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Entanglement of nitrogen-vacancy-center ensembles with initial squeezing
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In this paper, we investigate entanglement of an experimental system of two nitrogen-vacancy-center ensem-
bles which are initially squeezed under the one-axis twisting Hamiltonian. We take into account three scenarios
in which initial squeezing and entanglement are mediated by phonons or photons: (a) the phonon-squeezed
photon-entangled scenario, (b) the phonon-squeezed phonon-entangled scenario, and (c) the photon-squeezed
photon-entangled scenario. For our investigation, we employ the Tavis-Cummings model, which includes
dissipative decoherence of the collective spin ensemble, and analyze the system both for a relatively small
number of spins and in the limit of a large number of spins using the approach of a quantum master equation.
Although evidence in the literature on idealized coupled oscillator systems and coupled quantum kicked tops
suggests that initial squeezing can enhance entanglement, we find that, in the realistic system studied in this
paper, initial squeezing can improve entanglement overall when the field mode interacts in a particular manner
with the two spin ensembles. Our analysis using the Holstein-Primakoff transformation and Wigner characteristic
function in the rotating frame of reference shows that the entanglement enhancement is a subtle consequence
of the way in which the dissipative decoherence rotates the state of the collective spin ensemble such that
enhancement depends on the time-evolved rotated states between the presence and absence of initial squeezing.

DOI: 10.1103/PhysRevA.104.022435

I. INTRODUCTION

Recently, there has been active interest in realizing quan-
tum information processing in quantum networks. A quantum
network is formed by quantum nodes and quantum links.
Quantum nodes contain quantum processors and quantum
memories which are typically made up of matter systems
such as trapped ions, single atoms, atomic ensembles, and
solid-state systems, while quantum links are mediated through
bosonic particles such as photons since their transmission
through fiber-optic links is more robust against decoherence.
One important quantum information processing task in a
quantum network is the generation of quantum entanglement
between nodes through the quantum processors or memories
interacting via the quantum link. The quantum entanglement
generated becomes a resource for quantum protocols relating
to quantum communication and computation such as quantum
teleportation and constitutes a storage of nonclassical states
useful for other quantum computing tasks involving quantum
repeaters and quantum metrology.

A basic unit of a quantum network is two quantum nodes
connected by a quantum link. An amalgamation of this basic
unit forms a complex network of diverse network topology
according to the manner in which the units are connected
with each other. In this paper, we are concerned with the
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study of such a basic unit with the specific condition that the
two quantum nodes are of the same type and mediated by
bosonic mode fields. In particular, we consider the use of a
spin ensemble as the key component in the quantum node,
with the basis of the ensemble being the spin state that arises
from the nitrogen-vacancy (NV) center. The NV center [1] is
a type of defect in diamond, with a carbon atom replaced by
a nitrogen atom, next to a vacancy. It has a long coherence
time [2–4] and excellent optical properties [5–7], which make
the NV center attractive for implementation of quantum infor-
mation applications, one of which is generating entanglement.
Quantum entanglement of the NV center with photons [8],
between single spins [9,10] and between ensembles [11], has
already been demonstrated in the literature.

A useful operation on the NV-center ensembles is spin
squeezing [12]. Spin squeezing, first introduced by Kitagawa
and Ueda [13], is quantum redistribution of the uncertain-
ties of two orthogonal spin directions. Spin squeezing is
an important tool in quantum sensing and metrology; it
allows for improvement in measurement precision in experi-
ments beyond the standard quantum limit [14–18]. Thus, spin
squeezing is a resource in quantum technology applications. It
is commonly applied particularly for sensing and in enhancing
the precision of measurement.

Spin squeezing and entanglement are intrinsically re-
lated. It is known that in ensemble of spins, a squeezed
state occurs when there is many-body entanglement be-
tween the constituent spins [19,20]. Spin squeezing that
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occurs within this ensemble or single collective state is
also known as single-mode spin squeezing. Two-mode spin
squeezing is the entanglement between two separate ensem-
bles of spins [21–23]. This concept has been explored and
implemented, for example, in characterizing multibody en-
tanglement by spin squeezing [20,24–26], in spin squeezing
of atomic ensembles via nuclear-electronic spin entangle-
ment [27], and in spin squeezing of atoms via entanglement
of light with atoms [28–31]. However, work on the application
of prior single-mode spin squeezing to enhance dynamically
generated entanglement of two separate NV-center spin en-
sembles is lacking.

In this paper, we consider an application of prior single-
mode spin squeezing of two separate NV-center ensembles
to enhance the subsequent entanglement generated between
the two ensembles. This is motivated by theoretical studies
on idealized coupled oscillator systems [32–35] and coupled
quantum kicked tops [36] that give credence to the idea that
implementing prior squeezing could enhance entanglement in
practical systems. However, as we will see, this is not always
true in our case. For this purpose, we consider an experi-
mentally realizable entanglement of NV-center ensembles via
a cavity bus or transmission line resonator as in Ref. [11].
Thus, the systems studied here are realistic and relevant for
experiments.

In essence, the negatively charged NV center that we con-
sider has a ground state of a spin triplet |ms = 0,±1〉 [37],
with a zero-field splitting of D0 ≈ 2.88 GHz between |ms =
0〉 and |ms = ±1〉 states. With the external magnetic field
aligned along the NV axis Bz, the Zeeman splitting of the
|ms = ±1〉 states is �B = geμBBz/h̄, where ge ≈ 2 is the elec-
tron’s g factor and μB is the Bohr magneton. With preparation
of the NV-center ensemble in the |ms = ±1〉 subspace and
under the condition of nearly resonant coupling, in which
detuning � = �B − ω � D0, the state |ms = 0〉 remains un-
populated. Therefore, the system can generally be treated as a
two-level spin-ensemble system. Our purpose would be to first
spin squeeze two such NV-center ensembles separately, before
entangling them through their interaction with a channel of
bosonic particles. We aim to investigate the effect of the initial
spin squeeze on the subsequent entanglement between the
spin ensembles.

Theoretically, we could spin squeeze the two NV-center
ensembles with phonons or photons and then entangle them
via phonons or photons, giving rise to four possible config-
urations. Combining the idea of the spin squeezing of the
NV-center ensemble by phonons from the nanomechanical
resonator system in Ref. [12] and the entanglement between
ensembles via coupling with photons in the cavity quantum
electrodynamics system in Ref. [11], we create the scenario
where two separate NV-center ensembles are individually
squeezed first by phonons before the two ensembles are en-
tangled by photons. We call this scenario the phonon-photon
scenario.

However, the coupling strength of a single NV center in the
nanomechanical resonator system is on the order of gm/2π ∼
1 kHz [12], while the coupling strength in the cavity resonator
system is much smaller, about gc/2π ∼ 10 Hz. This small
coupling strength may pose as a limitation, especially for the
relatively small number of spins (N ∼ 50–100) considered in

Ref. [12]. This can be alleviated if we theoretically consider
that entanglement is mediated by phonons, with the higher
associated coupling strength. This will be referred to as the
phonon-phonon scenario, in which initial squeezing and then
entanglement are both mediated by phonons in a mechanical
resonator system.

Another possibility is to increase the number of spins to
increase the collective coupling strength, as the collective
coupling strength scales with

√
N [38]. A strong coupling of

approximately 10 MHz has been reported for an ensemble of
N ∼ 1012 NV centers in a cavity resonator system [39,40].
However, increasing the number of NV centers has an adverse
effect on the coupling strength gm, since it was shown in
Ref. [12] that increasing the size of the resonator beam (to
have more NV centers) will reduce the individual coupling
strength. Hence, it does not make physical sense to implement
the photon-phonon scenario, i.e., squeezing first by photons
before entanglement by phonons. On the other hand, this re-
striction can be eliminated if we consider that initial squeezing
and entanglement are both achieved with the cavity resonator.
This scenario will be referred to as the photon-photon sce-
nario. This is perhaps the most realistic and practical scenario
since the cavity resonator system has been widely studied
and implemented and there is little to no change in the setup
between the initial individual squeezing and entanglement.

Our paper is organized as follows. In Sec. II we present the
models and frameworks of the Hamiltonians and decoherence.
We find that both the squeezing and entanglement Hamilto-
nians generally follow the Tavis-Cummings model [41]. On
the other hand, the form of the dissipative decoherence de-
pends on whether it is phonons or photons that mediate the
interaction. Section III gives the methodology we employ to
analyze the system with the goal of obtaining the time evolu-
tion under the corresponding Hamiltonians and decoherence.
As mentioned previously, in the phonon-photon and phonon-
phonon scenarios, the number of spins involved is relatively
small, N ∼ 50–100 in each ensemble. However, in the photon-
photon scenario, the number of spins is much larger, N ∼ 1012

in each ensemble. Naturally, different approaches are required
to simulate the system based on the number of spins involved.
As a result, we examine separately the approach for small
N for the phonon-photon and phonon-phonon scenarios and
the limit of large N for the photon-photon scenario. After a
detailed analysis of each of the three scenarios, we present
and discuss the results obtained in Sec. IV. We summarize
and give our conclusions in Sec. V.

II. MODELS

A. Hamiltonians and the dispersive regime

Both the nanomechanical resonator system [12] and cav-
ity resonator system [11] follow the Tavis-Cummings model,
which describes interactions between the spins and a resonator
field mode. This makes it possible to have a generalized de-
scription for the squeezing and entanglement Hamiltonians
for the different scenarios. Furthermore, we consider the dis-
persive regime which results in effective spin-spin interaction.
This will be explained later.
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1. Squeezing Hamiltonian

Following the Tavis-Cummings model, the Hamiltonian
for a single ensemble is given by (h̄ = 1)

H = ωa†a + �BJz + g(aJ+ + a†J−), (1)

where a† and a are the creation and annihilation operators for
the resonator mode corresponding to frequency ω, g is the cou-
pling constant of the interaction term, Jz = 1/2

∑N
i=1 σ z

i and
J± =∑N

i=1 σ±
i are the collective spin operators, and N is the

total number of spins. Note that the coupling for each of the
spins within each ensemble may be nonuniform. In this case,

the effective coupling constant is geff =
√∑N

i=1 g2
i /N , with

collective spin operators J±
col =∑N

i=1(gi/geff )σ±
i [11]. With

the distribution of gi, it was noted in Ref. [12] that the effective
length of the collective spin involved in the dynamics becomes
(
∑

i gi )2/2
∑

i g2
i , which is N

2 for uniform coupling. This in
turn means that the effective number of spins is reduced,
that is, Neff < N . Therefore, we approximate the effective
collective spin operators to J±

eff =∑Neff
i=1 σ±

i . For compactness
of notation, we drop the subscript eff, but in essence we are
considering the effective quantities and operators. Hence, in
the preceding and following discussions, the number of spins
N in an ensemble refers to the effective number of spins.

In the dispersive regime, the detuning is large, � = �B −
ω � √

Ng, and the interaction term in the Hamiltonian can be
considered as a small perturbation. Let V denote the small per-
turbation, so V = g(aJ+ + a†J−), and let H0 be the resonator
and ensemble energy terms, so H0 = ωa†a + �BJz. Under
this condition, the Schrieffer-Wolff transformation [42,43]
can be applied, which is a unitary transformation eSHe−S .
With the generator S chosen such that [H0, S] = V , the uni-
tary transformation can be approximated by H ′ = eSHe−S ≈
H0 + 1

2 [S,V ]. Therefore, with the appropriate choice of
generator

S = g

�
(aJ+ − a†J−), (2)

applying the transformation up to order (g/�)2 yields

H ′ = ωa†a + �BJz + g2

�
(J+J− + 2a†aJz ). (3)

The transformation represents a change of frame. Since the
resonator mode is far detuned from the transition energy of
the ensemble, 〈a†a〉 ∼ 0 in this frame [44]. Thus, it effec-
tively eliminates the direct resonator field-spin coupling and
the Hamiltonian can then be projected on the spin-ensemble
subspace [45], resulting in the effective projected Hamiltonian

Hsq = �BJz + g2

�
J+J− = �BJz + g2

�

(
J2 + Jz − J2

z

)
, (4)

where J is the total collective spin vector operator. The term
proportional to J2

z corresponds to the one-axis twisting Hamil-
tonian, originally introduced by Kitagawa and Ueda [13],
that provides the underlying mechanism for spin squeez-
ing. Projection of the Hamiltonian on the spin subspace is
computationally advantageous since the infinite-dimensional
Hilbert space of the mechanical mode is projected out, leaving
only the finite-dimensional spin subspace, which can be more
easily simulated, especially for relatively small N . If spin

squeezing is mediated by phonons (photons), the correspond-
ing coupling constant is gm (gc).

2. Entanglement Hamiltonians

The Hamiltonian following the Tavis-Cummings model
with two spin ensembles, according to Ref. [11], is given by

H = ωa†a + �B1Jz
1 + �B2Jz

2

+ g1(aJ+
1 + a†J−

1 ) − g2(aJ+
2 + a†J−

2 ), (5)

where subscripts 1 and 2 denote the two ensembles. The
opposite signs of the coupling terms is due to the fact that
the field of the resonator mode interacting with one ensemble
has the opposite sign or direction from the other ensemble
in the setup [11]. For simplicity, we consider two approxi-
mately identical NV-center ensembles with Zeeman splitting
�B1 ≈ �B2 ≈ �B, coupling constant g1 ≈ g2 ≈ g, and total
number of spins N1 ≈ N2 ≈ N . So the Hamiltonian can be
simplified to

H = ωa†a + �B
(
Jz

1 + Jz
2

)+ g[a(J+
1 − J+

2 ) + a†(J−
1 − J−

2 )].
(6)

Here the detuning is � = �B − ω.
In the dispersive regime, the appropriate generator of trans-

formation for this Hamiltonian is given by

S = g

�
[a(J+

1 − J+
2 ) − a†(J−

1 − J−
2 )]. (7)

Applying the Schrieffer-Wolff transformation yields

H ′ = ωa†a + �B
(
Jz

1 + Jz
2

)+ 2g2

�
a†a
(
Jz

1 + Jz
2

)
+ g2

�
(J+

1 J−
1 + J+

2 J−
2 − J+

1 J−
2 − J+

2 J−
1 ). (8)

Similar to before, this Hamiltonian can be projected onto the
spin subspace, which gives the effective Hamiltonian

Hent,− = �B
(
Jz

1 + Jz
2

)+ g2

�
(J+

1 J−
1 +J+

2 J−
2 − J+

1 J−
2 − J+

2 J−
1 ).

(9)

Thus, the dispersive regime results in direct ensemble-
ensemble coupling mediated by virtual photons or phonons.

As mentioned previously, in Eq. (5) the opposite signs of
the coupling terms is due to the opposite sign or direction
of the field mode interacting with the different ensembles. In
addition, it is also conceivable to have a different experimental
setup in which the coupling terms have the same sign. There-
fore, we also consider this possibility with the Hamiltonian
given by

H = ωa†a + �B
(
Jz

1 + Jz
2

)
+ g[a(J+

1 + J+
2 ) + a†(J−

1 + J−
2 )]. (10)

In the dispersive regime, the appropriate generator of trans-
formation for this Hamiltonian is given by

S = g

�
[a(J+

1 + J+
2 ) − a†(J−

1 + J−
2 )]. (11)
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Applying the Schrieffer-Wolff transformation yields

H ′ = ωa†a + �B
(
Jz

1 + Jz
2

)+ 2g2

�
a†a
(
Jz

1 + Jz
2

)
+ g2

�
(J+

1 J−
1 + J+

2 J−
2 + J+

1 J−
2 + J+

2 J−
1 ). (12)

Projecting the Hamiltonian onto the spin subspace gives

Hent,+ = �B
(
Jz

1 + Jz
2

)
+ g2

�
(J+

1 J−
1 + J+

2 J−
2 + J+

1 J−
2 + J+

2 J−
1 ). (13)

Therefore, we consider two entanglement schemes in the form
of Hent,− and Hent,+. If entanglement is mediated by phonons
(photons), the corresponding coupling constant is gm (gc).

B. Decoherence

Interaction between the resonators and environment in-
duces energy dissipation in the form of heat. This dissipative
decoherence is expressed as coupling of the resonator mode
with the environment, which is defined by a master equation
describing the time evolution of the system density opera-
tor ρ̇. Depending on whether it is phonons or photons that
mediate the spin squeezing and/or entanglement dynamics
of the resonator system, the decoherence may take different
forms. Moreover, since the dispersive regime is considered,
the master equation for the decoherence is also transformed
by the generator S used previously to obtain the effective
Hamiltonian.

To summarize, there are two master equations for decoher-
ence corresponding to phonons and photons. In addition, since
we consider a variation of scenarios in which phonons and
photons may mediate both spin squeezing and entanglement,
in the dispersive regime each of the master equations has three
possible transformations, corresponding to the generators in
Eqs. (2), (7), and (11).

To organize and make the notation more compact, let us in-
troduce a generalized form for the generator of transformation

S = g

�
(aF † − a†F ). (14)

Here F can take different forms depending on each case: F =
J− in Eq. (2), F = J−

1 − J−
2 in Eq. (7), or F = J−

1 + J−
2 in

Eq. (11).
We will denote the time evolution due to decoherence

by ρ̇D. So, in addition to the dynamics of the Hamiltonian,
the full master equation of the system can be written as
ρ̇ = −i[H, ρ] + ρ̇D.

First, the master equation for dissipation in the optical
resonator is given by

ρ̇D = κD[a]ρ, (15)

where D[K]ρ = KρK† − 1
2 (K†Kρ + ρK†K ), κ = ωc/Q is

the damping rate, ωc is the resonant frequency of the optical
mode, and Q is the quality factor. Applying the unitary trans-
formation eSρ̇e−S in the dispersive regime up to order (gc/�)2

and projecting onto the spin subspace yields

ρ̇D,c =
(gc

�

)2
κD[F ]ρ. (16)

Next, mechanical dissipation in mechanical resonator is
given by [12]

ρ̇D = γ (n̄th + 1)D[a]ρ + γ n̄thD[a†]ρ, (17)

where γ = ωm/Q is the damping rate, ωm is the resonant
frequency of the mechanical mode, Q is the quality factor, and
n̄th = [exp(h̄ωm/kBT ) − 1]−1 is the average thermal phonon
number at temperature T . The dependence on temperature
here makes the system more susceptible to decoherence at
higher temperatures. Applying the transformation in the dis-
persive regime up to order (gm/�)2 and projecting onto the
spin subspace yields

ρ̇D,m =
(gm

�

)2
γ (n̄th + 1)D[F ]ρ +

(gm

�

)2
γ n̄thD[F †]ρ.

(18)
The resulting master Eqs. (16) and (18) can be regarded as
collective spin relaxation. Thus, dissipative decoherence in-
duces collective spin relaxation through interaction with the
resonator mode.

Apart from the decoherence discussed above, an individual
NV-center spin also experiences intrinsic decoherence due to
its interaction with its surroundings. One type of interaction
is spin-lattice interaction with the associated relaxation time
T1. However, T1 can be very long, on the order of hundreds
of seconds at low temperature [46]. Therefore, we may ignore
this type of decoherence. The other type is magnetic interac-
tion with the surrounding electronic and nuclear spins [47,48],
with an associated coherence time T ∗

2 . This coherence time
can be further extended by employing techniques [49–52]
that effectively reduce the effects of interaction. In particular,
an extended coherence time T2 ∼ 0.6 s has been achieved
by employing dynamical decoupling using an isotopically
pure sample (0.01% 13C) at 77 K [3]. In the following, we
also ignore this type of decoherence. We analyze dynamical
decoupling for N = 6 in Appendix B to show that this is
a good approximation, especially for the maximum achiev-
able entanglement, as long as the timescale involved is less
than T2 ∼ 0.6 s (up to 0.1 s in our case). Obviously, if the
entanglement timescale is much longer than the coherence
time T2, then no significant entanglement can be achieved.
Therefore, the entanglement timescale needs to be examined
in the results, which are given in Sec. IV for each of the
scenarios considered.

C. Parameters

Here we give some important parameters required to per-
form the calculation. For the nanomechanical resonator [12],
the average thermal phonon number at temperature T is
n̄th = [exp(h̄ωm/kBT ) − 1]−1. Assuming ωm/2π ∼ 1 GHz
for n̄th = 1 gives T ∼ 70 mK. An operational temperature
of tens of millikelvin for an NV-center ensemble in dia-
mond is achievable and was demonstrated, for example, in
Refs. [40,53]. Quality factors Q for nanomechanical resonator
have been reported for about 104 [54,55], 105 [56], and 106 at
millikelvin temperatures [57]. Here we take Q ∼ 105.

For the cavity resonator system, we similarly assume tem-
perature to be in the tens of millikelvin range. The quality
factor is assumed to be Q ∼ 103, following Ref. [11].
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ensemble 1 ensemble 2

FIG. 1. Conceptual illustration of the process. (a) Two separate
spin ensembles are individually squeezed first, as can be seen in the
Bloch sphere depiction of the spin uncertainty distribution. Dotted
lines indicate interaction in the form of local squeezing. (b) After-
ward, the two ensembles are entangled. Dashed lines indicate this
interaction between the two ensembles.

III. METHODOLOGY

The idea is to initially spin squeeze the ensembles individ-
ually and then couple them to create entanglement (see Fig. 1
for a conceptual illustration). The details of the process are as
follows. Each ensemble is first initialized as a coherent spin
state by collectively aligning the spins along the x axis, i.e.,
|ψ〉 = [ 1√

2
(| − 1〉 + | + 1〉)]⊗N . Afterward, the time evolution

of the ensemble state is computationally simulated according
to the master equation with the spin squeezing Hamilto-
nian (4) and the appropriate decoherence, for some squeezing
time ts. Next, the two ensembles are coupled and the time
evolution of the composite two-ensemble state is simulated,
again using the master equation with either entanglement
Hamiltonian (9) or (13) and the appropriate decoherence, for
some amount of entanglement time te. Finally, the degree of
entanglement is quantified using the measure of logarithmic
negativity [58,59] over the duration of entanglement time te.
The logarithmic negativity has the physical meaning of the
upper bound to entanglement distillation [60].

In the phonon-photon and phonon-phonon scenarios, the
number of spins N involved is relatively small, so it is possible
to perform a more straightforward simulation of the density
operator. In the photon-photon scenario, however, the number
of spins involved is much larger and the direct simulation

of the density operator is not practically feasible. Therefore,
different approaches are required depending on whether the
number of spins N is small or very large.

A. Small N under the phonon-photon and phonon-phonon
scenarios

Since each spin state is a two-level quantum system, the
full Hilbert space of an ensemble has dimension 2N . Since
the size grows exponentially with N , this can make numerical
computation impractical even for relatively small N . To mit-
igate this issue, the ensemble is expressed in the Dicke state
basis [38] instead. In this basis, the dimension of the collective
spin state is reduced to N + 1 (for details on this basis, see
Appendix A).

With this, the density matrix ρ of the two-ensemble com-
posite state has (N + 1)4 entries. The numerical computation
can be made more efficient by making use of the fact that
the density matrix is Hermitian ρ† = ρ. For this reason, it is
possible to store and compute only the entries that belong in
either the upper or lower triangular part of the matrix.

Additionally, if we assume identical ensembles, then the
two-ensemble composite state is symmetric under exchange
between the two ensembles. More precisely, the entries sat-
isfy ρ f (i,k), f ( j,l ) = ρ f (k,i), f (l, j), where f (α, β ) = (N + 1)(α −
1) + β. This will further reduce the number of entries in ρ that
need to be stored and computed to have the full information
of the system. Finally, the logarithmic negativity of density
operator ρ is computed according to

EN = ln ‖ρ�A‖1, (19)

where ‖ρ�A‖1 is the trace norm of ρ�A (‖K‖1 = Tr
√

K†K)
and �A denotes the partial transpose operation on ρ with
respect to subsystem A, which can be either ensemble 1 or
ensemble 2.

B. Large-N limit under the photon-photon scenario

In the limit of large N , the spin operators can be
mapped to boson operators using the Holstein-Primakoff
transformation [61]. The transformations are written as J+ =√

N − a†aa, J− = a†
√

N − a†a, and Jz = N
2 − a†a. Further-

more, if 〈Jz〉 ≈ N
2 , then we may keep only terms up to

second order in boson operators in the master equation, ig-
noring the much smaller contribution from the higher-order
terms. Up to second order in boson operators, J+ ≈ √

Na,
J− ≈ √

Na†, Jx = (J+ + J−)/2 ≈ √
N (a + a†)/2 = √

N/2x̂,
and Jy = (J+ − J−)/2i ≈ √

N (a − a†)/2i = √
N/2 p̂, where

x̂ = (a + a†)/
√

2 and p̂ = (a − a†)/
√

2i are quadrature
operators.

With the mapping to boson operators, the spin systems
are effectively treated as continuous-variable systems. For
a continuous-variable system, it is convenient to represent
the state using the Wigner characteristic function W (χ ) =
Tr[ρ exp(χa† − χ∗a)] [62]. This can also be equivalently ex-
pressed in terms of the quadrature operators x̂ = (a + a†)/

√
2

and p̂ = (a − a†)/
√

2i, that is, W (u, v) = Tr[ρ exp(ux̂ +
v p̂)], where u = (χ − χ∗)/

√
2 and v = (χ + χ∗)/

√
2i are

independent parameters. For bipartite continuous-variable
states, the Wigner characteristic function can be expressed
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as W (V) = Tr[ρ exp(VTR̂)], where V = (u1, v1, u2, v2)T and
R̂ = (x̂1, p̂1, x̂2, p̂2)T are in vector form.

The master equation for ρ can be transformed into a partial
differential equation for the Wigner characteristic function
using a slightly modified operator correspondence

ρx̂ j →
(

∂

∂u j
+ i

v j

2

)
W (V), (20a)

x̂ jρ →
(

∂

∂u j
− i

v j

2

)
W (V), (20b)

p̂ jρ →
(

∂

∂v j
+ i

u j

2

)
W (V), (20c)

ρ p̂ j →
(

∂

∂v j
− i

u j

2

)
W (V), (20d)

where the index j = {1, 2} denotes ensemble 1 or ensemble
2. (For the details on how this operator correspondence is
obtained, refer to Appendix C). This correspondence can be
extended to the action of the second-order quadrature opera-
tors on ρ. For example,

ρx̂ j p̂k →
(

∂

∂vk
− i

uk

2

)(
∂

∂u j
+ i

v j

2

)
W (V). (21)

With the ensembles initialized as coherent spin states and
the master equation having only terms up to second order in
boson operators, the systems take the form of a special class of
continuous-variable states called Gaussian states [63–65]. For
Gaussian states, the Wigner characteristic function W (V) =
Tr[ρ exp(VTR̂)] is a Gaussian function. Namely,

W (V) = exp
(

1
2 VTσV + VT〈R̂〉), (22)

where σ is the covariance matrix and the expectation value
〈R̂〉 = (〈x̂1〉, 〈p̂1〉, 〈x̂2〉, 〈p̂2〉)T for bipartite states. The term
VT〈R̂〉 does not contain any information about entanglement
as it only contains information about position in the phase
space. Therefore, the full information about the entanglement
is encoded within the correlation in the covariance matrix σ .
Its elements are defined as the covariance

σi j = 1
2 〈R̂iR̂ j + R̂ j R̂i〉 − 〈R̂i〉〈R̂ j〉 (23)

and they obey σi j = σ ji, or σ T = σ . The logarithmic negativ-
ity can be obtained from the covariance matrix σ according to

EN = max
{
0,− 1

2 ln η
}
, (24)

with

η = 2(ζ −
√

ζ 2 − 4 det σ ), (25a)

ζ = det B + det D − 2 det C, (25b)

σ =
(

B C

CT D

)
, (25c)

where B, C, and D are 2 × 2 submatrices of σ .
The process of obtaining the time evolution of the covari-

ance matrix σ̇ is described as follows. First, the time evolution
of the Wigner characteristic function is obtained from the
master equation by applying the operator correspondence (20)

FIG. 2. Diagram of the mean spin direction with polar angle θ

and rotation rate ωz with respect to the z axis.

in conjunction with the Gaussian Wigner characteristic func-
tion in (22). In addition, this time evolution obtained from
operator correspondence must also follow the time-derivative
form of (22), that is,

∂

∂t
W (V, t ) =

(
1

2
VTσ̇V + VT d

dt
〈R̂〉
)

W (V, t ). (26)

Finally, the time evolution of each entry of σ is obtained by
simply matching the parameters in V between this form and
the one obtained by operator correspondence.

For the purpose of illustration, the process is presented
here for the time evolution of σ corresponding to the master
equation for the squeezing Hamiltonian in (4) and its decoher-
ence in (16), with F = J−. The time evolution of the Wigner
characteristic function and covariance matrix elements for the
entanglement Hamiltonians (9) and (13) with their respective
decoherence are given in Appendix D.

1. Illustration of the time evolution for the squeezing Hamiltonian

The master equation corresponding to the squeezing
Hamiltonian is given by

ρ̇ = g2
c

�

[
i
(
J2

z ρ − ρJ2
z

)

+ κ

�

(
J−ρJ+ − 1

2
(J+J−ρ + ρJ+J−)

)]
. (27)

Note that the J2 term disappears. This is related to the fact that
the spin operators that appear in the time evolution due to the
Hamiltonian and decoherence are all collective ensemble spin
operators. Because collective spin operators cannot change
the magnitude of the collective spin vector for the ensemble,
the J2 term is effectively a constant. The linear Jz terms are
dropped since they only cause rotation about the z axis. This
will not affect the squeezing or entanglement dynamics of the
system.

Let us assume that the mean spin direction lies on the xz
plane. Let θ be the polar angle (measured from the z axis;
see Fig. 2) of the mean spin direction in the collective Bloch
sphere. So in the initial alignment of the coherent spin state
on the x axis, θ = π/2. In order to fulfill the requirement
that 〈Jz〉 ≈ N

2 , coordinate transformation must be performed
so that the mean spin direction points towards the z axis.
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This can be achieved by applying the transformation

Jx → Jx cos θ + Jz sin θ, (28a)

Jy → Jy, (28b)

Jz → Jz cos θ − Jx sin θ. (28c)

Afterward, the Holstein-Primakoff transformation can be
applied to map the spin operators to boson operators. Apply-
ing these transformations to the terms in (27), up to second
order in boson operators, yields

J2
z → N

2

{[(
N

2
+ 1

)
− (x̂2 + p̂2)

]
cos2 θ

+ x̂2 sin2 θ −
√

2Nx̂ sin θ cos θ

}
, (29)

J+J− → N

2

{[(
N

2
+ 1

)
− (x̂2 + p̂2)

]
sin2 θ

+ p̂2+x̂2 cos2 θ +
√

2Nx̂ sin θ cos θ+cos θ

}
,

(30)
and

J−ρJ+ → N

2

{[(
N

2
+ 1

)
ρ − 1

2
(x̂2 + p̂2)ρ

− 1

2
ρ(x̂2 + p̂2)

]
sin2 θ + p̂ρ p̂ + x̂ρx̂ cos2 θ

+
√

N

2
(x̂ρ + ρx̂) sin θ cos θ

− i

[√
N

2
( p̂ρ − ρ p̂) sin θ

+ ( p̂ρx̂ − x̂ρ p̂) cos θ

]}
, (31)

where terms with a coefficient much less than N have been
ignored since they are negligible compared to the other terms.
Finally, applying the operator correspondence (20) gives the
time evolution for the Wigner characteristic function

Ẇ (u, v, ts) = Ng2
c

�

{[
cos2 θ

(
u

∂

∂v
− v

∂

∂u

)

+ sin2 θv
∂

∂u
−
√

N

2
sin θ cos θv

]

+ κ

2�

[
1

2
u2 + cos2 θ

1

2
v2 +

√
N

2
sin θu

+ cos θ

(
u

∂

∂u
+ v

∂

∂v

)]}
W (u, v, ts). (32)

2. Rotation

We have assumed earlier that the mean spin direction lies
on the xz plane. This may not always be true since the spin
ensemble may rotate about the z axis. In order for it to be valid
at all times, it is necessary to move into a rotating frame of ref-

erence which follows the rotation of the mean spin direction
about the z axis. In this frame, the mean spin direction always
lies on the xz plane. Moving into this frame is done by putting
the counterrotation term −ωzJz in the Hamiltonian. In the
case of two ensembles, it is done by putting −ωz(Jz

1 + Jz
2 ) in

the Hamiltonian, which corresponds to a rotating frame with
a common rotation rate ωz. Note that although the linear Jz

terms have been dropped from the master equation earlier, the
other terms in the master equation may still cause additional
rotation about the z axis. Putting in −ωzJz accounts for this
fact. Alternatively, it is also possible to keep the linear Jz

terms from the master equation at the beginning and account
for everything later with −ωzJz. However, dropping the terms
early from the master equation makes the analysis simpler
due to dealing with fewer terms. Note that the Hamiltonians
and master equations due to decoherence in our analysis are
all invariant under angular displacement about the z axis (or
azimuthal angle in the Bloch sphere).

In addition to rotation about the z axis, the spin ensemble
may also rotate in the polar direction, causing the polar angle
θ to change. Because the mean spin direction is required to
always point towards the z axis after the coordinate transfor-
mation (i.e., it stays in place), it is necessary that the rotating
frame of reference also follows the rotation of the mean spin
direction along the polar direction. This is done by putting the
additional counterrotation term −θ̇Jy in the Hamiltonian. So
finally the rotating frame of reference essentially follows the
rotation of the spin ensemble in both the azimuthal (associated
with ωz) and polar (associated with θ̇) angular directions. In
this rotating frame of reference, the mean spin direction points
towards the z axis and remains stationary. The task here is to
determine the appropriate values for ωz and θ̇ for this rotating
frame of reference.

If the considerations for the rotating frame of reference
above are not taken into account, the consequence is that the
continuous rotation of the spin ensemble causes the mean spin
direction to move around and deviate from the z axis in the
transformed coordinate system. For the continuous-variable
state, this causes the expectation values 〈x̂〉 and 〈p̂〉 to move
away from zero, or the center or origin of the phase space.
This is also indicated by nonzero d

dts
〈x̂〉 and d

dts
〈p̂〉.

Let us consider for a moment the Hamiltonians for rotation
θ̇Jy and ωzJz. Applying the coordinate transformation (28),
Holstein-Primakoff transformation, and operator correspon-
dence (20) consecutively yields

Ẇ (u, v, ts) = θ̇

√
N

2
uW (u, v, ts) (33)

for ρ̇θ = −iθ̇ [Jy, ρ] and

Ẇ (u, v, ts) = ωz

[
cos θ

(
v

∂

∂u
− u

∂

∂v

)

+
√

N

2
sin θv

]
W (u, v, ts) (34)

for ρ̇z = −iωz[Jz, ρ]. The next step is to match the parame-
ters u and v with Eq. (26). Expanding this equation for the
2 × 2 covariance matrix for a single continuous-variable state
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yields

Ẇ (u, v, ts) =
(

1

2
[σ̇11u2 + (σ̇12 + σ̇21)uv + σ̇22v

2]

+ u
d

dts
〈x̂〉 + v

d

dts
〈p̂〉
)

W (u, v, ts). (35)

It is straightforward to match the parameters in (33) with this
equation, which gives

d

dts
〈x̂〉 = θ̇

√
N

2
, (36a)

d

dts
〈p̂〉 = 0 (36b)

for H = θ̇Jy.
Equation (34) cannot be directly compared with Eq. (35)

due to the derivative terms with respect to u and v. It is
necessary to apply the Gaussian form in (22) to (34) first.
Writing down (22) for the 2 × 2 covariance matrix for a single
continuous-variable state gives

W (u, v, ts) = exp
{

1
2 [σ11u2 + (σ12 + σ21)uv + σ22v

2]

+ u〈x̂〉 + v〈p̂〉}. (37)

Inserting this into (34) gives

Ẇ (u, v, ts) = ωz

[
cos θ

(
1

2
(σ12 + σ21)(v2 − u2)

+ (σ11 − σ22)uv

)
− u〈p̂〉 cos θ

+ v

(√
N

2
sin θ + 〈x̂〉 cos θ

)]
W (u, v, ts).

(38)

Finally, d
dts

〈x̂〉 and d
dts

〈p̂〉 are obtained from (38) by matching
parameters with (35), which yields

d

dts
〈x̂〉 = −ωz〈p̂〉 cos θ, (39a)

d

dts
〈p̂〉 = ωz

(√
N

2
sin θ + 〈x̂〉 cos θ

)
(39b)

for H = ωzJz.
In the rotating frame of reference, the mean spin direction

stays along the z axis and the expectation values 〈x̂〉 and 〈p̂〉 re-
main zero in the phase space of the continuous-variable state.
Moving into the rotating frame is done by putting −ωzJz and
−θ̇Jy in the Hamiltonian to offset the effects of rotation. The
appropriate values of ωz and θ̇ for Eq. (32) so that d

dts
〈x̂〉 = 0

and d
dts

〈p̂〉 = 0 are

ωz = −Ng2
c

�
cos θ, θ̇ = κNg2

c

2�2
sin θ. (40)

In the frame of the original coordinate system associated with
master Eq. (27), ωz denotes the rate of rotation of the mean
spin direction about the z axis and θ̇ denotes the rate of change
of its polar angle. In the rotating frame of reference, time

evolution for the Wigner characteristic function is

Ẇ (u, v, ts) = Ng2
c

�

{
sin2 θv

∂

∂u
+ κ

2�

[
1

2
u2 + cos2 θ

1

2
v2

+ cos θ

(
u

∂

∂u
+ v

∂

∂v

)]}
W (u, v, ts). (41)

3. Time evolution of the covariance matrix

Applying the Gaussian form in (37) to (41) yields

Ẇ (u, v, ts) = Ng2
c

�

[
sin2 θ

(
σ11uv + 1

2
(σ12 + σ21)v2

)

+ κ

2�

(
1

2
u2 + cos2 θ

1

2
v2 + cos θ [σ11u2

+ (σ12 + σ21)uv + σ22v
2]

)]
W (u, v, ts).

(42)

The next step is to match the parameters u and v with Eq. (35).
Note that d

dts
〈x̂〉 = 0 and d

dts
〈p̂〉 = 0 in the rotating frame of

reference, as discussed previously. Matching the rest of the
parameters in the two equations above yields

σ̇11 = κNg2
c

2�2
(1 + 2σ11 cos θ ), (43a)

σ̇22 = Ng2
c

�

(
2σ12 sin2 θ + κ

2�
(cos2 θ + 2σ22 cos θ )

)
, (43b)

σ̇21 = σ̇12 = Ng2
c

�

(
σ11 sin2 θ + κ

�
σ12 cos θ

)
, (43c)

where the fact that σ21 = σ12 has been used. Together with
θ̇ given in (40) and the initial conditions θ (ts = 0) = π/2
and σ (ts = 0) = 1

2 I2, where I2 is the 2 × 2 identity matrix,
the time evolution of covariance matrix σ̇ can be numerically
computed.

IV. RESULTS AND DISCUSSION

A. Phonon-photon scenario

Here the initial squeezing of individual ensembles is me-
diated by phonons and the entanglement of two ensembles
is mediated by photons. The numbers of spins considered in
this scenario are N = 50 and 100 in a single ensemble, and
so the small-N approach in Sec. III A is used. In the calcula-
tion, the parameters we consider are n̄th = 1, corresponding
to T ∼ 70 mK for ωm/2π ∼ 1 GHz, and a fixed decoherence
factor γ /� = 0.01.

First, the time evolution of logarithmic negativity EN for
the entanglement Hamiltonian Hent,− [Eq. (9)], implementing
several different squeezing times, is shown in Fig. 3 for a
number of spins N = 50 in a single ensemble with a range
of photon decoherence factors κ/� = 0, 0.001, 0.01, and 0.1.
Additionally, Fig. 3(a) also shows the results for N = 100
and κ/� = 0.01. The squeezing time is indicated by t ′

s =
(Ng2

m/�)ts, which is dimensionless. Along with this scaled
squeezing time, we also compute the squeezing parameter
ξ 2

S [13,18] to quantify the amount of squeezing

ξ 2
S = 4(�J⊥)2

min

N
, (44)
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FIG. 3. Time evolution of logarithmic negativity EN against dimensionless entanglement time (Ng2
c/�)te for γ /� = 0.01 with different

dimensionless squeezing times t ′
s = (Ng2

m/�)ts in the phonon-photon scenario for the entanglement Hamiltonian Hent,− for (a) N = 50 and
100 and κ/� = 0.01, (b) N = 50 and κ/� = 0, (c) N = 50 and κ/� = 0.001, and (d) N = 50 and κ/� = 0.1.

where (�J⊥)2
min is the variance of the spin measurement,

minimized over all directions perpendicular to the mean spin
direction. For the coherent spin state ξ 2

S = 1, while for the
squeezed state ξ 2

S < 1.
From the results displayed in the figure, it can be seen that

implementation of initial squeezing improves EN , but only
initially. Over a longer period of time, there is no distinc-
tive improvement from initial squeezing. This will be further
discussed later. Also, having more spins in the ensembles
increases EN .

Next, the time evolution of EN for entanglement Hamilto-
nian Hent,+ [Eq. (13)] is shown in Fig. 4. Figure 4(a) displays
the results for N = 50 and 100 and κ/� = 0.01. Figure 4(b)
displays the results for N = 50 with a range of κ/� = 0,
0.001, 0.01, and 0.1. Instead of using several different val-
ues of dimensionless squeezing times t ′

s, a single value of t ′
s

that approximately gives the optimal EN is chosen. Note that
optimal entanglement may not necessarily occur at optimal

squeezing indicated by a minimum ξ 2
S . Furthermore, for a

given value of ξ 2
S , there are two points in time during ini-

tial squeezing that this may occur. Therefore, the squeezing
parameter ξ 2

S and squeezing time t ′
s must be taken together

to characterize the initial squeezing that gives the optimal
entanglement.

The results show that implementing initial squeezing im-
proves EN overall. Combined with having more spins in the
ensembles further improves EN slightly. The fact that initial
squeezing here enhances entanglement stands in contrast to
the previous results for entanglement Hamiltonian Hent,−. This
observation will be further discussed later.

Let us now discuss the estimation of the entanglement
timescale in the results. Assuming that ωc/2π ∼ 1 GHz
and Q = 103, we get κ/2π = ωc/2πQ ∼ 1 GHz. This cor-
responds to �/2π = 100 MHz for κ/� = 0.01. With the
coupling strength of a single NV center of gc/2π ∼ 10 Hz,
for N = 100, the dimensionless entanglement time of t ′

e = 25

FIG. 4. Time evolution of logarithmic negativity EN against dimensionless entanglement time (Ng2
c/�)te for γ /� = 0.01 in the phonon-

photon scenario for the entanglement Hamiltonian Hent,+ for (a) N = 50 and 100 and κ/� = 0.01 and (b) N = 50 and κ/� = 0, 0.001, 0.01,
and 0.1.
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FIG. 5. Time evolution of logarithmic negativity EN against dimensionless entanglement time (Ng2
m/�)te with different dimensionless

squeezing times t ′
s = (Ng2

m/�)ts in the phonon-phonon scenario for the entanglement Hamiltonian Hent,− for (a) N = 50 and 100 and γ /� =
0.01, (b) N = 50 and γ /� = 0, (c) N = 50 and γ /� = 0.001, and (d) N = 50 and γ /� = 0.1.

corresponds to te ≈ 4 × 104 s. This timescale is clearly far
above the coherence times T1 and T2 of the NV center. The
spin-relaxation effects associated with T1 and T2 cannot be
ignored anymore and they would dominate much of the dy-
namics of the system throughout this timescale to eliminate
entanglement. Thus, the results shown here would be valid
only for a very short initial time period. The entanglement
timescale can be shortened by lowering the detuning �, but
unless the quality factor Q is also improved, dissipative deco-
herence would have a more dominant effect. This represents
the limitation of this scenario due to the weak coupling of the
individual NV center in the optical resonator system, which
necessitates consideration of the other scenarios.

B. Phonon-phonon scenario

Here, both the initial squeezing of individual ensembles
and the entanglement of two ensembles are mediated by
phonons. The numbers of spins considered in this scenario are
N = 50 and 100 in a single ensemble, and so the small-N ap-
proach in Sec. III A is used. Instead of fixing the decoherence
factor γ /� to a single value, choices of different values are
used in the calculation.

The time evolution of logarithmic negativity EN for the en-
tanglement Hamiltonian Hent,− is shown in Fig. 5. In general,
the results have characteristics similar to the phonon-photon
case. Implementation of initial squeezing improves EN only
initially, but this improvement does not continue over a longer
period of time. Increasing the number of spins in the ensem-
bles also increases EN .

The time evolution of EN for the entanglement Hamiltonian
Hent,+ is shown in Fig. 6 for optimal dimensionless squeezing
time t ′

s. Again, the results are similar to the phonon-photon
scenario. Implementation of initial squeezing improves EN

in general. Also, initial squeezing in combination with more
spins in the ensembles slightly improves EN .

In general, at the beginning, initial squeezing enhances
entanglement for both entanglement Hamiltonians Hent,+ and
Hent,−. While this enhancement continues for Hent,+ to a
longer period of time, it does not continue for Hent,−. Looking
at Fig. 5(b), even without decoherence, initial squeezing does
not increase logarithmic negativity EN further at later time.
In fact, EN saturates at about the same value, with or without
initial squeezing, which suggests that there is an upper bound
for EN . It has been shown in a previous study [66] that there
exists a universal dynamical bound on entanglement. It was
found that if entanglement is created from two unentangled
subsystems by a dynamical process described by some generic
entanglement Hamiltonian, then there is a universal bound for
the entropy of entanglement.

To show that this bound on entanglement is achieved, it is
necessary to compare it with the entanglement entropy from
our results. The dynamical bound for entropy of entangle-
ment for two subsystems of equal size dimension is given by
Sb ∼ ln(0.6D) [66], where D is the Hilbert space dimension
of a subsystem. In our case, since it is possible to reduce the
Hilbert space dimension of a spin ensemble to D = N + 1,
the bound for entanglement entropy is estimated to be Sb ∼
ln[0.6(N + 1)]. It is important to note that this bound is a
statistical bound, meaning that it is possible for entanglement
entropy to fluctuate around this bound at saturation, but on
average it does not exceed this bound. Figure 7 shows the
entropy of entanglement for both Hent,− and Hent,+ for N = 50
and 100. Purely without decoherence, the plots for both the
phonon-photon and phonon-phonon scenarios are identical.
It can be seen in the figure that, for both Hent,− and Hent,+,
saturation with initial squeezing occurs and fluctuates around
the estimated bound. Without initial squeezing, entropy for
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FIG. 6. Time evolution of logarithmic negativity EN against dimensionless entanglement time (Ng2
m/�)te in the phonon-phonon scenario

for the entanglement Hamiltonian Hent,+ for (a) N = 50 and 100 and γ /� = 0.01 and (b) N = 50 and γ /� = 0, 0.001, 0.01, and 0.1.

Hent,− saturates near the bound, while for Hent,+ it does not
approach this bound.

Saturation of entanglement entropy at or near the bound
implies that logarithmic negativity EN has also reached its
own corresponding bound by extension. Similarly, if entan-
glement entropy does not reach the bound, EN also does not
reach its corresponding bound. In fact, the bound for EN ap-
pears to be very close to that for the entropy of entanglement,
i.e., ∼ ln[0.6(N + 1)], as can be seen in Figs. 5(b) and 6(b).
Because EN is already able to approach this bound without
initial squeezing for Hent,−, performing initial squeezing does
not push EN much higher. For Hent,+, on the other hand, EN

does not yet approach this bound without initial squeezing
and therefore application of initial squeezing can increase EN

further. In Fig. 6(b) we can also see that without decoherence,
EN with initial squeezing for Hent,+ saturates at precisely the
same bound as Hent,−. Note that for the phonon-photon sce-
nario in Fig. 3(b), EN saturates at different values because we
take into account decoherence during initial squeezing. The
longer initial squeezing with decoherence is applied, the lower
the saturation value for EN is.

The existence of the universal dynamical bound dis-
cussed above causes initial squeezing to induce no further
improvement towards EN at later time for Hent,−, even with-
out decoherence. Additionally, the presence of decoherence
makes the curves for EN slope downward eventually with
time, causing EN with initial squeezing to be lower than that
with no initial squeezing at later time. For Hent,+ though, this
is not the case: At later time, the implementation of initial

squeezing still improves EN compared to that without initial
squeezing. This difference in the effect of decoherence can be
explained through the analysis in the large-N limit, which will
be discussed later.

As mentioned previously, the phonon-phonon scenario
may be considered to improve the coupling strength of entan-
glement, which should make the response time faster. Taking
the same assumption as the phonon-photon scenario for the
other experimental parameters, ωm/2π ∼ 1 GHz, Q = 105,
and γ /� = 0.01, we obtain �/2π = 1 MHz. With a coupling
strength of gm/2π ∼ 1 kHz, for N = 100, the dimension-
less entanglement time of t ′

e = 25 corresponds to te ≈ 0.04 s,
which is considerably shorter than T2 ∼ 0.6 s in [3]. This
means that the main entanglement dynamics occurs at a
shorter timescale before the individual spin-relaxation effects
become dominant.

C. Photon-photon scenario

In this scenario, both the initial squeezing of individual
ensembles and the entanglement of two ensembles are me-
diated by photons. The number of spins considered in this
scenario is N ∼ 1012 in a single ensemble, and so the large-N
limit approach in Sec. III B is used. For initial squeezing in
this case, the squeezing parameter in terms of the covariance
matrix elements for a single ensemble is given by

ξ 2
S = σ11 + σ22 −

√
(σ11 − σ22)2 + 4σ 2

12. (45)

FIG. 7. Time evolution of entanglement entropy against dimensionless entanglement time (Ng2
m/�)te in both the phonon-photon and

phonon-phonon scenarios with N = 50 and 100 under no decoherence for the entanglement Hamiltonians (a) Hent,− and (b) Hent,+. Horizontal
solid lines represent the bounds ln(0.6 × 51) for N = 50 and ln(0.6 × 101) for N = 100.
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FIG. 8. Time evolution of logarithmic negativity EN against dimensionless entanglement time (Ng2
c/�)te in the photon-photon scenario

for the entanglement Hamiltonian (a) Hent,− with κ/� = 0.001, (b) Hent,− with κ/� = 0.01, (c) Hent,− with κ/� = 0.1, and (d) Hent,+ with
κ/� = 0.001, 0.01, and 0.1.

A range of photon decoherence factors κ/� = 0.001, 0.01,
and 0.1 are used in the calculation. Figure 8 show the time
evolution of EN for both Hent,− [Figs. 8(a)–8(c)] and Hent,+
[Fig. 8(d)]. The time evolution for the case of no decoherence
(κ/� = 0) is not shown since in the limit of large N with
no decoherence there is no limit for the magnitude of spin
squeezing and EN , so they can be made arbitrarily large.

For the entanglement Hamiltonian Hent,−, consistent with
previous results, EN is improved only initially, although this
initial improvement now occupies a longer period of dimen-
sionless entanglement time t ′

e. Figures 8(a) and 8(b) indicate
that with sufficiently small decoherence and large N , initial
squeezing may help to enhance entanglement for a compara-
bly longer t ′

e. Figures 8(b) and 8(c) make it clear that after
this initial period of improvement, eventually EN with initial
squeezing ceases to be better than that with no initial squeez-
ing. In Fig. 8(a) this is not apparent since it occurs at a much
later time. Interestingly, Fig. 8(c) also reveals some pattern of
periodicity in the time evolution of EN with initial squeezing.

So far for Hent,−, we have observed the same general pat-
tern in all scenarios, regardless of whether N is small or very
large, that the presence of decoherence will cause EN with
initial squeezing to eventually cease to be better than that with
no initial squeezing. While the approach for small N is not
particularly illuminating with respect to this, the analysis for
the large-N limit reveals additional insights into how decoher-
ence affects the general patterns observed in all the results
(including those of the phonon-photon and phonon-phonon
scenarios). The reason for this pattern can be inferred from
the effect of decoherence on the rotation of the spins. The
spins are initially aligned with polar angle θ = π/2. As initial
squeezing is applied, the angle θ increases due to decoherence
according to the rotation rate θ̇ given in Eq. (40). So by the
end of initial squeezing, θ will be greater than π/2. Under the

entanglement Hamiltonian Hent,−, the time evolution of the
Wigner characteristic function corresponding to the decoher-
ence contains terms that become greater overall in magnitude
as θ becomes greater than π/2 (see Appendix D). In other
words, with a greater initial increment of angle θ due to initial
squeezing, decoherence has a greater impact on EN relative
to the situation of no squeezing. In addition, under this en-
tanglement Hamiltonian, there is no further rotation (θ̇ = 0)
and the angle θ is a constant. Therefore, the spins with no
initial squeezing experience less impact from decoherence at
all times compared to the situation with initial squeezing since
its angle remains constant at θ = π/2. So although initial
squeezing improves EN initially against a greater effect of
decoherence, eventually the effect of decoherence takes over
and nullifies this improvement.

The time evolution of EN in the case of the entanglement
Hamiltonian Hent,+ is shown in Fig. 8(d). It is shown that ini-
tial squeezing improves EN with appropriate squeezing time,
consistent with previous results. A prominent pattern of peri-
odicity also appears in this case. This pattern of periodicity is
also noticeable in previous results for small N , although it is
less pronounced.

Now we comment on this pattern of periodicity or oscil-
latory behavior in the entanglement. First, it is reasonable
to assume that the decoherence considered here can only
have a deleterious effect on the entanglement, i.e., it reduces
the overall entanglement over time. Therefore, it should not
contribute to the observed oscillatory behavior. Taking this
into consideration, we then compute the time evolution of
covariance matrix elements without decoherence for some
fixed angle θ which is given in Appendix D. The result
clearly shows oscillatory behavior which is caused by the
existence of sinusoidal terms in the solution with a period of
π�/2Ng2

c for Hent,+. These sinusoidal terms happen to cancel
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each other out if the initial state is the coherent spin state.
This is the reason why under no initial squeezing there is
no oscillation in entanglement, while oscillatory behavior is
observed when initial squeezing is applied. In fact, there are
also sinusoidal terms in the solution for Hent,−, with a period
of π�/2Ng2

c cos2 θ . In this case, the longer initial squeezing is
applied, the shorter the period of oscillation is, as can be seen
in Fig. 8(c), because the angle θ becomes increasingly greater
than π/2 the longer initial squeezing is applied. These terms
also cancel each other out if the initial state is the coherent
spin state. In summary, periodicity and oscillatory behavior
are inherent natural features of both Hent,+ and Hent,−. Only
in a special case, such as when the coherent spin state is the
initial state (i.e., no initial squeezing), the oscillatory behavior
disappears. Such oscillatory behavior is not uncommon and it
has been exhibited, for example, in the Hamiltonians studied
in Ref. [33].

For the entanglement Hamiltonian Hent,+, decoherence
causes a nonzero rotation rate of the polar angle θ (see
Appendix D). As θ gets larger, so does the effect of entangle-
ment, because the time evolution of the Wigner characteristic
function corresponding to the decoherence contains terms that
become greater overall in magnitude as θ becomes greater
than π/2. This is regardless of whether initial squeezing is
applied or not; both experience an increasing effect of deco-
herence due to increasing θ . Under this condition, the results
show that initial squeezing can provide enhancement of en-
tanglement overall, even with some initial increment of angle
θ > π/2 due to initial squeezing. The presence of rotation is
also the reason why EN for Hent,+ is lower compared to that of
Hent,− over time, due to the increasing effect of decoherence.

It is appropriate to comment on the rotation rates θ̇ in Hent,+
and Hent,− with respect to dissipative decoherence. Without
decoherence, it is shown that θ̇ = 0 for both Hent,+ and Hent,−,
indicating that energy is conserved. With decoherence, energy
dissipation should drive the spin states towards the minimum
energy state, i.e., θ = π . This can be observed for Hent,+
with θ̇ = κNg2

c sin θ/�2. However, for Hent,−, it is zero. In
the analysis in the large-N limit, we have ignored terms with
a coefficient much less than N in the time evolution of the
Wigner characteristic function. Some of these terms for the
decoherence in fact cause rotation, but when N is taken to be
very large, i.e., N → ∞, this rotation rate vanishes. When N
is small however, this rotation rate should appear. Figure 9
shows the time evolution of the polar angle θ under deco-
herence for the phonon-phonon scenario with N = 50. It is
shown that there is indeed a nonzero θ̇ for Hent,− and, by
extension, there exists energy dissipation in the system. This
indicates that for Hent,−, the rate at which decoherence takes
energy away from the system does not scale comparably with
N . At the extreme limit of very large N , although energy
dissipation still occurs, it is not enough to change the polar
angle θ appreciably within the relevant timescale. Therefore, θ̇
appears to vanish in this limit. Even with small N = 50, θ̇ for
Hent,− is considerably smaller than that for Hent,+, especially
with no initial squeezing. This renders the previous discussion
in the large-N limit regarding the effects of decoherence and
rotation still applicable also for small N . In addition, these
facts also explain why in the results shown Hent,− is more
robust against dissipative decoherence compared to Hent,+.

FIG. 9. Time evolution of θ under decoherence in the phonon-
phonon scenario with no initial squeezing t ′

s = 0 (solid lines) and
with initial squeezing t ′

s = 4 (dashed lines) for both Hent,− (red) and
Hent,+ (blue). The parameters are N = 50, n̄th = 1, and γ /� = 0.01.
With initial squeezing, the starting angle θ > π/2.

The inclusion of the large number of spins allows for a
more relaxed assumption of experimental parameters. As-
suming that ωc/2π ∼ 1 GHz and Q = 103, we get κ/2π ∼
1 MHz. This corresponds to �/2π = 100 MHz for κ/� =
0.01. With a coupling strength of gc/2π ∼ 10 Hz, for N =
1012, the dimensionless entanglement time of t ′

e = 4000 cor-
responds to te ≈ 6 × 10−4 s. So, although the individual
coupling strength of the NV center to the cavity resonator is
small, the inclusion of the large number of spins compensates
for this and allows for a much faster response time.

Finally, as mentioned at the beginning of Sec. II, the cou-
pling strength of individual spins may be nonuniform, which
causes a reduction of the effective number of spins. The
results presented here are based on the effective number of
spins. For example, if the effective number of spins is reduced
by a factor of 2, this means that results for N = 50 in the
phonon-photon (Sec. IV A) and phonon-phonon (Sec. IV B)
scenarios correspond to an actual spin number of 100 in each
ensemble. In the photon-photon scenario (Sec. IV A), a choice
of N = 1012 corresponds to an actual spin number of 2 × 1012

for a reduction factor of 2, which is still of the same order of
magnitude. Of course, if there is little to no reduction due to
approximately uniform coupling, then N may refer to both the
effective and the actual number of spins.

V. CONCLUSION

In summary, we have investigated the effect of initial
squeezing, governed by the one-axis twisting Hamiltonian,
to entanglement of two NV-center ensembles under the
influence of dissipative decoherence. To this end, we con-
sidered different possible means by which initial squeezing
and entanglement are applied, namely, the phonon-photon,
phonon-phonon, and photon-photon scenarios. In the entan-
glement timescale estimation of the phonon-photon scenario,
the relevant timescale for entanglement dynamics is not fast
enough relative to coherence times T1 and T2. This is the
limitation in this scenario and it forms the motivation to con-
sider the phonon-phonon scenario, in which coupling strength
is increased, and the photon-photon scenario, in which the
number of spins is increased. While the phonon-photon and
phonon-phonon scenarios involve a relatively small number of
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spins (N � 100), in the photon-photon scenario we consider
the limit of a very large number of spins. The theoretical
model for the entanglement is based on the Tavis-Cummings
model, in which we take into account two possibilities of the
opposite [Hent,−, Eq. (9)] and the same [Hent,+, Eq. (13)] signs
of the coupling terms for the two ensembles in the coupling
terms of the Hamiltonian.

In general, the results show that for the entanglement
Hamiltonian Hent,− initial squeezing improves logarithmic
negativity EN only initially, while for Hent,+ it improves EN

overall with an appropriate initial squeezing time. There are
two important pieces of insight that contribute to this pat-
tern. First, without decoherence, for Hent,− initial squeezing
improves EN at the beginning, but it does not increase further
at later time as compared to the case of no initial squeezing.
We found that this is because there is an upper bound to entan-
glement at which saturation occurs. Without initial squeezing,
EN already saturates close to this bound for Hent,− so that
initial squeezing cannot increase EN further. In contrast, for
Hent,+ without initial squeezing, EN does not saturate near this
bound. Therefore, performing initial squeezing increases EN

further, up to this bound at saturation.
The second important observation is that the presence of

decoherence causes the curves for EN to slope downward
eventually with time, but its behavior is different between
Hent,− and Hent,+. For Hent,−, it causes EN with initial squeez-
ing to eventually be lower than that without initial squeezing
at later time. However, for Hent,+, EN with initial squeezing
is consistently higher at later time compared to that without
initial squeezing. The reason for this difference is revealed
in our analysis of the time evolution of the Wigner charac-
teristic function in the limit of a very large number of spins,
which incorporates the dynamics of rotation. The dissipative
decoherence does not induce polar angle rotation of the mean
spin direction for Hent,−, while it does for initial squeezing
by Hsq. Therefore, the application of initial squeezing makes
the initial angle larger. So even if initial squeezing increases
EN initially, this improvement is eventually taken over by the
greater effect of decoherence due to the larger angle. The sit-
uation is different for Hent,+, as dissipative decoherence does
induce polar angle rotation of the mean spin direction in this
case. In the presence of rotation causing an increasing effect
of decoherence whether or not initial squeezing is applied,
an application of optimal initial squeezing can provide an
improvement to logarithmic negativity overall relative to no
initial squeezing.

As mentioned above, in the analysis in the large-N limit
under dissipative decoherence, the polar angle rotation rate θ̇

is zero for Hent,−, while it is positive for Hent,+. This is because
for Hent,−, the rate at which decoherence takes energy away
from the system does not scale proportionally to N . It is shown
that even for a relatively small N = 50, θ̇ is considerably
smaller for Hent,− than that for Hent,+. In the extreme case of
the large-N limit, i.e., N → ∞, θ̇ vanishes. Therefore, even if
energy still dissipates from the system, the rate is not enough
to change the polar angle θ appreciably within the relevant
timescale. This explains why the results show that Hent,− is
more robust than Hent,+ against dissipation.

Finally, as the model used in this article is realistic and
quite general, it should also be applicable to other systems.

For example, the neutral divacancy defect in the cubic silicon
carbide also has a spin-1 triplet ground state similar to the
negatively charged NV center [67]. Other than solid-state sys-
tems, the model and results here should also be applicable to
other systems, like cold atoms and trapped ions, for example,
as long as they are described by the same Hamiltonians.
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APPENDIX A: DICKE STATE BASIS

Consider two particles with spin quantum numbers s1 and
s2. We can write down the collective spin vector operator as

J = J1 + J2 (A1)

and define basis state |s, ms〉 such that

J2|s, ms〉 = s(s + 1)|s, ms〉, (A2)

Jz|s, ms〉 = ms|s, ms〉, (A3)

where s = |s1 − s2|, |s1 − s2| + 1, . . . , s1 + s2 − 1, s1 + s2

and ms = −s,−s + 1, . . . , s − 1, s. As an example, for two
qubits (s1 = s2 = 1

2 ), using the properties given in Eqs. (A2)
and (A3), it can be checked that |s = 0, ms = 0〉 = 1√

2
(|↓↑〉

− |↑↓〉), |s = 1, ms = −1〉 = |↓↓〉, |s = 1, ms = 0〉 =
1√
2
(|↓↑〉 + |↑↓〉), and |s = 1, ms = 1〉 = |↑↑〉, where we

have used |↑〉 and |↓〉 to denote spin-up and spin-down,
respectively.

The Dicke state |DN
k 〉 is defined as a superposition of all

combinations of N qubits with the same number of spin-up
k with uniform probability amplitudes. For example, |D3

2〉 =
1√
3
(|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉). In the case of N = 2 qubits,

|D2
0〉 = |↓↓〉 ≡ |s = 1, ms = −1〉, |D2

1〉 = 1√
2
(|↓↑〉 + |↑↓〉)

≡ |s = 1, ms = 0〉, and |D2
2〉 = |↑↑〉 ≡ |s = 1, ms = 1〉.

So, in this two-particle example, the Dicke states are states
|s, ms〉 with the highest s = s1 + s2.

The same can likewise be done for a general number N
of particles with spin 1

2 , with collective spin operators Jz =
1/2

∑N
i=1 σ z

i and J± =∑N
i=1 σ±

i . Indeed, it can be verified
for any N and k that J2|DN

k 〉 = N
2 ( N

2 + 1)|DN
k 〉 and Jz|DN

k 〉 =
(k − N

2 )|DN
k 〉, with s = N

2 and ms = k − N
2 . Thus, the Dicke

states are simply states with the highest s = N
2 , i.e., |N

2 , ms〉.
For simplicity of notation, |m〉 will be used to denote |N

2 , ms〉,
with m = −N

2 ,−N
2 + 1, . . . , N

2 − 1, N
2 , and this will serve as

the Dicke state basis.
Let us discuss the initial coherent spin state |ψ〉=[ 1√

2
(|−1〉

+ | + 1〉)]⊗N in the main text. Because here the individual
spin is a two-level system, the two-level |−1〉 and |+1〉
states are equivalent to two-level |↓〉 and |↑〉 states. Mea-
surement of the spin in the z axis direction has possible
outcomes −N

2 , . . . , N
2 with binomial probability distribution.
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Therefore, |ψ〉 expressed in the Dicke basis is

|ψD〉 =
N∑

n=0

[
N!

2N n!(N − n)!

]1/2∣∣∣∣n − N

2

〉
. (A4)

In this basis, the collective spin operators can be written as
square matrices of dimension N + 1 that satisfy

〈m′|J2|m〉 = δm′,m
N

2

(
N

2
+ 1

)
, (A5a)

〈m′|Jz|m〉 = δm′,mm, (A5b)

〈m′|Jx|m〉 = 1

2
(δm′,m+1 + δm′+1,m)

×
√

N

2

(
N

2
+ 1

)
− m′m, (A5c)

〈m′|Jy|m〉 = 1

2i
(δm′,m+1 − δm′+1,m)

×
√

N

2

(
N

2
+ 1

)
− m′m, (A5d)

〈m′|J+|m〉 = δm′,m+1

√
N

2

(
N

2
+ 1

)
− m′m, (A5e)

〈m′|J−|m〉 = δm′+1,m

√
N

2

(
N

2
+ 1

)
− m′m. (A5f)

APPENDIX B: DYNAMICAL DECOUPLING
ANALYSIS FOR N = 6

Here we consider dynamical decoupling applied to an iso-
topically pure NV sample (0.01% 13C) as in Ref. [3]. In this
system, the dominant interaction is with electronic spins of
the surrounding nitrogen impurities (electron paramagnetic
resonance spectrum centers), forming an electronic spin bath.
The interaction between an NV-center spin and the random
magnetic field from this spin bath can be written as

Hb = 1
2 b(t )σz, (B1)

where b(t ) = geμBBz,bath(t )/h̄ and σz/2 is the z axis single-
spin operator. The random fluctuation in b(t ), resulting from
the random magnetic field Bz,bath(t ) created by the spin
bath, can be modeled by an Ornstein-Uhlenbeck (OU) pro-
cess [49,68–70], with the correlation function 〈b(0)b(t )〉 =
L2

b exp(−R|t |), where Lb is the coupling strength of the bath
to the NV spin and 1/R is the bath correlation time. The
free decay of the coherence induced by the spin bath follows
the Gaussian function exp(−L2

bt2/2) [49], which yields an
estimated value Lb ∼ 2 ms−1 obtained from Ref. [3].

Dynamical decoupling is applied using an n-pulse Carr-
Purcell-Meiboom-Gill (CPMG) sequence, which results in a
coherence time of T2 = (12n2/L2

bR)1/3 [49]. A coherence time
of T2 ≈ 580 ms is obtained for n ≈ 8200 pulses at 77 K [3],
which gives an estimate of R ∼ 1 ms−1.

The estimated parameters obtained allow for simulation
of the time evolution with Eq. (B1) under the OU process.
More precisely, the free decay of the transverse component of

FIG. 10. Free decay of the transverse component of a single NV
spin G(t ) as a function of time in the spin bath with an 8200-pulse
CPMG decoupling sequence for 5000 OU realizations (blue solid
line), fitted against the exponential decay function exp(−t/T2) (red
dashed line), with T2 = 580 ms.

a single NV spin [70]

G(t ) =
〈
exp

(
−i
∫ t

0
b(s)ds

)〉
(B2)

is simulated, where the average is taken over the realizations
of b(s). The CPMG decoupling sequence is applied along the
x axis.

The simulation result for 5000 realizations of OU pro-
cesses with the CPMG decoupling sequence is shown in
Fig. 10. The OU result is fitted against the exponential decay
function exp(−t/T2) and very good agreement is obtained.
The fact that it fits very well with the exponential decay
function suggests that the time evolution of an ensemble of
N NV-center spins under dephasing due to the spin bath,
combined with the CPMG decoupling sequence, can be rep-
resented by an effective Markovian master equation

ρ̇T2 = 1

2T2

N∑
i

(
σ z

i ρσ z
i − ρ

)
. (B3)

In other words, simulation of many realizations using Eq. (B1)
under the OU process with the CPMG sequence can be
replaced with a single time evolution using the master
equation (B3).

Although the analysis of the bath-induced decoherence
has been considerably simplified with the Markovian master
equation, this still presents a challenge because it involves
an individual spin operator instead of a collective one. Phys-
ically, this means that the bath-induced decoherence affects
individual NV spins separately and as a result the spins in an
ensemble cannot be treated as a single collective state. There-
fore, the Dicke state basis approach presented in Appendix A,
which treats an ensemble as a single collective state, cannot
be implemented anymore. As a consequence, the full Hilbert
space of dimension 2N for a single ensemble (22N for two
ensembles) must be taken into account. The time evolution
of the spin state in this full Hilbert space is necessary in
order to obtain the full information required to quantify the
entanglement. Since the full Hilbert space dimension grows
exponentially with N , numerical computation becomes im-
practical even for a relatively small N of 50–100. Therefore,
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under this condition, here we consider a manageable number
of N = 6 spins. Aside from that, in the limit of large N ,
the assumption of Gaussian states would not apply anymore.
However, this is somewhat less of an issue since the important
timescale for entanglement in the large-N limit can be much
shorter or faster than T2.

Figures 5(a) and 6(a) show that the patterns of entan-
glement for N = 50 and N = 100 are similar in the scaled
dimensionless entanglement timescale t ′

e = (Ng2
m/�)te. In the

real timescale, however, a smaller N will occupy a longer
period of time since te ∝ 1/N for some fixed value of scaled
time t ′

e. For N = 6, the entanglement timescale may consid-
erably exceed T2 so that no significant entanglement occurs.
Therefore, here we modify the parameter g2

m/� for N = 6
so that it captures the important entanglement dynamics at
a real timescale comparable to that of N ∼ 50–100. More
specifically, we are looking into the entanglement dynamics
up to te = 100 ms. Under this consideration, the parameter
chosen for N = 6 is g2

m/2π� = 7 Hz. We emphasize that
although we have modified the parameter, it is not the actual
entanglement dynamics of N = 6 that is of concern, but rather
how decoherence with associated coherence time T2 affects
the important entanglement dynamics within the specified
timescale up to te = 100 ms, which corresponds more to a
timescale of N ∼ 50–100.

To test the validity of the Markovian dephasing in Eq. (B3)
in our entanglement scenario, we first simulate the time evo-
lution using (B3) together with the initial squeezing Hamilto-
nian Hsq [Eq. (4)] and subsequent entanglement Hamiltonians
Hent,− [Eq. (9)] and Hent,+ [Eq. (13)] without dissipative de-
coherence for the phonon-phonon scenario. Then we compare
the results to those obtained by averaging 5000 realizations of
OU processes using the Hamiltonian (B1). In both situations,
the CPMG decoupling sequence is applied along the x axis.
The reason why we ignore dissipative decoherence first is so
that the computation of a single realization of the OU process
only involves the time evolution of a pure state instead of
mixed state; the computational simulation for a mixed state
with the OU process would be impractical in particular since
it needs to be repeated for thousands of realizations. The
results for logarithmic negativity are presented in Fig. 11,
showing a perfect match between the OU process and the
Markovian master-equation approach. Thus, this validates the
use of Markovian dephasing in Eq. (B3). Note that we do
not consider the phonon-photon scenario here because we
concluded in the main text that the entanglement timescale
would be much larger than T2 and so it would not be helpful
to consider this scenario.

Now we are able to simulate the full dynamics of the
system under initial squeezing and subsequent entanglement
together with dissipative decoherence and the Markovian de-
phasing, applying the CPMG decoupling sequence along the
x axis. Then we compare the results to the dynamics with-
out Markovian dephasing and dynamical decoupling, as in
the main text. The results are shown in Fig. 12. They show
that the initial rise and the peaks of entanglement after this
rise are relatively close to each other in value. Therefore,
as long as the entanglement timescale involved is less than
that of T2, ignoring the effect of decoherence associated
with coherence time T2 is still a good approximation. More

FIG. 11. Time evolution of logarithmic negativity EN against en-
tanglement time te in the phonon-phonon scenario with N = 6 and no
dissipative decoherence γ /� = 0 for the entanglement Hamiltonian
(a) Hent,− and (b) Hent,+. Here we consider a simulation with 5000
OU realizations (solid lines) and with Markovian dephasing (dashed
lines).

FIG. 12. Time evolution of logarithmic negativity EN against
entanglement time te in the phonon-phonon scenario with N = 6
and γ /� = 0.01 for the entanglement Hamiltonian (a) Hent,− and
(b) Hent,+. Results for time evolution with spin-bath-induced dephas-
ing (black solid lines and black dashed lines) are obtained using the
Markovian dephasing master equation.
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importantly, while the two results may show some differences
quantitatively, it still retains the important qualitative features
of entanglement enhancement, namely, that initial squeez-
ing may enhance overall entanglement for the entanglement
Hamiltonian Hent,+, while it enhances entanglement only ini-
tially for Hent,−.

Finally, although we consider an isotopically pure sample,
the authors in Ref. [3] comment that similar results for coher-
ence time T2 can also be obtained for a naturally abundant
sample (1.1% 13C). Moreover, T2 ≈ 0.6 s is not an exper-
imental limit as it can be further improved by using more
optimal pulses and decoupling sequences. Furthermore, if the
temperature considered is in the tens of millikelvin range, T2
should be even longer.

APPENDIX C: OPERATOR CORRESPONDENCE

By applying the Baker-Campbell-Hausdorff (BCH)
formula, the Wigner characteristic function W (u, v) =
Tr[ρ exp(ux̂ + v p̂)] can be alternatively written as

W (u, v) = Tr[ρ exp(ux̂) exp(v p̂)] exp
(
−i

uv

2

)
(C1a)

= Tr[ρ exp(v p̂) exp(ux̂)] exp
(

i
uv

2

)
. (C1b)

Differentiating these alternative forms with respect to u and
v gives

∂

∂u
W (u, v) = Tr[ρx̂ exp(ux̂) exp(v p̂)] exp

(
−i

uv

2

)
−i

v

2
W (u, v) (C2a)

= Tr[x̂ρ exp(v p̂) exp(ux̂)] exp
(

i
uv

2

)
+i

v

2
W (u, v), (C2b)

∂

∂v
W (u, v) = Tr[ p̂ρ exp(ux̂) exp(v p̂)] exp

(
−i

uv

2

)
−i

u

2
W (u, v) (C2c)

= Tr[ρ p̂ exp(v p̂) exp(ux̂)] exp
(

i
uv

2

)
+i

u

2
W (u, v). (C2d)

Therefore, similar to how W (u, v) = Tr[ρ exp(ux̂ + v p̂)]
corresponds to the state ρ, by rearranging we obtain the cor-
respondence

ρx̂ → Tr[ρx̂ exp(ux̂ + v p̂)] =
(

∂

∂u
+ i

v

2

)
W (u, v), (C3a)

x̂ρ → Tr[x̂ρ exp(ux̂ + v p̂)] =
(

∂

∂u
− i

v

2

)
W (u, v), (C3b)

p̂ρ → Tr[ p̂ρ exp(ux̂ + v p̂)] =
(

∂

∂v
+ i

u

2

)
W (u, v), (C3c)

ρ p̂ → Tr[ρ p̂ exp(ux̂ + v p̂)] =
(

∂

∂v
− i

u

2

)
W (u, v), (C3d)

where the BCH formula has been applied. So the action of x̂ or
p̂ on ρ has a corresponding differential operation on W (u, v).
This correspondence can be further extended to the action of
the second-order quadrature operators on ρ. For example,

ρx̂ p̂ →
(

∂

∂v
− i

u

2

)(
∂

∂u
+ i

v

2

)
W (u, v), (C4)

x̂ p̂ρ →
(

∂

∂u
− i

v

2

)(
∂

∂v
+ i

u

2

)
W (u, v), (C5)

x̂ρ p̂ →
(

∂

∂u
− i

v

2

)(
∂

∂v
− i

u

2

)
W (u, v)

=
(

∂

∂v
− i

u

2

)(
∂

∂u
− i

v

2

)
W (u, v). (C6)

Its validity can be demonstrated by differentiating the appro-
priate correspondence relation once more. As an example, for
ρx̂ p̂, we start by differentiating the correspondence of ρx̂ with
respect to v as follows:

∂

∂v
Tr[ρx̂ exp(ux̂ + v p̂)] = ∂

∂v

(
∂

∂u
+ i

v

2

)
W (u, v),

∂

∂v

[
Tr[ρx̂ exp(v p̂) exp(ux̂)] exp

(
i
uv

2

)]
= ∂

∂v

(
∂

∂u
+ i

v

2

)
W (u, v),

Tr[ρx̂ p̂ exp(v p̂) exp(ux̂)] exp
(

i
uv

2

)
+ i

u

2

(
∂

∂u
+ i

v

2

)
W (u, v) = ∂

∂v

(
∂

∂u
+ i

v

2

)
W (u, v),

Tr[ρx̂ p̂ exp(ux̂ + v p̂)] =
(

∂

∂v
− i

u

2

)(
∂

∂u
+ i

v

2

)
W (u, v). (C7)

APPENDIX D: TIME EVOLUTION OF THE WIGNER CHARACTERISTIC FUNCTION
AND COVARIANCE MATRIX

Here the time evolution of the Wigner characteristic function and covariance matrix elements for the entanglement Hamiltoni-
ans Hent,− [Eq. (9)] and Hent,+ [Eq. (13)] and their respective decoherence (16) are given. As illustrated in the main text, the time
evolution of the Wigner characteristic function is obtained by applying the coordinate transformation (28), Holstein-Primakoff
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transformation, and operator correspondence (20) consecutively to the master equation, taking into account the rotating frame of
reference.

First, for the master equation ρ̇ = −i[Hent,−, ρ],

Ẇ (V, te) = Ng2
c

�

[
cos2 θ (v1 + v2)

(
∂

∂u1
+ ∂

∂u2

)
+ (1 − 2 cos2 θ )

(
u1

∂

∂v1
+ u2

∂

∂v2

)
− u1

∂

∂v2
− u2

∂

∂v1

]
W (V, te), (D1)

where V = (u1, v1, u2, v2)T. For its associated decoherence ρ̇ = (gc/�)2κD[F ]ρ with F = J−
1 − J−

2 ,

Ẇ (V, te) = Ng2
c

�

κ

2�

{
1

2
(u1 − u2)2 + 1

2
cos2 θ (v1 − v2)2 + cos θ

[
(u1 − u2)

(
∂

∂u1
− ∂

∂u2

)

+ (v1 − v2)

(
∂

∂v1
− ∂

∂v2

)]}
W (V, te). (D2)

There is no rotation for Hent,− and its associated decoherence, i.e., ωz = 0 and θ̇ = 0. The time evolution for the covariance
matrix elements is

σ̇11 = λ{2σ12(1 − 2 cos2 θ ) − 2σ14 + ε[1 + 2(σ11 − σ13) cos θ ]}, (D3a)

σ̇22 = λ{2(σ12 + σ23) cos2 θ + ε[cos2 θ + 2(σ22 − σ24) cos θ ]}, (D3b)

σ̇33 = λ{2σ34(1 − 2 cos2 θ ) − 2σ23 + ε[1 + 2(σ33 − σ13) cos θ ]}, (D3c)

σ̇44 = λ{2(σ14 + σ34) cos2 θ + ε[cos2 θ + 2(σ44 − σ24) cos θ ]}, (D3d)

σ̇21 = σ̇12 = λ{(σ11 + σ13) cos2 θ + σ22(1 − 2 cos2 θ ) − σ24 − ε(σ14 + σ23 − 2σ12) cos θ}, (D3e)

σ̇31 = σ̇13 = λ{(σ14 + σ23)(1 − 2 cos2 θ ) − σ12 − σ34 − ε[1 + (σ11 + σ33 − 2σ13) cos θ ]}, (D3f)

σ̇41 = σ̇14 = λ{(σ11 + σ13) cos2 θ + σ24(1 − 2 cos2 θ ) − σ44 − ε(σ12 + σ34 − 2σ14) cos θ}, (D3g)

σ̇32 = σ̇23 = λ{(σ13 + σ33) cos2 θ + σ24(1 − 2 cos2 θ ) − σ22 − ε(σ12 + σ34 − 2σ23) cos θ}, (D3h)

σ̇42 = σ̇24 = λ{(σ12 + σ14 + σ23 + σ34) cos2 θ − ε[cos2 θ + (σ22 + σ44 − 2σ24) cos θ ]}, (D3i)

σ̇43 = σ̇34 = λ{(σ13 + σ33) cos2 θ + σ44(1 − 2 cos2 θ ) − σ24 − ε(σ14 + σ23 − 2σ34) cos θ}, (D3j)

where λ = Ng2
c/�, ε = κ/2�, and the fact that σ21 = σ12, σ31 = σ13, σ41 = σ14, σ32 = σ23, σ42 = σ24, and σ43 = σ34 has been

used.
Furthermore, for identical ensembles, the covariance matrix is symmetrical under exchange. This introduces additional

constraints of σ33 = σ11, σ44 = σ22, σ34 = σ12, and σ23 = σ14. If there is no decoherence, the reduced time evolution of elements
of the covariance matrix for some fixed angle θ is given by

σ̇11 = λ[2σ12(1 − 2 cos2 θ ) − 2σ14], (D4a)

σ̇22 = λ[2(σ12 + σ14) cos2 θ ], (D4b)

σ̇12 = λ[(σ11 + σ13) cos2 θ + σ22(1 − 2 cos2 θ ) − σ24], (D4c)

σ̇13 = λ[2σ14(1 − 2 cos2 θ ) − 2σ12], (D4d)

σ̇14 = λ[(σ11 + σ13) cos2 θ + σ24(1 − 2 cos2 θ ) − σ22], (D4e)

σ̇24 = λ[2(σ12 + σ14) cos2 θ ]. (D4f)

In the following, let cθ = cos2 θ and kθ = sin2 θ = 1 − cθ . For a fixed angle θ , the solution for the set of linear differential
equations above can be written in the form y(t ′

e) = M−y(0), where y = (σ11, σ22, σ12, σ13, σ14, σ24)T, t ′
e = λte is the dimension-

less entanglement time, and M− = (M−
L |M−

R ), with

M−
L = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 + cos(4cθ t ′
e) 1 + 8k2

θ t ′2
e − cos(4cθ t ′

e) 8kθ t ′
e − 2 sin(4cθ t ′

e)

1 − cos(4cθ t ′
e) 3 + cos(4cθ t ′

e) 2 sin(4cθ t ′
e)

sin(4cθ t ′
e) 4kθ t ′

e − sin(4cθ t ′
e) 2 + 2 cos(4cθ t ′

e)

cos(4cθ t ′
e) − 1 1 − 8k2

θ t ′2
e − cos(4cθ t ′

e) −8kθ t ′
e − 2 sin(4cθ t ′

e)

sin(4cθ t ′
e) −4kθ t ′

e − sin(4cθ t ′
e) 2 cos(4cθ t ′

e) − 2

1 − cos(4cθ t ′
e) cos(4cθ t ′

e) − 1 2 sin(4cθ t ′
e)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D5a)
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M−
R = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(4cθ t ′
e) − 1 −8kθ t ′

e − 2 sin(4cθ t ′
e) 1 − 8k2

θ t ′2
e − cos(4cθ t ′

e)

1 − cos(4cθ t ′
e) 2 sin(4cθ t ′

e) cos(4cθ t ′
e) − 1

sin(4cθ t ′
e) 2 cos(4cθ t ′

e) − 2 −4kθ t ′
e − sin(4cθ t ′

e)

3 + cos(4cθ t ′
e) 8kθ t ′

e − 2 sin(4cθ t ′
e) 1 + 8k2

θ t ′2
e − cos(4cθ t ′

e)

sin(4cθ t ′
e) 2 + 2 cos(4cθ t ′

e) 4kθ t ′
e − sin(4cθ t ′

e)

1 − cos(4cθ t ′
e) 2 sin(4cθ t ′

e) 3 + cos(4cθ t ′
e)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D5b)

There are sinusoidal terms in the entries of M−, all with a common period of π/2λ cos2 θ . For θ > π/2, this causes oscillatory
behavior in the solution for y and, by extension, the logarithmic negativity as well. Other than the condition that θ = π/2,
the oscillatory behavior can also disappear in some cases. For example, in a special case of initial state with σ11 = σ22 and
σ12 = σ13 = σ14 = σ24 = 0, the sinusoidal terms cancel each other in the solution. The coherent spin state is one such case.

Next, for the master equation ρ̇ = −i[Hent,+, ρ],

Ẇ (V, te) = Ng2
c

�

[
(1 + sin2 θ )

(
v1

∂

∂u1
+ v2

∂

∂u2

)
− cos2 θ

(
v1

∂

∂u2
+ v2

∂

∂u1

)
− (u1 − u2)

(
∂

∂v1
− ∂

∂v2

)]
W (V, te). (D6)

For its associated decoherence ρ̇ = (gc/�)2κD[F ]ρ with F = J−
1 + J−

2 ,

Ẇ (V, te)= Ng2
c

�

κ

2�

{
1

2
(u1 + u2)2+ 1

2
cos2 θ (v1 + v2)2 + cos θ

[
(u1 + u2)

(
∂

∂u1
+ ∂

∂u2

)
+ (v1 + v2)

(
∂

∂v1
+ ∂

∂v2

)]}
W (V, te).

(D7)

The rotation rates corresponding to Hent,+ and its associated decoherence are

ωz = −2
Ng2

c

�
cos θ, θ̇ = κNg2

c

�2
sin θ. (D8)

The time evolution for the covariance matrix elements is

σ̇11 = λ{2(σ14 − σ12) + ε[1 + 2(σ11 + σ13) cos θ ]}, (D9a)

σ̇22 = λ{2σ12(1 + sin2 θ ) − 2σ23 cos2 θ + ε[cos2 θ + 2(σ22 + σ24) cos θ ]}, (D9b)

σ̇33 = λ{2(σ23 − σ34) + ε[1 + 2(σ13 + σ33) cos θ ]}, (D9c)

σ̇44 = λ{2σ34(1 + sin2 θ ) − 2σ14 cos2 θ + ε[cos2 θ + 2(σ24 + σ44) cos θ ]}, (D9d)

σ̇21 = σ̇12 = λ{σ24 − σ22 + σ11(1 + sin2 θ ) − σ13 cos2 θ + ε(2σ12 + σ14 + σ23) cos θ}, (D9e)

σ̇31 = σ̇13 = λ{σ12 + σ34 − σ14 − σ23 + ε[1 + (σ11 + 2σ13 + σ33) cos θ ]}, (D9f)

σ̇41 = σ̇14 = λ{σ44 − σ24 + σ13(1 + sin2 θ ) − σ11 cos2 θ + ε(σ12 + 2σ14 + σ34) cos θ}, (D9g)

σ̇32 = σ̇23 = λ{σ22 − σ24 + σ13(1 + sin2 θ ) − σ33 cos2 θ + ε(σ12 + 2σ23 + σ34) cos θ}, (D9h)

σ̇42 = σ̇24 = λ{(σ14 + σ23)(1 + sin2 θ ) − (σ12 + σ34) cos2 θ + ε[cos2 θ + (σ22 + 2σ24 + σ44) cos θ ]}, (D9i)

σ̇43 = σ̇34 = λ{σ24 − σ44 + σ33(1 + sin2 θ ) − σ13 cos2 θ + ε(σ14 + σ23 + 2σ34) cos θ}, (D9j)

where λ = Ng2
c/�, ε = κ/2�, and the fact that σ21 = σ12, σ31 = σ13, σ41 = σ14, σ32 = σ23, σ42 = σ24, and σ43 = σ34 has been

used.
With the constraints σ33 = σ11, σ44 = σ22, σ34 = σ12, and σ23 = σ14 for identical ensembles and no decoherence for some

fixed angle θ , the reduced time evolution is

σ̇11 = λ[2(σ14 − σ12)], (D10a)

σ̇22 = λ[2σ12(1 + sin2 θ ) − 2σ14 cos2 θ ], (D10b)

σ̇12 = λ[σ24 − σ22 + σ11(1 + sin2 θ ) − σ13 cos2 θ ], (D10c)

σ̇13 = λ[2σ12 − 2σ14], (D10d)

σ̇14 = λ[σ22 − σ24 + σ13(1 + sin2 θ ) − σ11 cos2 θ ], (D10e)

σ̇24 = λ[2σ14(1 + sin2 θ ) − 2σ12 cos2 θ ]. (D10f)
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In the following, let cθ = cos2 θ and kθ = sin2 θ = 1 − cθ . For a fixed angle θ , the solution can be written in the form
y(t ′

e) = M+y(0), where y = (σ11, σ22, σ12, σ13, σ14, σ24)T, t ′
e = λte is the dimensionless entanglement time, and M+ = (M+

L |M+
R )

with

M+
L = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 + cos(4t ′
e) 1 − cos(4t ′

e) −2 sin(4t ′
e)

1 + 8k2
θ t ′2

e − cos(4t ′
e) 3 + cos(4t ′

e) 8kθ t ′
e + 2 sin(4t ′

e)

4kθ t ′
e + sin(4t ′

e) − sin(4t ′
e) 2 + 2 cos(4t ′

e)

1 − cos(4t ′
e) cos(4t ′

e) − 1 2 sin(4t ′
e)

4kθ t ′
e − sin(4t ′

e) sin(4t ′
e) 2 − 2 cos(4t ′

e)

8k2
θ t ′2

e + cos(4t ′
e) − 1 1 − cos(4t ′

e) 8kθ t ′
e − 2 sin(4t ′

e)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D11a)

M+
R = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − cos(4t ′
e) 2 sin(4t ′

e) cos(4t ′
e) − 1

8k2
θ t ′2

e + cos(4t ′
e) − 1 8kθ t ′

e − 2 sin(4t ′
e) 1 − cos(4t ′

e)

4kθ t ′
e − sin(4t ′

e) 2 − 2 cos(4t ′
e) sin(4t ′

e)

3 + cos(4t ′
e) −2 sin(4t ′

e) 1 − cos(4t ′
e)

4kθ t ′
e + sin(4t ′

e) 2 + 2 cos(4t ′
e) − sin(4t ′

e)

1 + 8k2
θ t ′2

e − cos(4t ′
e) 8kθ t ′

e + 2 sin(4t ′
e) 3 + cos(4t ′

e)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D11b)

There are sinusoidal terms in the entries of M+, all with a common period of π/2λ. This in turn causes oscillatory behavior in
the solution for y and, by extension, the logarithmic negativity as well. In some cases, oscillatory behavior may disappear. For
example, in the special case of an initial state with σ11 = σ22 and σ12 = σ13 = σ14 = σ24 = 0, the sinusoidal terms cancel each
other in the solution. The coherent spin state is one such case.
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