean-square Bures distance

The mean of the square root of the fidelity 〈√F (ρ, σ ) 〉 can
be calculated as

〈
√
F 〉 = 〈tr(

√
τ )〉 =

〈
n∑

j=1

λ
1/2
j

〉
. (23)

It can be evaluated using the spectral density pλ(λ) as

〈
√
F 〉 = n

∫ ∞

−∞
λ1/2 pλ(λ)dλ. (24)

Now, either we can use the final expression of pλ(λ) to eval-
uate the above, or we can use the Laplace-inverse form as in
Eq. (13). The latter enables us to express the desired result in
terms of the average of x1/2 with respect to the density px(x),

〈
√
F 〉 = L−1

[
n�(nm)s1−nm

∫ ∞

−∞
λ1/2 px(sλ)dλ

]
t=1

= L−1[n�(nm)s−nm−1/2]
t=1

∫ ∞

−∞
x1/2 px(x)dx

= n

(nm)1/2

∫ ∞

−∞
x1/2 px(x)dx, (25)

where (α)β = �(α + β )/�(α) is the Pochhammer symbol.
As shown in Appendix B, both approaches leads to the final
expression of the mean root fidelity as

〈
√
F 〉 = 1

(nm)1/2

∏
r>l

1

(ar − al )

n∑
i=1

det
[
ξ

(i)
jk

]n
j,k=1, (26)

FIG. 2. Plots of the probability density of (a) the fidelity between
ρ and σ with the latter being a pure state and (b) a generic eigenvalue
of τ = √

σρ
√

σ with σ corresponding to the maximally mixed state.
The random density matrix ρ has parameters n = 5 and m = 6 in
both cases. The solid lines are based on analytical results, and the
histograms use simulations.
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FIG. 3. Mean-square Bures distance between the fixed density matrix σ and the random density matrix ρ for various choices of σ : (a) a
pure state, (b) a maximally mixed state, (c) a state with eigenvalues (0.09,0.12,0.21,0.28,0.30). The dimension of the two density matrices is
set to be n = 5 in all cases, and the dimension m of the auxiliary subsystem associated with ρ varies from n to n + 5.

where

ξ
(i)
jk =
{

(m − i + 1)1/2 ai−3/2
j , k = i,

ak−1
j , k 	= i.

(27)

The mean-square Bures distance D2
B(ρ, σ ) then readily fol-

lows using Eq. (3).
Again, when σ is either a pure state or a maximally mixed

state, the above results can be evaluated in a limiting manner.
However, like for the spectral density of τ , it is easier to
handle these extremes directly, as done below.

Pure state σ . The mean root fidelity in this case can be
immediately evaluated with the help of Eq. (20) as

〈
√
F 〉 = (m)1/2

(nm)1/2
. (28)

Maximally mixed state σ . To evaluate mean root fidelity in
this case we utilize Eq. (25). Explicit results for eigenvalue
moments of the Wishart-Laguerre ensemble are known in the
existing literature [61], which can be used to obtain

〈
√
F 〉 = 2√

n (nm)1/2

n∑
i=1

(
1/2

i

)(
1/2

i − 1

)
(m)3/2−i

(n + 1)−i
, (29)

where
(
α

β

)
is the binomial coefficient.

We corroborate the ensuing analytical results for the mean-
square Bures distance D2

B(ρ, σ ) between a fixed density
matrix σ and a random density matrix ρ by comparing them
with Monte Carlo simulation data sets. They are shown in
Fig. 3 for three choices of σ . We can observe very good
agreement between our analytical and simulated results.

B. Two random density matrices

Let us consider two independent random density matrices,
ρ1 and ρ2, taken from the distribution given in Eq. (5), but
with distinct m values in general. We calculate below the
mean root fidelity between these two density matrices, which
then readily leads to the corresponding mean-square Bures
distance.

1. Spectral density of χ = √
ρ1ρ2

√
ρ1

In this case, two random density matrices are involved.
Therefore, the PDF of the matrix χ can be obtained as

Pχ (χ ) =
∫∫

δ(χ − √
ρ1ρ2

√
ρ1)P1(ρ1)P2(ρ2) d[ρ1] d[ρ2],

(30)
where P1(ρ1) and P2(ρ2) are as in Eq. (5) but with m = m1

and m2, respectively. As shown in Appendix A, the above can
be mapped to a dual-inverse-Laplace transform of integrals
performed with respect to two independent Wishart-Laguerre
random matrices, i.e.,

Pχ (χ ) =L−1

[
�(nm1)�(nm2)s−nm1

1 s−nm2
2

×
∫∫

δ
(
χ − s−1

1 s−1
2

√
W1W2

√
W1
)

× P1(W1) P2(W2) d[W1] d[W2]

]
t1=t2=1

. (31)

According to this equation, we can calculate the statistics of
χ by using the statistics of

√
W1W2

√
W1. For instance, the

marginal density pμ(μ) for a generic eigenvalue μ of the
matrix χ can be written in terms of the marginal density py(y)
of a generic eigenvalue y of the matrix

√
W1W2

√
W1 as

pμ(μ) = L−1
[
�(nm1)�(nm2)s1−nm1

1 s1−nm2
2 py(s1s2μ)

]
t1=t2=1.

(32)

The spectral density py(y) of the matrix
√

W1W2
√

W1 follows
from the result for the product of two Wishart-Laguerre ma-
trices. It is given in terms of Meijer G functions as [62]

py(y) = 1

n

n−1∑
j=0

G1,0
1,3

(
j + 1

0; −v1,−v2

∣∣∣∣y)G2,1
1,3

( − j
v1, v2; 0

∣∣∣∣y)�(y)

= 1

n

n−1∑
j=0

j∑
k=0

(−y)k

k!(k + v1)!(k + v2)!( j − k)!

× G2,1
1,3

( − j
v1, v2; 0

∣∣∣∣y)�(y), (33)

where v1 = m1 − n and v2 = m2 − n. In the second line of the
above equation, the first Meijer G function has been expanded
as a polynomial [62]. The dual Laplace inversion over s1 and
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FIG. 4. Plots of the spectral density of the matrix χ = √
ρ1ρ2

√
ρ1. The dimensions (n, m1, m2) are (a) (3,6,7), (b) (4,5,8), and (c) (5,8,10).

The solid curves represent analytical results, and the histograms are based on Monte Carlo simulations.

s2 can be performed using results given in Ref. [63] (see
Appendix C). The expression for the marginal density of a
generic eigenvalue of the matrix χ then follows as

pμ(μ) = �(nm1)�(nm2)

n

×
n−1∑
j=0

j∑
k=0

(−μ)k

k!(k + v1)!(k + v2)!( j − k)!

×G2,1
3,3

(− j; nm1 − k − 1, nm2 − k − 1
v1, v2; 0

∣∣∣∣μ)�(μ).

(34)

We compare this analytical result with numerical simulation
involving an ensemble of two independent random density
matrices which are constructed using Eq. (7). These plots,
for various combinations of the dimensions n, m1, and m2,
are shown in Fig. 4. Here also, we find impressive agreement
between analytical and numerical results.

2. Mean root fidelity

The mean root fidelity 〈√F (ρ1, ρ2) 〉 can be evaluated
using the spectral density pμ(μ) as

〈
√
F 〉 = n

∫ ∞

−∞
μ1/2 pμ(μ)dμ. (35)

Now, like for the earlier calculation, either we can use pμ(μ)
from Eq. (34) to evaluate the above average, or we can use the
Laplace-inverse form as in Eq. (32). The latter enables us to
express the desired result in terms of the average of y1/2 with
respect to the density py(y),

〈
√
F 〉 = n

(nm1)1/2(nm2)1/2

∫ ∞

−∞
y1/2 py(y)dy. (36)

As shown in Appendix B, both approaches give the following
result after simplification:

〈
√
F 〉 = 2

(nm1)1/2(nm2)1/2

×
n∑

k=1

(−1)n−k (k)1/2(k + v1)1/2(k + v2)1/2

�(n − k + 1) �(k − n + 1/2)
. (37)

This expression generalizes the explicit formulas provided by
Życzkowski and Sommers for n = 2, 3 and arbitrary m1 =

m2 [46]. The mean-square Bures distance D2
B(ρ1, ρ2) follows

from Eq. (37) using Eq. (3).
The analytical prediction for the mean-square Bures dis-

tance between two random density matrices is contrasted with
Monte Carlo–based numerical simulations in Fig. 5. We again
find very good agreement, which validates our analytical
results.

FIG. 5. Mean-square Bures distance between two independent
random density matrices with (a) n = 2 and (b) n = 5. In both cases
various combinations of m1 and m2 values have been considered, as
depicted on the horizontal axes.
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III. COMPARISON WITH
COUPLED-KICKED-TOP SIMULATION

Coupled-quantum-kicked-top systems have been used ex-
tensively by researchers to study various aspects related to
random bipartite systems such as entanglement, the effect of
chaos, and even the distance between states [20,51,64–71]. In
this section, we compare our analytical results for the mean-
square Bures distance with those evaluated using random
density matrices generated in coupled-kicked-top simulations.

The Hamiltonian for the coupled-kicked-top (CKT) system
is given by [64,65]

H = H1 ⊗ 1m + 1n ⊗ H2 + H12. (38)

Here,

Hr = π

2
Jyr + κr

2 jr
J2

zr

∞∑
ν=−∞

δ(t − ν), r = 1, 2, (39)

represent the Hamiltonians for the individual tops [31,32], and
the interaction term H12 is of the form

H12 = ε√
j1 j2

(Jz1 ⊗ Jz2)
∞∑

ν=−∞
δ(t − ν). (40)

The Hamiltonians H1 and H2 are associated with n(= 2 j1 +
1)-dimensional and m(= 2 j2 + 1)-dimensional Hilbert spaces
H(n) and H(m), respectively. The full Hamiltonian for the cou-
pled kicked tops H corresponds to the Hilbert space H(nm) =
H(n) ⊗ H(m). The first term in Hr gives the free precession of
the rth top around the y axis with an angular frequency π/2,
and the second term signifies periodic δ-function kicks. The
angular momentum operators for the rth top are Jxr , Jyr , and
Jzr , and jr is the quantum number associated with the operator
J2

r = J2
xr

+ J2
yr

+ J2
zr

. Further, κ1 and κ2 are the stochasticity
parameters which relate to the kick strengths and control the
chaotic behavior of the tops. The coupling between the two
tops is provided by the parameter ε.

We note that the operators for the two independent tops
commute and that between the δ-function kicks only the free-
precession parts of the Hamiltonian survive, whereas at the
instants of the kicks they are ineffective. Consequently, the
Floquet operator which evolves a state vector from imme-
diately after one kick to immediately after the next can be
obtained using the Hamiltonian in Eq. (38) as [64,65]

U = U12(U1 ⊗ U2), (41)

where

Ur = exp

(
− ıκr

2 jr
J2

zr

)
exp
(
− ıπ

2
Jyr

)
, r = 1, 2, (42)

U12 = exp

(
− ıε√

j1 j2
Jz1 ⊗ Jz2

)
, (43)

with ı = √−1 being the imaginary-number unit. We use
the Floquet operator U to implement the iteration scheme
|ψ (ν)〉 = U |ψ (ν − 1)〉 and hence obtain a time-evolved state
from an initial state |ψ (0)〉. As in other works [64,65], we
choose the initial state to be the product of directed angular
momentum states associated with the two tops. After ignoring
a certain number of iterations that fall in the transient regime,

FIG. 6. Comparison between RMT-based analytical prediction
(solid curve) and the CKT simulation result (histogram) for (a) the
PDF of the fidelity between a random density matrix ρ and a pure
state σ and (b) spectral density of the matrix τ = √

σρ
√

σ for σ

maximally mixed. The dimensions (n, m) associated with the random
matrix ρ for (a) and (b) are (25,45) and (25,35), respectively.

we consider the reduced density matrices obtained by partially
tracing over one of the tops, viz., ρ(ν) = trm(|ψ (ν)〉〈ψ (ν)|).
These reduced density matrices are distributed according to
the Hilbert-Schmidt probability measure when the stochastic-
ity parameters and coupling parameter are sufficiently large
[41,51,65].

We simulate 60 000 reduced density matrices using the
above procedure and compute the spectral density of the
product matrix τ = √

σρ
√

σ , as well as the corresponding
mean-square Bures distance. For the fixed matrix σ , we
choose a pure state and then a maximally mixed state. These
PDFs are shown in Fig. 6, and the mean-square Bures dis-
tances are illustrated in Figs. 7 and 8.

To simulate the spectral density of the product matrix
χ = √

ρ1ρ2
√

ρ2 and the corresponding mean-square Bures
distance, we consider two independent coupled-kicked-top
systems, say, A and B. This helps us to realize different
m1 = 2 jA

2 + 1 and m2 = 2 jB
2 + 1 values. Here, jA

2 and jB
2 rep-
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FIG. 7. Comparison between RMT analytical and CKT simu-
lation results: (a) mean-square Bures distance between the random
density matrix ρ and pure state σ and (b) the corresponding percent
relative differences, 100|([D2

ρ,σ ]CKT/[D2
ρ,σ ]RMT − 1)|%. The dimen-

sions of both density matrices are n = 25, and the m value for ρ is
varied over four values, as indicated on the horizontal axis. The CKT
simulations have been carried out for three sets of stochasticity and
coupling parameters (κ1, κ2, ε): CKT 1, (7,8,1); CKT 2, (6,7,0.75);
and CKT 3, (7,9,0.5).

resent the j2 values for the two coupled kicked tops. The n
value is determined by the common Hilbert-space dimension
2 jA

1 + 1 = 2 jB
1 + 1. We show the comparison between the

random-matrix analytical and kicked-top simulation results
for the spectral density of χ in Fig. 9 and for the mean-square
Bures distance in Fig. 10.

In all these plots we find impressive agreement, which is
supported by the observation that the percentage relative dif-
ference in the case of the mean-square Bures distance remains
below 0.5%.

IV. SUMMARY AND OUTLOOK

We considered random density matrices distributed accord-
ing to the Hilbert-Schmidt probability measure and derived
exact analytical results for the mean root fidelity and mean-
square Bures distances. We examined these average quantities
between a fixed density matrix and a random density matrix

m

R
el
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iv

e
D

if
fe

re
nc

e
%

D
B

2
,

FIG. 8. Comparison between RMT analytical and CKT simula-
tion results: (a) mean-square Bures distance between the random
density matrix ρ and maximally mixed state σ and (b) the corre-
sponding percent relative differences, 100|([D2

ρ,σ ]CKT/[D2
ρ,σ ]RMT −

1)|%. The dimensions of both density matrices are n = 25, and the
m value for ρ is varied over four values. The CKT simulations
have been carried out for three sets of stochasticity and coupling
parameters, as given in the Fig. 7 caption.

FIG. 9. Comparison between RMT-based analytical prediction
(solid curve) and the CKT simulation result (histogram) for the
spectral density of matrix χ = √

ρ1ρ2
√

ρ1. The dimensions used are
(n, m1, m2 ) = (15, 17, 21).
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FIG. 10. Comparison between RMT analytical and coupled-
kicked-top pair (CKTP) simulation results: (a) mean-square Bures
distance between two random density matrices, ρ1 and ρ2, of di-
mension n = 25 and several m1 and m2 combinations and (b) the
corresponding percent relative differences. The CKTP simulations
were carried out for three sets of parameters (κA

1 , κA
2 , εA; κB

1 , κB
2 , εB):

CKTP 1, (8, 7, 0.5; 7, 8, 1); CKTP 2, (6, 7, 0.8; 6, 8, 0.75); CKTP 3,
(7, 8, 0.75; 8, 7, 0.75).

and also between two random density matrices. In the course
of derivation, we also obtained spectral densities for prod-
ucts of these density matrices. Moreover, we compared our
analytical results with the observations in coupled-kicked-top
systems and found very good agreement. With this work, we
accomplish one of the desired tasks outlined in Ref. [51].

A natural extension of this work would be to go beyond
the averages and explore the feasibility of the calculation of
exact higher moments and distributions of various distance
measures. Besides the Hilbert-Schmidt measure, another im-
portant probability measure over the set of mixed states is
the Bures-Hall measure [26–28,72,73]. In recent times, there
has been renewed interest in its statistical investigation from
the random-matrix-theory point of view [71,74–77]. In this
regard, it would also be of interest to obtain exact results for

statistics of various distance measures between these Bures-
Hall distributed random density matrices.
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APPENDIX A: LAPLACE TRANSFORM FOR MAPPING
TO WISHART-LAGUERRE ENSEMBLE AVERAGE

We introduce an auxiliary variable t to replace the 1 inside
the δ function in Eq. (5), which is then used in Eq. (10). This
gives

Pτ (τ ; t ) =C
∫

δ(τ − √
σρ

√
σ )

× (det ρ)m−n δ(trρ − t ) �(ρ) d[ρ]. (A1)

We now take the Laplace transform (t → s), which leads us to

P̃τ (τ ; s) = C
∫

δ(τ − √
σρ

√
σ )(det ρ)m−n e−strρ �(ρ) d[ρ].

(A2)
Next, we consider the substitution ρ = W/s with s > 0,
which gives d[ρ] = s−n2

d[W ] and �(ρ) = �(W ). Therefore,
Eq. (A2) becomes

P̃τ (τ ; s) =Cs−nm
∫

δ(τ − s−1√σW
√

σ )

× (det W )m−ne−trW �(W )d[W ]

= �(nm)s−nm
∫

δ(τ − s−1√σW
√

σ )P(W )d[W ],

(A3)

where we have used Eq. (8) to write the second line. The
PDF Pτ (τ ) can now be obtained by taking the inverse Laplace
transform and setting t = 1, as it appears in Eq. (11).

Similarly, for the case of two random density matrices as in
Eq. (30), we introduce two auxiliary variables t1 and t2 to re-
place the 1’s within the δ functions in the two densities P1(ρ1)
and P2(ρ2) and then consider a dual Laplace transform t1 →
s1 and t2 → s2. The integrals over the two random density
matrices can then be mapped to integrals over two Wishart-
Laguerre matrices by the substitutions ρ1 = W1/s1 and ρ2 =
W2/s2, with s1, s2 > 0. The desired expression, Eq. (31), then
follows by considering dual Laplace inversion with t1 and t2
set equal to 1.

APPENDIX B: DERIVATION OF MEAN ROOT FIDELITY
〈√F〉

We consider first the fidelity between one fixed density
matrix and one random density matrix. To evaluate mean root
fidelity 〈√F (ρ, σ )〉 using Eq. (24), we use the expression for
pλ(λ) from Eq. (16). Then, we push the λ1/2 factor inside the
determinant to the k = ith column of the matrix [η(i)

jk ]. Since
only this column involves the integration variable λ, we can
perform the integration readily using the Beta-function Euler
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integral,∫ ∞

−∞
λα−1(1 − aλ)β−1�(λ)�(1 − aλ)dλ = �(α)�(β )

aα�(α + β )
,

(B1)

with α, β, a > 0. Combining this result with the other preex-
isting factors gives the elements of this column as ai−3/2

j (m −
i + 1)1/2/�(nm + 1/2). The factor 1/�(nm + 1/2) is now
pulled outside the determinant and the summation, and
combined with the already existing factor �(nm) to give
1/(nm)1/2. Therefore, finally, the element ξ

(i)
jk of the matrix

within the determinant is given by Eq. (27), and the mean root
fidelity is obtained as Eq. (26).

To derive the same result using Eq. (25), we plug the
expression for px(x) in it and push the factor x1/2 in the k = ith
column of the matrix [ζ jk] and perform the integration using
the Gamma-function Euler integral,∫ ∞

−∞
xα−1e−ax�(x)dx = �(α)

aα
(B2)

for α, a > 0. This, when combined with the preexisting factor,
gives at once the matrix element ξ

(i)
jk as ai−3/2

j (m − i + 1)1/2.
Consequently, we again obtain Eq. (26).

We now consider the calculation of fidelity between two
random density matrices. Let us consider first the expression
for the mean fidelity given in Eq. (36). The y integral in this
equation can be performed using an integral identity of the
Meijer G function [78], which gives∫ ∞

0
yk+1/2G2,1

1,3

( − j
v1, v2; 0

∣∣∣∣y)dy

= �(k + v1 + 3/2)�(k + v2 + 3/2)�( j − k − 1/2)

�(−k − 1/2)
.

(B3)

It should be noted that the Heaviside theta function �(y) in
Eq. (33) has restricted the integration domain to (0,∞). The
use of this integral in Eq. (36) leads to

n
∫ ∞

−∞
y1/2 py(y)dy =

n−1∑
j=0

j∑
k=0

(−1)k

( j − k)!

× �(k + v1 + 3/2)�(k + v2 + 3/2)�( j − k − 1/2)

k!(k + v1)!(k + v2)! �(−k − 1/2)
.

(B4)

As described in Ref. [62], after reordering of the sums and
application of Euler’s reflection formula for the Gamma func-
tion,

the above can be simplified to

n
∫ ∞

−∞
y1/2 py(y)dy

=
n−1∑
k=0

�(k + 3/2)�(k + v1 + 3/2)�(k + v2 + 3/2)

k!(k + v1)!(k + v2)!

×
n−k−1∑

j=0

(−1) j

j! �(3/2 − j)
. (B5)

Now, we note that the summand of the sum in the third line can
be written as (−1) j/[ j! �(3/2 − j)] = [1/�(3/2)](−1) j

(1/2
j

)
.

Therefore, using the binomial series relation [62],

n−k−1∑
j=0

(−1) j

(
1/2

j

)
= (−1)n−k−1

( −1/2

n − k − 1

)
, (B6)

it can be evaluated to a closed form. We use this in Eq. (B5),
along with a shift k → k − 1 in the summand, and express the
ratio of two Gamma functions using the Pochhammer symbol.
This gives

n
∫ ∞

−∞
y1/2 py(y)dy

=
n∑

k=1

2 (−1)n−k (k)1/2(k + v1)1/2(k + v2)1/2

�(n − k + 1)�(k − n + 1/2)
, (B7)

and consequently, we obtain Eq. (37).
If we instead start from Eq. (35), using the expression for

pμ(μ) gives for the μ integral [78]∫ ∞

0
μk+1/2G2,1

3,3

(− j; nm1 − k − 1, nm2 − k − 1
v1, v2; 0

∣∣∣∣μ)dμ

= �(k + v1 + 3/2)�(k + v2 + 3/2)�( j − k − 1/2)

�(−k − 1/2)�(nm1 + 1/2)�(nm2 + 1/2)
,

(B8)

so that

n
∫ ∞

−∞
μ1/2 pμ(μ)dμ

= 1

(nm1)1/2(nm2)1/2

n−1∑
j=0

j∑
k=0

(−1)k

( j − k)!

× �(k + v1 + 3/2)�(k + v2 + 3/2)�( j − k − 1/2)

k!(k + v1)!(k + v2)! �(−k − 1/2)

= n

(nm1)1/2(nm2)1/2

∫ ∞

0
y1/2 py(y)dy. (B9)

Here, the last step follows using Eq. (B4). This matches with
Eq. (36) and therefore leads again to Eq. (37).

APPENDIX C: INVERSE LAPLACE TRANSFORM OF MEIJER G

With the help of the general expression given in Ref. [63], we find the following result for Laplace inversion (s → t):

L−1

[
s−γ Gj,k

l,r

(
α1, . . . , αk ; αk+1, . . . , αl

β1, . . . , β j ; β j+1, . . . , βr

∣∣∣∣sμ)]
t

= tγ−1Gj,k
l+1,r

(
α1, . . . , αk; αk+1, . . . , αl , γ

β1, . . . , β j ; β j+1, . . . , βr

∣∣∣∣μt
)

. (C1)
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We substitute Eq. (33) in Eq. (32) and focus on the portion of the full expression where we have to apply the dual Laplace
inversion (s1 → t1, s2 → t2). We use the above result twice to perform the two Laplace inversions successively. We obtain

L−1

[
s−(nm1−k−1)

1 s−(nm2−k−1)
2 G2,1

1,3

( − j
v1, v2; 0

∣∣∣∣s1s2μ

)]
t1,t2

= t (nm1−k−2)
1 t (nm2−k−2)

2 G2,1
3,3

(− j; nm1 − k − 1, nm2 − k − 1
v1, v2; 0

∣∣∣∣ μ

t1t2

)
.

(C2)

This result with t1 and t2 set equal to 1 yields Eq. (34).
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[13] M. Wieśniak, P. Pandya, O. Sakarya, and B. Woloncewicz,
Distance between bound entangled states from unextendible
product bases and separable states, Quantum Rep. 2, 49 (2020).

[14] P. Pandya, O. Sakarya, and M. Wieśniak, Hilbert-Schmidt dis-
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