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Emergence of the Born rule in strongly driven dissipative systems
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To understand the dynamical origin of the measurement in quantum mechanics, several models have been put
forward which have a quantum system coupled to an apparatus. The system and the apparatus evolve in time,
and the Born rule for the system to be in various eigenstates of the observable is naturally obtained. In this paper,
we show that the effect of the drive-induced dissipation in an open quantum system can lead to the Born rule,
even if there is no separate apparatus. The applied drive needs to be much stronger than the system-environment
coupling. In this condition, we show that the dynamics of the driven-dissipative system could be reduced to a
Milburn-like form, using a recently proposed fluctuation-regulated quantum master equation [A. Chakrabarti
and R. Bhattacharyya, Phys. Rev. A 97, 063837 (2018).]. The irreversible part of the dynamics is caused by the
drive-induced dissipation. The resulting mixed state is identical to that obtained by using the Born rule.

DOI: 10.1103/PhysRevA.104.022436

I. INTRODUCTION

The Born rule provides the probability of the outcome
of a measurement of an observable on a quantum system
[1]. This rule is introduced as a postulate on the process
of measurement in the axiomatic formulation of quantum
mechanics [2]. The rule states that the act of measuring an
observable on a given normalized state |ψ〉 results in the
system collapsing to one of the eigenstates of the observable
(say, |φi〉) with the probability of such an outcome given
by |〈φi|ψ〉|2. The nonanalytic nature of the measurement, in
the form of a collapse, prompted the development of several
dynamical models which aimed to show that the Born rule
was but a natural outcome of the time evolution of a coupled
system and apparatus, with much ingenuity involved in con-
structing the apparatus and the coupling of the system to the
apparatus [3–9].

Among the earliest to attempt a dynamical model, von
Neumann formulated the measurement process through a cou-
pling between two entities. One is the observed system and
the other is the measuring apparatus; the observer does not
directly measure the system but infers the state of the system
by observing that of the apparatus (referred to as the pointer
variable) [3]. The system and the apparatus evolve together
and reach a steady state where eigenstates of the system
and the apparatus are entangled. Each state of the apparatus
uniquely identifies an eigenstate of the system. The creation
of the entangled state between the system and the appara-
tus is known as the premeasurement step [11]. Subsequent
to this step, a projective measurement is required, in which
an observable of the system is measured in an orthonormal
basis composed of the eigenstates of the observable, and the
measurement projects the system onto one of these eigenstates
with probability given by the square of the length of the pro-
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jection and returns the corresponding eigenvalue. The system
and the apparatus evolve under a unitary propagator. As such,
the collapse of the state function is not within the scope of von
Neumann’s premeasurement model [10].

Coleman and Hepp proposed an exactly solvable model
relying on unitary evolution [4]. In this model, a fast particle
passes through a long row (assumed infinite) of noninter-
acting spins, which are flipped one after another, to induce
an observable macroscopic signature. Suitable choice of this
spin-flipping local potential results in the emulation of the
Born rule. Among the other unitary approaches, the model by
Cini is also exactly solvable and is constructed using a spin-
1/2 particle interacting with a spin-L particle as the apparatus
[6]. However, being completely unitary, these models do not
describe the collapse.

In general, the measurement in quantum mechanics is an
irreversible process. Therefore, the postmeasurement state of
a quantum system could be described by a mixed state density
matrix. We note that the irreversibility also arises naturally
in open quantum systems or driven-dissipative systems. Thus,
the need for an environment in modeling the measurement
process was felt. Several dynamical models of measurement
were proposed that use quantum master equations or, in more
general terms, use the notion of the environment.

Zurek, in the early 1980s, showed that von Neumann’s
scheme may be extended using an apparatus coupled to the
environment [11,12]. The environment is assumed to have
many degrees of freedom. After a combined evolution of the
apparatus and the environment under a suitably chosen cou-
pling, one takes a trace over the environment. The resulting
state is a mixed state with different apparatus states (pointer
variables) having different probabilities as per the Born rule.
This decoherence-assisted process of selection of the pointer
states is named as einselection [10–12].

Motivated by the fact that open quantum systems show
irreversible dynamics, Green proposed modeling of an appa-
ratus with coupling to the thermal baths [7]. In this model, a
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two-level system is considered, which is brought into inter-
action with separate detectors. Each detector has two sets of
oscillators at different temperatures. The oscillators are cou-
pled by an interaction with the particle. As such, the particle’s
states could be detected by a temperature change.

Gaveau and Schulman proposed a static variant of the
Coleman-Hepp model where the system was a spin-1/2 parti-
cle and the apparatus was a one-dimensional Ising spin model
[8]. Later Allahverdyan and others proposed the Curie-Weiss
model [9]. A spin-1/2 particle (the system) is coupled to an
Ising ferromagnet (the apparatus) by a quartic infinite-range
Ising interaction in this model. The apparatus is allowed to in-
teract with a phonon bath through a spin-boson coupling. The
reduced density matrix of the system dynamically evolves to
the form predicted by the Born rule, with the magnet reflecting
the state of the particle.

In all the approaches described above, the system and the
apparatus are made to evolve together. The apparatus is often
modeled in a rather elaborate way, such as in the Curie-Weiss
model. Now, with the increasing importance of quantum infor-
mation processing, incorporating such a measuring apparatus
in the simulations of quantum circuits becomes cumbersome
since each qubit would require its own apparatus. This paper
shows that it is possible to have a dynamical model without
an explicit invocation of an apparatus, provided one uses the
recently observed drive-induced dissipation (DID) within the
framework, as described below.

Driven-dissipative dynamics with non-Bloch behavior,
which is a manifestation of the DID, has also been observed
experimentally in a variety of systems [13–17]. Motivated
by such observations, a variant of the Markovian quantum
master equation has recently been proposed by Chakrabarti
and Bhattacharyya [18] which shows that the dissipator has a
contribution from the drive as well. Its formulation requires
an explicit introduction of the fluctuations in the environment,
which provides a regulator in the dissipator. The presence
of the regulator ensures that the DID could be calculated
as a simple closed-form expression. The master equation is
named as the fluctuation-regulated quantum master equation
(FRQME). We note that in recent years, FRQME has been
used to predict the optimal clock speed of qubit gates and the
nonlinearity of the light shifts [19,20].

If one considers an apparatus connected to a system, then
typically, the premeasurement occurs, followed by a pro-
jective measurement in the form of a collapse. Subsequent
trace over the apparatus subspace results in the mixed density
matrix described by the Born rule. In this paper, we show that
applying a time-dependent drive on the system serves a similar
purpose provided one includes the higher-order effect of the
drive in the form of DID. We use FRQME to include the DID
in the dynamics of the system and show that this results in the
emergence of the Born rule.

If we consider the drive to be much stronger than the
system-environment interaction, we would expect that
the system would reach a quasisteady state, much before the
system-environment coupling begins to influence the system
density matrix. As a result, starting from a pure state, the
system ends up with a mixed state, and the final density
matrix reduces to a statistical mixture of the eigenstates of
the drive Hamiltonian with probabilities being the same as

that predicted by the Born rule. The operator of the drive
Hamiltonian serves as the observable being measured.

II. FLUCTUATION-REGULATED QUANTUM MASTER
EQUATION

In this formulation, one considers the standard settings
of a driven open quantum system along with an explicit
introduction of the thermal fluctuation acting on the environ-
ment. The form of the thermal fluctuations is chosen to be
diagonal in the eigenbasis {|ξ j〉} of the static Hamiltonian
of the environment, represented by HE(t ) = ∑

j f j (t )|ξ j〉〈ξ j |,
where f j (t )’s are assumed to be independent, Gaussian, δ-
correlated stochastic variables with zero mean and standard
deviation κ [18], i.e., f j (t ) = 0, f j (t1) f j (t2) = κ2δ(t1 − t2).
This ensures that the fluctuations would destroy the coher-
ences in the environment but do not change the equilibrium
population distribution of the environment. Next, we move
to the interaction representation with respect to the static
Hamiltonians of the system and the environment, and denote
the Hamiltonians with upright H symbols. To arrive at the
regulator from the thermal fluctuations a finite propagator is
constructed, which is infinitesimal in terms of the drive and
system-environment coupling Hamiltonians (together denoted
by Heff ), but remains finite in the instances of the fluctua-
tions of the environment. To fulfill this condition, only the
first-order contribution of Heff is taken in the construction of
the propagator U (t1, t ) within the time interval t to t1, but
we consider many instances of the fluctuation taking place
in that interval and retain all possible higher-order terms of
HE. In other words, the timescale of the fluctuations of the
environment is assumed to be much faster compared to the
timescale over which the system evolves. Finally, we get a
finite propagator of the following form:

U (t1) ≈ UE(t1) − i
∫ t1

t
Heff (t2)UE(t2)dt2 (1)

where UE(t1) = I − i
∫ t1

t HE(t2)UE(t2)dt2.
Next the Born approximation [21] is used; i.e., at the begin-

ning of the coarse-graining interval, the total density matrix
of the system-environment pair can be factorized into that of
the system and the environment as ρ(t ) = ρS(t ) ⊗ ρeq

E . This
approximation and the assumptions regarding the nature of the
fluctuation provide the desired regulator in the second order
under an ensemble average as

UE(t1)ρ̃(t )U †
E (t2) = ρS(t ) ⊗ ρeq

E e− 1
2 κ2|t1−t2|. (2)

A regular coarse-graining procedure [22] is subsequently
carried out to obtain the FRQME in the following form:

d

dt
ρS(t ) = −i TrE[Heff (t ), ρS(t ) ⊗ ρeq

E ]sec

−
∫ ∞

0
dτ TrE[Heff (t ), [Heff (t − τ ), ρS(t ) ⊗ ρeq

E ]]sec e− |τ |
τc

(3)

where τc = 2/κ2 is the characteristic timescale of the decay
of the autocorrelation of the fluctuations and the superscript
“sec” stands for secular approximation that involves ignoring
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FIG. 1. A schematic diagram of the nature of the evolution of
an observable of the system. In regions I and II, the first-order
commutator and the dissipators DS dominate the evolution of the
system, provided DS � DSE. In region III, the dissipators DS and
DSE together dictate the evolution of the system. Region II is a qua-
sisteady state where the Born rule emerges. To analyze the behavior
of the system in regions I and II, we neglect the dissipator from the
system-environment coupling.

the fast oscillating terms in the quantum master equation. We
note that since Heff contains the drive term, hence the DID
originates from the double commutator under the integral in
the above equation.

The FRQME is in Gorini-Kossakowski-Lindblad-
Sudarshan form and yields a trace-preserving, completely
positive dynamical map. This FRQME predicts simpler
forms of DID, which have been shown to be the absorptive
Kramers-Kronig pairs of the well-known Bloch-Siegert and
light shift terms. The predicted nature of DID from the
FRQME has also been verified experimentally [20,23].

III. THE MODEL

We consider a strongly driven system which is weakly
coupled to its environment. We use FRQME to follow the
Markovian dynamics of this system. We note that for our sys-
tem Heff is given by HSE + HS. For a simple Jaynes-Cummings-
type system-environment coupling, we have TrE{HSE ρ} = 0
and the FRQME reduces to

dρS

dt
= −i[HS, ρS]

sec − DSρS − DSEρS (4)

where DS and DSE are the Lindbladians from HS and HSE,
respectively, where the dissipator D includes the double com-
mutator terms. We note that the cross terms between the two
Hamiltonians vanish since TrE{HSE ρ} = 0. For a strong drive
which results in DS � DSE, it is expected that the system
would reach a quasisteady state with respect to the commu-
tator and the dissipator DS, and would be influenced by DSE at
a much later stage (region III), as depicted in Fig. 1.

The drive Hamiltonian HS is chosen to be time independent,
and its operator part contains only the observable of interest.
This choice is made on the ground that if we perform rotating
wave approximation on a resonant linearly polarized oscil-
lating field, or use a resonant circularly polarized oscillating
field, both would result in the same Hamiltonian. Under this
condition, the drive Hamiltonian HS in the interaction repre-
sentation would be in secular form and hence the superscript
“sec” is dropped in the remaining part of the paper.

As such, for the strong drive, Eq. (4) reduces to the follow-
ing effective form for regions I and II:

dρS

dt
= −i [HS, ρS] − τc[HS, [HS, ρS]]. (5)

This is the form of FRQME that we shall use in the remaining
part of the paper.

Let the eigenvalues and the eigenvectors of HS be {λi}
and {|φi〉}, respectively. Therefore, HS can be written as HS =∑

i λi|φi〉〈φi|.
Let |ψi〉 = ∑

j ci
j |φ j〉 and

ρS =
∑

i

pi|ψi〉〈ψi|

=
∑

j,k

∑
i

pic
i
jc

i ∗
k |φ j〉〈φk|

=
∑

j,k

a jk|φ j〉〈φk|

where a jk = ∑
i pici

jc
i ∗
k . We rewrite Eq. (5) in terms of its

(i, j)th elements as

d

dt
ρS|i j = −i[HS, ρS]i j − τc[HS, [HS, ρS]]i j . (6)

Let the (i, j)th element of the density matrix be given by
(ρS)i j = 〈φi|ρS|φ j〉 = ai j . We can express Eq. (6) in terms
of ai j as

ȧi j = [−i
λi j − τc
λ2
i j]ai j (7)

where 
λi j = (λi − λ j ). It is clear that ȧii = 0, that means the
diagonal elements do not evolve with time.

The solution of Eq. (7) is

ai j (t ) = ai j (0)e−i
λi j t e−τc
λ2
i j t . (8)

A. Nondegenerate case

If λi 	= λ j , then ai j (t → ∞) = 0 and aii(t → ∞) =
aii(0) = const. Therefore, all off-diagonal elements will van-
ish and only diagonal elements will survive in the limit t →
∞ and the density matrix can be expressed as

ρS(t → ∞) =
∑

i

∑
m

pm|cm
i |2|φi〉〈φi|. (9)

B. Degenerate case

If λi = λ j , then ȧi j = 0 and ai j (t → ∞) = ai j (0) = const.
Therefore, both diagonal and off-diagonal elements remain
constant in the limit t → ∞ and the density matrix can be
expressed as

ρS(t → ∞) =
∑
i, j

∑
m

pmcm
i cm ∗

j |φi〉〈φ j |. (10)

The above form of the density matrix is identical to the form
predicted by the Born rule.

IV. EXAMPLES

We exemplify the emergence of the Born rule for a single-
qubit system and also for a multiqubit system. For the latter,
we employ a drive that has a degenerate eigensystem.
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A. Single qubit

For the single-qubit system, we begin with the system in a
pure state given by

|ψ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉, (11)

and the initial density matrix of the system is given by ρ0 =
|ψ〉〈ψ |. To emulate the evolution of the system under a strong
drive, we apply a pulse with flip angle κ on the system about
the y axis. The Hamiltonian corresponding to this pulse is
expressed as

HS = ω1
σy

2
(12)

and the time required to apply this pulse is κ
ω1

.
The eigenvectors of the operator part of the drive

Hamiltonian HS are

|φ1〉 = 1√
2

(|0〉 + i|1〉), |φ2〉 = 1√
2

(|0〉 − i|1〉), (13)

and the corresponding nondegenerate eigenvalues are ±1/2,
respectively. We note that the initial state |ψ〉 can also be ex-
pressed as |ψ〉 = ∑

i ci|φi〉, where, c1 = 〈φ1|ψ〉 = (cos θ
2 −

ieiϕ sin θ
2 )/

√
2 and c2 = 〈φ2|ψ〉 = (cos θ

2 + ieiϕ sin θ
2 )/

√
2.

Equation (5) can be expressed in the Liouville space as
follows:

d ρ̂S

dt
= [−i ˆ̂L(1)

drive − τc
ˆ̂L(2)

drive]ρ̂S = ˆ̂�ρ̂S (14)

where ˆ̂L(1)
drive is the Liouville superoperator or Liouvillian for

the corresponding [HS, ρS] term and ˆ̂L(2)
drive is the Liouvillian

for the corresponding [HS, [HS, ρS]] term which is responsible
for the second-order DID.

Solving this differential equation (14), we can write the
system density matrix at a later time t as

ρ̂S(t ) = e
ˆ̂�t ρ̂S(0) (15)

where ρ̂S(0) is the initial density matrix and e
ˆ̂�t is the propa-

gator in Liouville space.

We construct the superoperator ˆ̂� using Eq. (14) and con-

struct the Liouville space propagator as U = e
ˆ̂� κ

ω1 which acts
on the initial state ρ0 to produce the final density matrix.

When we apply this propagator U on the initial density
matrix ρ0, the final density matrix becomes

ρS = Uρ0

=
(

1 − e−ω1τcκa −i sin ϕ sin θ + e−ω1τcκb
i sin ϕ sin θ + e−ω1τcκb 1 + e−ω1τcκa

)
,

(16)

where a = (sin θ sin κ cos ϕ − cos κ cos θ ), b = (cos κ cos ϕ

sin θ + cos θ sin κ ). The dissipator DS as described earlier
provides the decaying terms in the above. In the limit
ω1τcκ → ∞, the final density matrix becomes

ρS = 1

2

(
1 −i sin θ sin ϕ

i sin θ sin ϕ 1

)
. (17)

O

|c1|2

|φ1

|c2|2

|φ2

|ψ

FIG. 2. Schematic depiction of the journey to the final states
starting from |ψ〉 = ∑

i ci|φi〉 (the green point) where {φi} are the
eigenstates of the observable O. |ci|2 is the probabilities of the
path |ψ〉 → |φi〉. The final state is a mixed state density matrix in
accordance with the Born rule.

We can express the above ρS as

ρS =
∑
i=1,2

|ci|2|φi〉〈φi| (18)

where |c1|2 = |〈φ1|ψ〉|2 = 1
2 (1 + sin θ sin ϕ), and |c2|2 =

|〈φ2|ψ〉|2 = 1
2 (1 − sin θ sin ϕ). This defines a mixed state

density matrix of the eigenstates of the drive. As such, the
drive projects the initial state of the system onto one of its
eigenstates with probabilities given by |c1|2 and |c2|2, respec-
tively. Therefore, our result agrees with the Born rule. Figure 2
shows a schematic diagram of the evolution of the system on
a Bloch sphere, with the classical paths described by colored
arrows. The system moves from a pure state to a mixed state.

B. Degenerate observable and multiqubit

We extend our analysis to an observable with a degenerate
eigensystem. We choose a two-qubit system in an entangled
state given by

|ψ〉 = 1√
2

(|00〉 + |11〉). (19)

We intend to measure σy ⊗ I on this system, such that the
measurement takes place only on the first qubit. The eigen-
vectors of this observable are

|φ1〉 = 1√
2

(|01〉 − i|11〉), |φ2〉 = 1√
2

(|00〉 − i|10〉),

|φ3〉 = 1√
2

(|01〉 + i|11〉), |φ4〉 = 1√
2

(|00〉 + i|10〉), (20)

and the corresponding eigenvalues are −1,−1, 1, 1,
respectively.
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The initial density matrix of the system is given by ρ0 =
|ψ〉〈ψ |. Like the single-qubit case, the operation of the ob-
servable is emulated by a pulse with flip angle κ on the first
qubit about the y axis. The Hamiltonian corresponding to this

pulse is expressed as

HS = ω1
σy

2
⊗ I (21)

and the time required to apply this pulse is κ/ω1.

The system evolves under the Liouvillian obtained using Eq. (14) and the final density matrix assumes the form

ρS = Uρ0 = 1

4

⎛
⎜⎜⎜⎝

(1 + e−2ω1τcκC) −e−2ω1τcκS e−2ω1τcκS (1 + e−2ω1τcκC)

−e−2ω1τcκS (1 − e−2ω1τcκC) (−1 + e−2ω1τcκC) −e−2ω1τcκS

e−2ω1τcκS (−1 + e−2ω1τcκC) (1 − e−2ω1τcκC) e−2ω1τcκS

(1 + e−2ω1τcκC) −e−2ω1τcκS e−2ω1τcκS (1 + e−2ω1τcκC)

⎞
⎟⎟⎟⎠, (22)

where S = sin κ , and C = cos κ .

In the limit ω1τcκ → ∞, the final density matrix becomes

ρS = 1

4

⎛
⎜⎝

1 0 0 1
0 1 −1 0
0 −1 1 0
1 0 0 1

⎞
⎟⎠. (23)

We can express the above ρS as

ρS =
∑

i, j∈{1,2}
cic

∗
j |φi〉〈φ j | +

∑
i, j∈{3,4}

cic
∗
j |φi〉〈φ j | (24)

where c1 = 〈φ1|ψ〉 = i
2 , c2 = 〈φ2|ψ〉 = 1

2 , c3 = 〈φ3|ψ〉 =
− i

2 , c4 = 〈φ4|ψ〉 = 1
2 .

The off-diagonal terms will be present in the final form of
ρS because of the degeneracy between |φ1〉, |φ2〉 and |φ3〉, |φ4〉.
We can rewrite this as a mixture of the linear superpositions
of the states in the following form:

ρS = (|c1|2 + |c2|2)|�1〉〈�1| + (|c3|2 + |c4|2)|�2〉〈�2|

where |�1〉 = (c1|φ1〉 + c2|φ2〉)/
√

|c1|2 + |c2|2 and |�2〉 =
(c3|φ3〉 + c4|φ4〉)/

√
|c3|2 + |c4|2 are the normalized superpo-

sition states. The application of the drive causes the system
to collapse in the degenerate eigensubspaces formed by |φ1〉,
|φ2〉 and |φ3〉, |φ4〉 with probabilities being (|c1|2 + |c2|2)
and (|c3|2 + |c4|2), respectively. Therefore, the results of the
present example are also consistent with the Born rule.

V. DISCUSSIONS

According to von Neumann, at the premeasurement stage,
an entangled superposition of the system and apparatus is cre-
ated that can be described by unitary time evolution. He also
provided a detailed mathematical derivation to show that it is
possible to arrive at such an entangled state by a correct choice
of Hamiltonian. After the premeasurement, the superposition
decoheres and reduces to a single product state of the two.
Zurek, in his seminal paper, summarized the process, as given
below [11]. For the initial-state vectors |ψ〉 and |A◦〉 of the
system and the apparatus, respectively, an evolution under
an appropriately chosen Hamiltonian leads to the following

entangled form:

|A◦〉 ⊗ |ψ〉 =
{∑

i

ai|Ai〉
}

⊗
{∑

i

ci|φi〉
}

−→
∑

i

ci|Ai〉 ⊗ |φi〉. (25)

In the above, |Ai〉 and |φi〉 are the eigenstates of the pointer
variable of the apparatus and the observable of the system,
respectively. The pointer variable of an apparatus has a one-
to-one correspondence with a single observable of the system,
such that a particular pointer variable helps measure a partic-
ular observable of the system.

The last step is the collapse of the wave function. If one
traces out the apparatus, it would be a mixed state of the
eigenstates of the observable of the system with respective
probabilities given by the Born rule. Von Neumann named it
as projective measurement, but it lacks explicit mathematics
explaining why it occurs [3,10]. Our model provides a detailed
mechanism of the collapse in the eigenstates of the observable,
leading to the Born rule. As such, in a way, our approach sup-
plants the premeasurement and the projective measurement by
a single step. A strong drive, with the drive operator as the
system observable, helps realize this step. The drive must act
for a time much shorter than the relaxation time of the system.
We discuss more on the latter part in the paragraphs below.

The FRQME is unique among Markovian master equations
since it evaluates the dissipative effect of the drive; other
master equations deal with the drive only in the first order.
The drive, as shown in our earlier works, can have an ab-
sorptive Kramers-Kronig pair to the familiar dispersive shift
terms, such as the light shifts and the Bloch-Siegert shifts
[18,20]. As a result, FRQME involves a dissipator from the
drive irrespective of the strength of the drive. For a weak
drive, this dissipator is negligible, and hence the FRQME
provides solutions identical to that of the regular Markovian
QMEs. To arrive at the Born rule, the coherences between the
eigenstates of the observable (here, the drive) must dissipate.
While DID always guarantees this, the dissipator from the
system-environment coupling does not. As such, the regular
QMEs cannot show the collapselike short-term behavior of
the system under a strong drive, an expected behavior.
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t

ρ(t) ρ(t + Δt)

ρ(t + Δt) = exp (ΓΔt) ρ(t)

FIG. 3. A schematic diagram of the model of the measurement.
After the measurement, ρ(t + 
t ) is of the form predicted by the
Born rule. �
t should be sufficiently large for the system to reach a
steady state.

We note that the act of the measurement must be much
faster than the characteristic timescale of the relaxation. The
system’s evolution may have more than one characteristic rate
due to the presence of two dissipators in the FRQME. We
have shown one possible scenario when one dissipator is much
stronger than the other using a schematic diagram in Fig. 1.
When the drive is much stronger than the system-environment
coupling, the system goes to a quasisteady state in region II in
accordance with the Born rule. But if we wait for a longer
time, system-environment coupling comes into play and one
obtains a different mixed state density matrix with probability
factors which do not satisfy the Born rule.

Such a deviation from the Born rule is also observed if the
drive and the system-environment coupling are of comparable
strength. In that case, one expects a competition between the
decoherence due to the drive and system-environment inter-
action. We have shown earlier that such a scenario gives rise
to the existence of the optimal clock speed for qubit gates in
open quantum systems [19]. Here, the timescale separation
vanishes, and region II is vanishingly small with no sustained
quasisteady state.

So, a clear separation of the timescale is a requirement to
realize a projective measurement within a finite timespan. Un-
like an instantaneous collapse, this realization of the Born rule
takes a finite timespan governed solely by the drive strength.
For a stronger drive, the timespan of the region I is shorter.
Hence region II captures the Born rule as a quasisteady state
for a longer period of time. We note that the DID is scaled
by the term τc that carries a signature from the environmental
fluctuations and determines how fast one can reach a steady
state. So, higher τc means faster collapse. We note that this
τc is expected to be inversely proportional to temperature.
Therefore, the emulation of the Born rule is favored at a lower
temperature.

The principal feature of our model is that the first-order
effect of the drive-in tandem with the DID leads the system
to a mixed state. We note that the focus is on the creation of
the mixed state through irreversible dynamics. The lack of an
explicit apparatus means that we may not be able to register
the outcome of a specific measurement, but that is not what
this model intends to achieve. Even if one does not register
the outcome of a measurement, a probabilistic mixed state
description is reached and one can apply this repeatedly to

model the measurement many times without having to reset
the apparatus, as shown in the schematics in Fig. 3. This is
one of the major advantages of this model.

In the year 1991, Milburn proposed a model for intrin-
sic decoherence based on a simple modification of a unitary
Schrödinger evolution and derived an equation of motion for
the density matrix of closed quantum systems as a substi-
tution for the Schrödinger equation [24]. This is known as
the Milburn equation. For sufficiently small fundamental time
steps with terms up to second order being considered, the
Milburn equation reduces to the FRQME of the form given
by Eq. (5). A few years later, Bužek and Konôpka applied
the Milburn equation to an open quantum system consisting
of a two-level atom interacting with single- and multimode
electromagnetic fields [25]. They reported that for very strong
system-environment coupling, Rabi oscillation is completely
suppressed, and the system collapses to a statistical mixture of
the ground and excited states. We note that their study focuses
on the overdamped nature of the system but is not a model
of the measurement process. On the other hand, our model
emulates the collapse part of the measurement by presenting a
dynamical treatment of how an open quantum system behaves
when a drive is applied to it. As per our model, measuring
an observable is equivalent to evolving the system under that
observable (which happens to be the drive) with a large ampli-
tude, i.e., evolving the system strongly under the observable.
This naturally leaves the system in a mixed state formed
by the eigenstates of the observable with probabilities given
by the Born rule.

VI. CONCLUSION

In this paper, we demonstrate that the DID from a
strong drive can result in the emergence of the Born rule
in a system weakly coupled to the environment. We as-
sume that the dissipator from the drive is much larger
than the dissipator from the system-environment coupling.
The resulting dynamics is best analyzed in the eigenbasis
of the drive, where the evolution destroys the coherences.
Thus the final density matrix is in a mixed state and is diagonal
in this representation for a nondegenerate observable. For an
observable with degenerate eigenvalues, the coherences in the
degenerate subspace survive in conformity with the Born rule.
This dynamic model emulates the Born rule and could be used
repeatedly on a system.

In quantum information processing, measurements are of-
ten included in quantum circuits. Such measurements could
be on multiple qubits and occur more than once in the circuit.
Our model could be very useful in simulating the dynamical
behavior of a realistic open quantum system that has multiple
occurrences of measurements. One would obtain the mixed
state representation of the system at the end of the circuit
operation, with the added advantage of not having to reset the
apparatus. As examples, we have demonstrated the measure-
ment operation for single- and multiqubit arrangements.
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