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State space structure of tripartite quantum systems is analyzed. In particular, it has been shown that the
set of states separable across all the three bipartitions [say, Bint (ABC)] is a strict subset of the set of states
having positive partial transposition across the three bipartite cuts [say, P int (ABC)] for all the tripartite Hilbert
spaces Cd1

A ⊗ Cd2
B ⊗ Cd3

C with min{d1, d2, d3} � 2. The claim is proved by constructing a state belonging to the
set P int (ABC) but not to Bint (ABC). For (Cd )⊗3 with d � 3, the construction follows from a specific type of
multipartite unextendible product bases. However, such a construction is not possible for (C2)⊗3 since bipartite
systems C2 ⊗ Cn do not allow any unextendible product bases for arbitrary n [Phys. Rev. Lett. 82, 5385 (1999)].
For the three-qubit system, we therefore come up with a different construction.
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I. INTRODUCTION

Hilbert space quantum mechanics provides an extremely
precise mathematical description for microscopic phenomena.
It associates tensor product Hilbert spaces with composite
quantum systems and results in entangled quantum states with
no analog in classical physics [1–3]. The advent of quantum
information theory [4] identifies several important applica-
tions of entanglement (see [5,6] and references therein).
Characterization, identification, and quantification of quan-
tum entanglement are thus questions of great practical interest.
One of the most widely used tests for bipartite states’ entan-
glement verification is the positive partial transposition (PPT)
criterion. States having negative partial transposition (NPT)
are always entangled [7], whereas PPT implies separability
only for the systems with composite dimensions not greater
than six [8]. In other words, being PPT is a necessary and
sufficient condition for separability in the composite systems
with dimensions � 6. Consequently, for higher dimensional
systems, one has several hierarchical convex-compact subsets
of states within the set of allowed quantum states. Identi-
fying these subsets as well as their boundaries is essential
to understand the intricacy of quantum state space structure
and entanglement properties of the quantum states. Having
the convex-compact structures, these sets allow the classic
Minkowski-Hahn-Banach separation theorem to characterize
their several essential features [9].

The complexity of the situation increases rapidly with an
increase in the number of component subsystems compris-
ing the composite system [10]. For instance, separability/
PPT-ness can be considered across different bipartite cuts,
and accordingly one ends up with different convex-compact
subsets of states. Several intriguing structures consequently
emerge. For instance, a three-qubit state may not be fully
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separable even if it is separable across every possible bipar-
tite cut and hence contains multipartite entanglement [11].
On the other hand, for such a system the set of biseparable
states is strictly contained within the PPT mixture set [12]. In
this work, we show that the set of states that are separable
across all possible bipartitions are contained strictly within
the set of states that are PPT across all possible bipartite cuts.
We prove this claim for an arbitrary tripartite Hilbert space
Cd1 ⊗ Cd2 ⊗ Cd3 with min{d1, d2, d3} � 2. The proof is con-
structive. We construct states that are PPT across all three
bipartitions but inseparable across some bipartite cuts. Con-
struction for (Cd )⊗3 with d � 3 follows from a specific kind
of unextendible product bases. However, such a construction
is not possible for three-qubit Hilbert space as there cannot
be any set of mutually orthogonal product states in C2 ⊗ Cn

that are not completable [13,14]. To prove the claim for three-
qubit, we therefore come up with a different construction.

The paper is organized as follows: in Sec. II we note the
notations and recall some preliminary results; all our findings
are listed in Sec. III; finally in Sec. IV we give our conclusions
along with some open questions for further research.

II. NOTATIONS AND PRELIMINARIES

A quantum system S is associated with a complex sep-
arable Hilbert space HS over complex field [4,15]. We will
consider only finite-dimensional systems throughout this pa-
per, hence HS will be isomorphic to some complex space Cd

S ,
where d is the dimension of the complex vector space. The
system’s state is described by a density operator ρS (positive
operator with unit trace) acting on Cd

S . A collection of density
operators forms a convex compact set D(S) embedded in
Rd2−1. We will also sometimes specify this set as D(d ) to
distinguish between systems with different dimensions. The
extreme points of D(S) are called pure states, and they sat-
isfy the condition ρ2

S = ρS . Let ED(S) denotes the set of all
extremal points of D(S). Such an extremal state can also be
considered as a rank−1 projector, i.e., ρS = |ψ〉S 〈ψ | for some
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|ψ〉S ∈ Cd
S whenever ρS ∈ ED(S). States that are not pure are

called mixed states, and they allow convex decomposition
in terms of pure states, i.e., ∀ ρS �∈ ED(S), ∃ σ i

S ∈ ED(S) s.t.
ρS = ∑

piσ
i
S , where pi > 0 and

∑
pi = 1.

Hilbert space CAB··· of a composite system consisting of
component subsystems A, B, . . . is given by the tensor prod-
uct of the Hilbert spaces associated with the component
subsystems, i.e., Cd

AB··· = CdA
A ⊗ CdB

B ⊗ · · · . Here dA, dB, . . .

denotes the dimension of the component subsystems, while
the dimension of the composite system is d = dA × dB

× · · · . While the axiomatic formulations of quantum me-
chanics contain this tensor product postulate [16–18], recent
developments indicate that this assumption can be logically
derived from the state postulate and the measurement postu-
late [19].

A bipartite state ρAB ∈ D(AB) is called a pure product state
if and only if ρAB = |χ〉AB 〈χ |, where |χ〉AB = |ψ〉A ⊗ |φ〉B
for some |ψ〉A ∈ CA and |φ〉B ∈ CB. The convex hull of these
product states will be denoted as S (AB), and the states in
S (AB) are generally called separable states. A state ρent

AB ∈
D(AB) but ρent

AB �∈ S (AB) is called an entangled state. For a
bipartite system one can define another convex compact set,
the Peres set P (AB): the set of states with positive-partial-
transpose (PPT) [7]. A bipartite state ρAB belongs to the set
P (AB) whenever ρ

Tk
AB � 0, where Tk denotes (partial) transpo-

sition with respect to the kth subsystem with k ∈ {A, B}.
For a bipartite system, the following set inclusion relation

is immediate:

S (AB) ⊆ P (AB) � D(AB). (1)

Equality between the first two sets holds for composite
systems of dimensions not greater than six [8]. For the higher
dimensions S (AB) is known to be a proper subset of P (AB)
[11,14,20–23].

Moving to the tripartite system, a pure state |χ〉ABC is called
fully product if it is of the form |χ〉ABC = |ψ〉A ⊗ |φ〉B ⊗ |η〉C

for some |ψ〉A ∈ CdA
A , |φ〉B ∈ CdB

B , and |η〉C ∈ CdC
C . The con-

vex hull of pure product states will be denoted as F (ABC),
and a state belonging to this set is generally called a fully
separable state. A tripartite state is called biseparable across
the A|BC cut if it is of the form |χ〉ABC = |ψ〉A ⊗ |φ〉BC , where
the state |φ〉BC is allowed to be entangled across the B|C cut.
The convex hull of states biseparable across the A|BC cut will
be denoted as B(A|BC). Similarly, one can define the sets
B(B|CA) and B(C|AB) that are biseparable across the B|CA
and C|AB cuts, respectively. A state belonging in the convex
hull of the sets B(A|BC), B(B|CA), and B(C|AB) is generally
called biseparable, and we denote the convex hull of the sets
as Bch(ABC):

Bch(ABC) : = Convex Hull{B(A|BC),B(B|CA),B(C|AB)}.
(2)

We can also consider the intersection of these three sets, which
we will denote as Bint (ABC):

Bint (ABC) := B(A|BC) ∩ B(B|CA) ∩ B(C|AB). (3)

Common intuition might lead to the conclusion that the set
Bint (ABC) is identical to the set of fully separable states and
hence contains no entanglement. However, the construction

of SHIFTS UPB in [11] establishes that this is not the case.
Thus a tripartite state can contain entanglement even when it
is separable across every possible bipartition. The convex sets
of the PPT states over a particular cut can also be defined,
and the convex hull as well as the intersection of distinct
such sets can then be considered. We will respectively de-
note them as P (A|BC), P (B|CA), P (C|AB), Pch(ABC), and
P int (ABC), where

Pch(ABC) := Convex Hull{P (A|BC),P (B|CA),P (C|AB)};
(4a)

P int (ABC) := P (A|BC) ∩ P (B|CA) ∩ P (C|AB). (4b)

In the present work, we aim to explore the set inclusion
relations among these different convex sets.

The following inclusion relation is apparent in tripartite
systems:

F (ABC) � Bch(ABC) � Pch(ABC). (5)

Here we emphasize the fact that Bch(ABC) is a proper subset
of Pch(ABC) for all tripartite systems, unlike in the bipar-
tite case. Thus we can have tripartite states which are PPT
entangled. The PPT entangled states exhibit an intriguing
irreversible feature: their preparation under local quantum
operations assisted with classical communications (LOCC)
requires a nonzero amount of a maximally entangled state to
be shared between the subsystems [24], but no maximally en-
tangled state can be distilled from them under LOCC [25,26].
Despite being undistillable, PPT entangled states find sev-
eral applications, such as activating entanglement distillation
for other entangled states [27,28], multipartite entanglement
manipulation [29], information processing [30], private key
distillation [31–33], and quantum metrology [34].

III. RESULTS

Let us first recall some already known structures. It seems
tempting to assume that the set Bint (ABC) should be identical
to the set of fully separable states F (ABC). Quite surpris-
ingly, even for the simplest case of the three-qubit system,
this intuition is not correct. It turns out that F (2 ⊗ 2 ⊗ 2)
is a strict subset of Bint (2 ⊗ 2 ⊗ 2). An example of a state
belonging in Bint (2 ⊗ 2 ⊗ 2) but not in F (2 ⊗ 2 ⊗ 2) follows
from the construction of the unextendible product basis (UPB)
in (C2)⊗3 [11]:

UShifts
PB ≡

{ |S1〉 := |0, 1,+〉 , |S2〉 := |1,+, 0〉
|S3〉 := |+, 0, 1〉 , |S4〉 := |−,−,−〉

}
, (6)

where |±〉 := 1√
2
(|0〉 ± |1〉), and |x, y, z〉 ∈ (C2)⊗3 stands as

a short-hand notation for |x〉A ⊗ |y〉B ⊗ |z〉C . Let us consider
the three-qubit state

ρSU := 1

4

(
I8 −

4∑
i=1

|Si〉 〈Si|
)

. (7)

Since the construction follows from the SHIFTS UPB [11],
we use the initials “SU” as a subindex to denote the resulting
state. From the property of SHIFTS UPB, it follows that
ρSU �∈ F (2 ⊗ 2 ⊗ 2). However, as shown in [11], the state
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is biseparable across all the three bipartite cuts and hence
ρSU ∈ Bint (2 ⊗ 2 ⊗ 2). In other words, being separable across
all possible bipartitions, the state ρSU contains multipartite
entanglement.

The authors in [35,36] find simple criteria to certify gen-
uine entanglement in a multipartite state. To this aim, the
authors in [36] have made the conjecture that for the three-
qubit system, the set of the PPT-mixture will be identical to
the set of biseparable states, i.e., Pch(2 ⊗ 2 ⊗ 2) = Bch(2 ⊗
2 ⊗ 2). However, Ha and Kye disproved this conjecture by
constructing three-qubit genuinely entangled states which are
PPT [12]. Motivated by the results of Refs. [12,36], here we
address a different question. We ask whether a state being PPT
across all the three bipartitions implies that it is biseparable
across all the three bipartite cuts. The recent results of [37,38]
are worth mentioning at this point. In particular, the authors
in [37] have provided a family of N-partite almost diagonal
symmetric entangled states that are PPT with respect to each
bipartition but nevertheless are entangled. However, their con-
struction is for odd N greater than 3. So the question remains
unanswered for the general tripartite systems. Our question
can be reformulated as to whether Bint (ABC) and P int (ABC)
are the same set. In the following sections, we answer this
question in the negative and prove that Bint (ABC) is a proper
subset of P int (ABC).

Theorem 1. Bint (ABC) � P int (ABC) for Cd1
A ⊗ Cd2

B ⊗ Cd3
C

with min{d1, d2, d3} � 2.
A state being separable in some bipartition must be PPT

across that bipartition. It therefore follows that a state belong-
ing to the set Bint (ABC) must also belong to the set P int (ABC).
To prove the strict inclusion relation, we provide an explicit
construction of states, ρABC , that belong to P int (ABC) but not
to Bint (ABC). We first discuss the construction in d ⊗ d ⊗ d
with d � 3 and then in 2 ⊗ 2 ⊗ 2 dimensions.

A. Construction in Cd ⊗ Cd ⊗ Cd for d � 3

For d = 3, the construction follows from a recently
proposed UPB in (C3)⊗3 [39]. We will work with the compu-
tational basis {|p, q, r〉 |p, q, r = 0, 1, 2} for the Hilbert space
(C3)⊗3. Consider the following twisted orthogonal product
basis (t-OPB):

B0 : = {|ψ〉kkk ≡ |k, k, k〉 | k ∈ {0, 1, 2}}, (8a)

B1 : = {|ψ (i, j)〉1 ≡ |0, ηi, ξ j〉}, (8b)

B2 : = {|ψ (i, j)〉2 ≡ |ηi, 2, ξ j〉}, (8c)

B3 : = {|ψ (i, j)〉3 ≡ |2, ξ j, ηi〉}, (8d)

B4 : = {|ψ (i, j)〉4 ≡ |ηi, ξ j, 0〉}, (8e)

B5 : = {|ψ (i, j)〉5 ≡ |ξ j, 0, ηi〉}, (8f)

B6 : = {|ψ (i, j)〉6 ≡ |ξ j, ηi, 2〉}, (8g)

where i, j ∈ {0, 1}, and |ηi〉 := |0〉 + (−1)i |1〉, |ξ j〉 := |1〉 +
(−1) j |2〉. Consider the state |S〉 := (|0〉 + |1〉 + |2〉)⊗3. Note
that |S〉 is orthogonal neither to the states in B0 nor to the
states {|ψ (0, 0)〉l}6

l=1. It is orthogonal to the remaining states,

and accordingly the set of states

U [3]
PB :=

{
6⋃

l=1

{Bl \ |ψ (0, 0)〉l}
⋃

|S〉
}

(9)

forms a UPB in (C3)⊗3 [39]. The cardinality of U [3]
PB is 19

and the eight-dimensional subspace orthogonal to this UPB
is fully entangled. The normalized projector on this fully
entangled subspace is a rank-8 density operator ρ[3](8) ∈
D((C3)⊗3), given by

ρ[3](8) := 1

8

⎛
⎝I27 −

∑
|ψ〉∈U [3]

PB

|ψ̃〉 〈ψ̃ |
⎞
⎠. (10)

Here |x̃〉 denotes the normalized state proportional to the un-
normalized ray vector |x〉.

Proposition 1. The state ρ[3](8) ∈ P int (3 ⊗ 3 ⊗ 3) but
ρ[3](8) �∈ Bint (3 ⊗ 3 ⊗ 3).

Proof. Partial transposition (PT) acts linearly, and on a
product state ρAB = |φ〉A 〈φ| ⊗ |χ〉B 〈χ | it acts as ρ

TB
AB := (I ⊗

T )[|φ〉A 〈φ| ⊗ |χ〉B 〈χ |] := |φ〉A 〈φ| ⊗ |χ	〉B 〈χ	| [14], where
|χ	〉 = ∑

α	
i |i〉 for |χ〉 = ∑

αi |i〉 with {|i〉} being an or-
thonormal basis. Therefore we have ρ

Tx
3 (8) � 0 for x ∈

{A, B,C}. In fact, since all the coefficients of the states in
t-OPB {Bl}6

l=0 are real, therefore ρ
Tx
3 (8) = ρ[3](8) for all x.

This implies that the state ρ[3](8) is PPT across all bipartitions,
and consequently ρ[3](8) ∈ P int (3 ⊗ 3 ⊗ 3). A state to be-
long in the set B(A|BC) must allow separable decomposition
across this cut. However, as pointed out in [39], one can have
only four mutually orthogonal states that are separable across
the A|BC cut and orthogonal to the states in U [3]

PB .1 These
four states are given by {|ψ−〉24 , |ψ−〉56 , |ψ−〉(0)1 , |ψ−〉(2)3},
where |ψ−〉lm := |ψ (0, 0)〉l − |ψ (0, 0)〉m and |ψ−〉(k)l :=
4 |k, k, k〉 − |ψ (0, 0)〉l . Since the state ρ[3](8) is of rank 8,
there is a deficit of separable states across A|BC cut, and
thus ρ[3](8) does not allow a separable decomposition across
this cut implying ρ[3](8) �∈ B(A|BC). From the symmetry of
the construction, it follows that ρ[3](8) belongs neither to
B(B|CA) nor to B(C|AB), and consequently, it follows that
ρ[3](8) �∈ Bint (ABC). This completes the proof. �

Proposition 1 can be generalized for arbitrary higher-
dimensional Hilbert spaces (Cd )⊗3 using the UPBs con-
structed in [39]. For the general construction, we refer readers
to [39]. Here we recall only the UPB of (C4)⊗3 since the
construction for even dimensions is different from the odd
dimensional case. The t-OPB in (C4)⊗3 is given by

B0 : = {|ψ〉kkk ≡ |k, k, k〉 | k ∈ {0, 3}}, (11a)

1Using this construction, the authors in [39] have introduced the
concept of unextendible biseparable basis (UBB). Construction of
UBB is crucial as the subspace orthogonal to it turns out to be
a genuinely entangled subspace. This construction is also relevant
to the study of genuine quantum nonlocality without the entangle-
ment (GQNWE) phenomenon [40–42]. GQNWE is a true multiparty
generalization of the seminal quantum nonlocality without the en-
tanglement [13] phenomenon, which has been studied beyond the
quantum scenario very recently [43].
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B′
0 : = {|ψ (l, m, p)〉 ≡ |φl , φm, φp〉}, (11b)

B1 : = {|ψ (i, j)〉1 ≡ |0, ηi, ξ j〉}, (11c)

B2 : = {|ψ (i, j)〉2 ≡ |ηi, 3, ξ j〉}, (11d)

B3 : = {|ψ (i, j)〉3 ≡ |ξ j, 0, ηi〉}, (11e)

B4 : = {|ψ (i, j)〉4 ≡ |ξ j, ηi, 3〉}, (11f)

B5 : = {|ψ (i, j)〉5 ≡ |3, ξ j, ηi〉}, (11g)

B6 : = {|ψ (i, j)〉6 ≡ |ηi, ξ j, 0〉}, (11h)

where l, m, p ∈ {0, 1}, |φ0〉 := |1〉 + |2〉 , |φ1〉 := |1〉 −
|2〉 ; i, j ∈ {0, 1, 2}, |η0〉 = |0〉 + |1〉 + |2〉, and |η1〉 and |η2〉
are a linear combination of {|0〉 , |1〉 , |2〉} such that
{|ηi〉}2

i=0 are mutually orthogonal; |ξ0〉 = |1〉 + |2〉 + |3〉
and |ξ1〉 and |ξ2〉 are a linear combination of {|1〉 , |2〉 , |3〉}
such that {|ξi〉}2

i=0 are mutually orthogonal. Considering
|S〉 := (|0〉 + |1〉 + |2〉 + |3〉)⊗3 the UPB is given by

U [4]
PB :=

{
6⋃

l=1

{Bl \ |ψ (0, 0)〉l}
⋃

{B′
0 \ |ψ (0, 0, 0)〉}

⋃
|S〉

}
.

(12)

The rank-8 state ρ[4](8) belonging to P int (4 ⊗ 4 ⊗ 4) but not
to Bint (4 ⊗ 4 ⊗ 4) is given by

ρ[4](8) := 1

8

⎛
⎝I64 −

∑
|ψ〉∈U [4]

PB

|ψ̃〉 〈ψ̃ |
⎞
⎠. (13)

This finalizes the construction in (Cd )⊗3 for d � 3. How-
ever, a similar construction is not possible for the three-qubit
Hilbert space. In the next subsection, we will discuss a differ-
ent construction for this case.

B. Construction in C2 ⊗ C2 ⊗ C2

We would first like to point out a fundamental difference
between the three-qubit unextendible product basis UShifts

PB and
the UPBs U [3]

PB and U [4]
PB (and their generalization). If bisepa-

rable states are allowed along with the states in UShifts
PB , one

can construct a complete orthogonal basis for (C2)⊗3. For
instance, consider the two-qubit states |a〉 = |1,+〉 , |b〉 =
|+, 0〉 , |c〉 = |0, 1〉 , |d〉 = |−,−〉. Then the states

$(A|BC) ≡
{|κ1〉 := |0〉 |a⊥〉 , |κ2〉 := |1〉 |b⊥〉

|κ3〉 := |+〉 |c⊥〉 , |κ4〉 := |−〉 |d⊥〉

}

are separable across the A|BC cut, where |a⊥〉 , |b⊥〉 ∈
Span{|a〉 , |b〉} and |c⊥〉 , |d⊥〉 ∈ Span{|c〉 , |d〉} with |x⊥〉 de-
noting the state orthogonal to |x〉. The states in $(A|BC) along
with the states in UShifts

PB form a complete basis for (C2)⊗3.
On the other hand, as discussed in the proof of Proposition
1, the set U [3]

PB (or its generalization U [d]
PB ) is not completable

by appending only biseparable states. This fact plays a crucial
role in proving the nonbiseparability of the state ρ[3](8) and
its generalization. This fact, however, does not hold for a
three-qubit product basis as it is not possible to have a set of
orthogonal product states in C2 ⊗ Cn which is uncompletable
[11,14]. We therefore look for a different method to construct
our required state in the three-qubit Hilbert space.

At this stage, we check the state of [12], used to disprove
the conjecture in [36]. This particular state is PPT across the
A|BC cut and hence belongs to P (A|BC). However, being
NPT across the other cuts, it does not belong to P int (2 ⊗ 2 ⊗
2) and hence fails to fulfill our purpose.

We then consider the PPT-bound entangled state of C2 ⊗
C4 as constructed by Horodecki [20]. This particular state can
also be thought of as a state in C2 ⊗ C2 ⊗ C2. Let us recall
Horodecki’s construction of a three-qubit state. For that, first
consider the states

|ψ1〉ABC = 1√
2

(|0〉A ⊗ |00〉BC + |1〉A ⊗ |01〉BC ), (14a)

|ψ2〉ABC = 1√
2

(|0〉A ⊗ |01〉BC + |1〉A ⊗ |10〉BC ), (14b)

|ψ3〉ABC = 1√
2

(|0〉A ⊗ |10〉BC + |1〉A ⊗ |11〉BC ), (14c)

|φ(b)〉ABC = |1〉A ⊗
(√

1 + b

2
|00〉 +

√
1 − b

2
|11〉

)
BC

,

(14d)

where 0 � b � 1. Consider the density operator defined by

χABC := 2

7

3∑
i=1

P
[
ψ i

ABC

] + 1

7
P [011], (15)

where P [x] := |x〉 〈x|. A straightforward calculation yields
that the state χABC is NPT across the A|BC cut. Consider a
new density operator,

σ
(b)
ABC := 7b

7b + 1
χABC + 1

7b + 1
P

[
φ

(b)
ABC

]
. (16)

The state σ
(b)
ABC turns out to be PPT across A|BC cut for the

whole range of the parameter b. Here the state P [φ(b)
ABC] can be

thought of as the noise part that absorbs the NPT-ness of χABC .
Furthermore, applying the range criterion of entanglement
(Theorem 2 of [20]), it turns out that for 0 < b < 1 the state
is entangled, whereas it is separable for b = 0, 1. Therefore,
for b ∈ (0, 1) the state σ

(b)
ABC ∈ P (A|BC) but σ

(b)
ABC �∈ B(A|BC).

Matrix representation of σ
(b)
ABC in the computational basis reads

as

σ
(b)
ABC ≡ 1

7b + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b 0 0 0 0 b 0 0

0 b 0 0 0 0 b 0

0 0 b 0 0 0 0 b

0 0 0 b 0 0 0 0

0 0 0 0 1+b
2 0 0

√
1−b2

2

b 0 0 0 0 b 0 0

0 b 0 0 0 0 b 0

0 0 b 0
√

1−b2

2 0 0 1+b
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(17)

Here we follow the lexicographic order from left to right and
from up to down. Explicit calculation further yields that σ

(b)
ABC

is NPT across the other two cuts for b ∈ [0, 1], and hence it
does not belong to P int (2 ⊗ 2 ⊗ 2). It is important to note
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that the construction of σ
(b)
ABC is not party symmetric. So we

consider a party symmetric state η
(b)
ABC given by

η
(b)
ABC := 1

3

(
σ

(b)

ABC
+ σ

(b)

BCA
+ σ

(b)

CAB

)
. (18)

We use a symbol like σ
(b)
ABC

to denote that the ordering of party

index does matter. For instance, the state σ
(b)
ABC

is the same as

σ
(b)
ABC of Eq. (16), whereas σ

(b)
BCA

is same as the state in Eq. (16)
but with the role of the party indices changed as A → B, B →
C, C → A; the state σ

(b)
CAB

is defined similarly.

For a certain range of the parameter b, the state η
(b)
ABC turns

out to be PPT across all three bipartitions. However, we find
that the rank of this state as well as its partial transposition
across different cuts turn out to be 8. Therefore, the range
criterion does not directly apply to establish the inseparability
of this state. To obtain a lower rank density operator, we thus
consider the following operator:

h(b)
ABC := η

(b)
ABC − μ

(
v1v

T
1 + v2v

T
2

) + ν
(
v3v

T
4 + v4v

T
3

)
+ ε

(
v5v

T
6 + v6v

T
5

)
, (19)

where μ := b
3(1+7b) , ν = 1+3b

6+42b , ε := 2b
3(1+7b) ; T denotes ma-

trix transposition; and

v1 := (01000010)T, v2 := (00100100)T,

v3 := (01000000)T, v4 := (00100000)T,

v5 := (00000010)T, v6 := (00000100)T.

Although the matrix h(b)
ABC is positive semidefinite, it does not

have a unit trace. A proper normalization yields us the density
operator

ρ
[2]
ABC (b) := 3 + 21b

3 + 17b
h(b)

ABC . (20)

Straightforward calculations lead us to the following observa-
tions regarding the state ρ

[2]
ABC (b):

O-1 : ρ
[2]
ABC (b) is a valid density operator for b ∈ [0, 1], i.e.,

for all values of the parameter b, ρ
[2]
ABC (b) ∈ D(2 ⊗ 2 ⊗ 2).

O-2 : Partial transposition of ρ
[2]
ABC (b) with respect to A

is positive semidefinite for parameter values b ∈ [0, 1], i.e.,
[ρ[2]

ABC (b)]TA � 0 and consequently ρ
[2]
ABC (b) ∈ P (A|BC) for all

b ∈ [0, 1].
O-3 : Partial transpositions of ρ

[2]
ABC (b) with respect to

B and C are positive semidefinite for parameter values b ∈
(∼ 0.8184, 1] := R ⊂ [0, 1], i.e., [ρ[2]

ABC (b)]Tx � 0 for x ∈
{B,C} and consequently ρ

[2]
ABC (b) ∈ P (B|CA) and ρ

[2]
ABC (b) ∈

P (C|AB) for all b ∈ R.
We thus arrive at the following proposition:
Proposition 2. For the parameter values b ∈ R, the

state ρ
[2]
ABC (b) ∈ P int (2 ⊗ 2 ⊗ 2) but ρ

[2]
ABC (b) �∈ Bint (2 ⊗ 2 ⊗

2), and hence Bint (2 ⊗ 2 ⊗ 2) � P int (2 ⊗ 2 ⊗ 2).
Proof. Proof of the first part follows immediately from the

observations O-2 and O-3. Since ρ
[2]
ABC (b) ∈ P (A|BC) for b ∈

[0, 1] and ρ
[2]
ABC (b) ∈ P (B|CA),P (C|AB) for b ∈ R, therefore

ρ
[2]
ABC (b) ∈ P int (2 ⊗ 2 ⊗ 2) for b ∈ R.

We now prove that the state ρ
[2]
ABC (b) is not separable across

the AB|C cut. For that, we first write the matrices of the den-
sity operator ρ

[2]
ABC (b) and its partial transposition with respect

to C,

ρ
[2]
ABC (b) ≡ �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� 0 0 �
3 0 �

3
�
3 0

0 � � 0 0 0 0 �

0 � � 0 0 0 0 �
�
3 0 0 � �

3 0 0 0

0 0 0 �
3 � 0 0 �

�
3 0 0 0 0 2�

3
2�
3 0

�
3 0 0 0 0 2�

3
2�
3 0

0 � � 0 � 0 0 ζ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(21)

[
ρ

[2]
ABC (b)

]Tc ≡ �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� 0 0 � 0 0 �
3 0

0 � �
3 0 �

3 0 0 �

0 �
3 � 0 0 �

3 0 0

� 0 0 � 0 0 � 0

0 �
3 0 0 � 0 0 2�

3

0 0 �
3 0 0 2�

3 � 0
�
3 0 0 � 0 � 2�

3 0

0 � 0 0 2�
3 0 0 ζ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(22)

where � := b
1+7b , � := 1+3b

6(1+7b) , � := 1+5b
6(1+7b) , ζ := 1+b

2(1+7b) ,

� := 2b+√
1−b2

6(1+7b) , and � := 3+21b
3+17b . A vector ω lying in the

range of ρ
[2]
ABC (b) can be expressed as

ω = (A, B, B,C; D, E , E , F )T,

where A, B,C, D, E , F ∈ C. (23)

However, if ρ
[2]
ABC (b) has to be separable across the AB|C

cut, then according to the range criterion [20], there ex-
ists a set of product vectors {ψi ⊗ φk} spanning the range
space of ρ

[2]
ABC (b) such that {ψi ⊗ φ∗

k } span the range space
of [ρ[2]

ABC (b)]TC ; or any of the vectors {ψi ⊗ φk} ({ψi ⊗ φ∗
k })

belongs to the range of ρ
[2]
ABC (b) ([ρ[2]

ABC (b)]TC ), with ψi ∈ C4

and φk ∈ C2. Without any loss of generality, the elements of
the set {ψi ⊗ φk} can be written as

v1 = (α, β, γ , δ)T ⊗ (1, 0)T, (24a)

v2 = (α, β, γ , δ)T ⊗ (0, 1)T, (24b)

v3 = (α, β, γ , δ)T ⊗ (1, t )T, (24c)

where α, β, γ , δ, t ∈ C; & t �= 0. Comparing Eqs. (24) with
Eq. (23) we obtain

v1 = (A, 0, D, 0)T ⊗ (1, 0)T, (25a)

v2 = (0,C, 0, F )T ⊗ (0, 1)T, (25b)

v3 = (A, tA, D, tD)T ⊗ (1, t )T. (25c)
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FIG. 1. A set inclusion diagram among the different convex
sets of states for tripartite quantum systems. For instance, B(A|BC)
denotes the set of separable states across the A|BC cut, whereas
P (A|BC) stands for the set of PPT states across the same cut. The
set of fully separable states F (ABC) (green region) is a strict subset
of B(A|BC) ∩ B(B|CA) ∩ B(C|AB) even for the three-qubit Hilbert
space. The • representing the state ρSU of Eq. (7) (first identified
in [11]) establishes this strict inclusion relation. On the other hand,
even for the simplest tripartite system Bch(2 ⊗ 2 ⊗ 2) � Pch(2 ⊗
2 ⊗ 2). The representing the state identified in [12] establishes this
particular strict inclusion relation. For any tripartite Hilbert space
Cd1

A ⊗ Cd2
B ⊗ Cd3

C with min{d1, d2, d3} � 2, B(A|BC) ∩ B(B|CA) ∩
B(C|AB) � P (A|BC) ∩ P (B|CA) ∩ P (C|AB). The representing
the states described in Propositions 1 and 2 and in Remark 1 estab-
lishes this fact.

Therefore, the partial complex conjugations of vectors in
Eq. (25) are obtained as

v∗
1 = (A, 0, D, 0)T ⊗ (1, 0)T, (26a)

v∗
2 = (0,C, 0, F )T ⊗ (0, 1)T, (26b)

v∗
3 = (A, tA, D, tD)T ⊗ (1, t∗)T. (26c)

These vectors should span the range of [ρ[2]
ABC (b)]TC . Now con-

sider the vector u = (0, 0, b
3+17b , 0, 0, 2b

3+17b ,
2b+√

1−b2

6+34b , 0)T in

the range of [ρ[2]
ABC (b)]TC . This particular vector cannot be

spanned by {v∗
1 , v

∗
2 , v

∗
3} and hence leads to the fact that

ρ
[2]
ABC (b) is inseparable across the AB|C cut. Thus, ρ

[2]
ABC (b) �∈

B(C|AB) and hence ρ
[2]
ABC (b) �∈ Bint (2 ⊗ 2 ⊗ 2) for b ∈ (∼

0.8184, 1]. This completes the proof. �
Remark 1. Proposition 1 and Proposition 2 yield the proof

for Theorem 1 for (Cd )⊗3 with d � 3 and (C2)⊗3, re-
spectively. Given these two Propositions, it is also not
hard to see that Theorem 1 also holds for any tripartite
Hilbert space Cd1 ⊗ Cd2 ⊗ Cd3 with min{d1, d2, d3} � 2. For
arbitrary d1, d2, d3, construct the state ρ

[dm]
ABC either as of

Proposition 1 if dm := min{d1, d2, d3} � 3 or as of Propo-
sition 2 if dm = 2. Clearly, ρ

[dm]
ABC ∈ P int (d1 ⊗ d2 ⊗ d3) but

ρ
[dm]
ABC �∈ Bint (d1 ⊗ d2 ⊗ d3).

Theorem 1 reveals a nontrivial geometric implication re-
garding the state space structure of tripartite Hilbert spaces
by establishing a proper set inclusion relation among different
convex sets of states (see Fig. 1).

IV. CONCLUDING REMARKS AND FUTURE OUTLOOK

We have studied the intricate state space structure of multi-
partite quantum systems. In particular, we have shown that
the intersection of three sets of biseparable states (across
three different bipartite cuts) is a strict subset of the intersec-
tion of three sets of PPT states for tripartite Hilbert spaces
Cd1

A ⊗ Cd2
B ⊗ Cd3

C with min{d1, d2, d3} � 2. We establish this
strict set inclusion relation by explicit construction of the
states that belong to the set P int (d1 ⊗ d2 ⊗ d3) but not to
Bint (d1 ⊗ d2 ⊗ d3). At this point, the work by Eggeling and
Werner [10] is worth mentioning. There the authors stud-
ied the state space structure for tripartite quantum systems
by considering a particular class of states that commute
with unitaries of the form U ⊗ U ⊗ U . Whereas for a three-
qubit system, it turns out that P int (2 ⊗ 2 ⊗ 2) = Bint (2 ⊗
2 ⊗ 2) if we limit within the U ⊗ U ⊗ U invariant class;
our results show that this is not the case for generic state
space. The present study thus provides understanding of the
multipartite state space structure as well as the multipar-
tite entanglement behavior and adds to the previous results
established in [10–12].

Our work welcomes further questions for future study.
First, we have shown only that the convex sets of states
P int (ABC) and Bint (ABC) are not identical. Now, according
to the classic Minkowski-Krein-Milman theorem, we know
that every convex (and compact) set in Euclidean space (or
more generally in a locally convex topological vector space)
is the convex hull of its extreme points [44] (see also [45]).
Since P int (ABC) �= Bint (ABC), the sets of extreme points of
these sets are also different, i.e., EP int (ABC) �= EBint (ABC).
Characterizing these extreme points will provide us a more
detailed picture regarding the tripartite state space structure.
In this respect, the work of [46] is worth mentioning, where
the authors have shown that a (d − 3)/2-simplex is sitting
on the boundary between the set P (AB) and the set of
non-PPT states for the Hilbert space Cd

A ⊗ Cd
B for odd d with

d � 3. There are in-fact some efficient methods in literature
to check extremality of P (AB) [47–50]. Our study also
motivates questions on quantum dynamics. For the bipartite
case, researchers have identified entanglement breaking
completely positive trace-preserving maps (channels) N ,
such that (I ⊗ N )[ρAB] ∈ S (AB) ∀ ρAB ∈ D(AB) [51,52].
Similarly, here one might be interested in the classes
of channels that map any tripartite state to the sets
F (ABC)/Bint (ABC)/P int (ABC), i.e., (I ⊗ I ⊗ N )[ρABC] ∈
F (ABC)/Bint (ABC)/P int (ABC) ∀ ρABC ∈ D(ABC). Finally,
comprehending the state space structure for an arbitrary
number of systems is far from complete.
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