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The quest for improved sampling methods to solve statistical mechanics problems of physical and chemical
interest has proceeded with renewed efforts since the invention of the Metropolis algorithm, in 1953. In particular,
the understanding of thermally activated rare-event processes between long-lived metastable states, such as
protein folding, is still elusive. In this case, one needs both the finite-temperature canonical distribution function
and the reaction current between the reactant and product states to completely characterize the dynamic. Here we
show how to tackle this problem using a quantum computer. We use the connection between a classical stochastic
dynamics and the Schrödinger equation, also known as stochastic quantization, to variationally prepare quantum
states, allowing us to unbiasedly sample from a Boltzmann distribution. Similarly, reaction rate constants can be
computed as ground-state energies of suitably transformed operators, following the supersymmetric extension
of the formalism. Finally, we propose a hybrid quantum-classical sampling scheme to escape local minima and
explore the configuration space in both real-space and spin Hamiltonians. We indicate how to realize the quantum
algorithms constructively, without assuming the existence of oracles or quantum walk operators. The quantum
advantage concerning the above applications is discussed.
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I. INTRODUCTION

The task of sampling from a multidimensional finite-
temperature Boltzmann probability distribution, ρ(x), is a
central problem in numerical simulations of physics, of chem-
istry [1], and beyond the traditional boundaries of natural
sciences. For example, in optimization by simulated anneal-
ing, the physical potential is replaced by a suitable cost
function, and the temperature becomes an effective param-
eter that decreases during the optimization [2]. Perhaps the
most important occurrences of critical slowing down of sam-
pling methods in the presence of complex energy landscapes
include optimization of spin glasses, neural networks, and
protein folding. All in all, despite these being classical prob-
lems, their solution is far from being simple or efficient with
classical methods.

The celebrated Metropolis algorithm [3,4], one of the top
ten most important algorithms from the past century [5],
enabled countless applications in classical and quantum sta-
tistical mechanics [6]. In short, the Metropolis algorithm aims
to sample from a probability distribution ρ(x) by constructing
a random walk for the a variable x. Each iteration of this
Markov chain consists of a proposal move x → x′ defined by
a transition matrix T (x, x′), followed by an acceptance step,
with probability A(x, x′).

A practical sampling scheme must be efficient in exploring
the huge configuration’s space and escaping the local minima
of a potential v(x). The latter can be either a chemical energy
surface or a cost function for optimization problems. Smaller
average displacements x → x′ lead to increased acceptance
rate, yet the samples become statistically correlated, such that
the central processing unit (CPU) time is wasted in generating

a lot of very similar configurations without a real improve-
ment in the estimate. In contrast, a highly nonlocal proposal
move would be effective to decorrelate the walk, but this
generally implies a low acceptance rate, such that most of the
computational time is spent in proposing transitions x → x′,
which are never accepted.

The total CPU runtime of a Metropolis simulation can be
estimated by multiplying the cost to generate each iteration
of the Markov chain with the number of steps required to
(i) overcome the thermalization transient regime and (ii)
gather sufficient statistics to evaluate the target operator. The
error in its estimate scales with 1/

√
M, where M is the num-

ber of uncorrelated samples generated. Markov chain Monte
Carlo algorithms can be therefore computationally expensive,
as long sequences can be necessary to obtain precise estimates
of statistical quantities The shape of the potential energy land-
scape, v(x), plays a major role in controlling the efficiency of
the algorithm. In short, a sampling scheme, T (x, x′), based
on local updates likely fails to visit all the local minima of
the potential during a finite-length simulation. On the other
hand, the choice of an effective global update rule is heavily
system dependent. While in unfrustrated spin systems, global
(or cluster) update rules have been effective in overcoming
critical slowing down of simulations at phase transitions [7,8],
a general solution to this problem has yet to be found, espe-
cially in continuous systems.

Molecular dynamics, perhaps the most common local-
update-based sampling scheme, fails when the potential
displays several local minima separated by large barriers
[6]. These conditions are ubiquitous in structural phase tran-
sitions [9–11] and conformal reactions in solutions, such
as the well-known protein folding problem [12]. In these
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cases, a simulation initialized in one minimum will hardly
visit spontaneously other minima, as this process involves
the occurrence of a thermally activated rare event [13]. In
general, dynamics that are characterized by a timescale gap
between fast local relaxations and slow activation processes
are difficult to simulate. These conditions arise in systems
belonging to physics, chemistry, and biology. We also notice
that dynamics-based approaches, such as Hamiltonian Monte
Carlo, can be used also in absence of a real physical systems
[14,15].

While several revolutionary enhanced sampling algorithms
have been devised to escape such free energy minima, e.g.,
parallel tempering [16], metadynamics [17], and umbrella
sampling [18], to name a few, they also come with limitations.
For example, the efficiency of the first is controlled by the
algorithm’s hyperparameters, while the latter requires the def-
inition of a reaction coordinate which is in general hard to get
a priori. In particular, if we consider a rare-event dynamic,
i.e., a transition process that take place on a long timescale
compared to timescale characterizing local relaxations in the
local minima, finding the reaction pathway it is a huge prob-
lem in itself.

Given the rapid development of digital quantum hardware
applications, it is timely to revisit the task of performing
quantum computing simulations of a continuous variable
diffusion process, with the following goals: propose a quan-
tum algorithm to (i) unbiasedly sample from a canonical
finite-temperature distribution ρ(x) and (ii) compute the ther-
malization rate k, together with the reaction current j(x),
which are essential pieces of information to model reactive
processes. Moreover, on a more heuristic take, (iii) study the
possible origin of quantum speedup in visiting the config-
uration space, escaping local minima with global quantum
updates.

Before addressing these points, let us review some quan-
tum computing efforts along this broad line of research, to
better contextualize the present work. Quantum versions of
the Metropolis algorithm have been invented, but to achieve
the task to sample from a finite-temperature quantum canoni-
cal distribution [19,20]. Other related work concerns the task
of loading distribution functions in a quantum register. Most
methods operate under the assumption that the normalization
is known a priori [21,22]. Once that this distribution is loaded,
Monte Carlo integration can be performed with a quadratic
speedup, as shown by Montanaro [23].

A similar quantum speedup can be achieved in approxi-
mating partition functions of classical lattice models, under
certain conditions [23,24]. Even more pertinent to our re-
search is the possibility of achieving accelerated sampling
through quantum walks [25–27] or a quantization of a Markov
chain using parent quantum Hamiltonians and quantum an-
nealing in lattice models [28]. Finally, Ref. [29] translates the
problem of finding the reaction pathways as an optimization
problem to be solved by quantum annealing.

In this paper, we will adopt a different strategy, as we
do not use quantum walks or Grover-like approaches. The
computational primitive used in this framework is instead
the Hamiltonian simulation in continuous space represen-
tation [30,31]. Moreover, we do not assume the existence
of an oracle, black-box, or quantum walk operators [32],
and we indicate how to realize the algorithm constructively,

provided some reasonable approximations on the functional
form of v(x).

II. LANGEVIN AND FOKKER-PLANCK EQUATIONS

The starting point of our discussion is the first-order
Langevin equation. On one hand, this dynamics can mimic
the microscopical behavior of particles in a solution; on the
other, it is probably the simplest thermostat used to achieve
canonical sampling at finite temperature T . In one dimension,
this equation reads

ẋ = f (x) + η, (1)

where f (x) = −∂v(x)/∂x represents the classical force acting
on the particles, ẋ is the usual time derivative of the position
x, and η is a Gaussian distributed random variable with zero
mean and defined by the following correlator:

〈ηtηt ′ 〉 = 2T δ(t − t ′), (2)

where we also set the Boltzmann constant kB and the friction
γ to unity (the latter choice only rescales the unit of time). The
Markov chain generated by the Langevin dynamics, where
the transition matrix T (x, x′) is given by Eq. (1), allows us
to sample from the canonical distribution

ρ(x) = exp[−v(x)/T ], (3)

in the limit of vanishing integration time-step [1,33].
It is well known that the probability density distribution,

P(x, t ), for the stochastic process x(t ) generated by a first-
order Langevin equation [Eq. (1)] satisfies the Fokker-Planck
equation

∂P(x, t )

∂t
= −∂ ( f (x)P(x, t ))

∂x
+ T

∂2P(x, t )

∂x2
. (4)

The stationary solution of this stochastic differential equation
is exactly the desired equilibrium probability density ρ(x)
[33].

III. REVERSE STOCHASTIC QUANTIZATION

In this section, we bridge the classical statistical mechan-
ics with an effective quantum problem. In the early 1980s,
Parisi discovered that there is a deep relationship between
the Fokker-Planck equation (4), and the Schrödinger equation
[34]. This is obtained by searching for a solution of the fol-
lowing type:

P(x, t ) = ψ0(x)�(x, t ). (5)

If we write ψ0(x) = √
ρ(x), then �(x, t ) satisfies a

Schrödinger equation in imaginary time

∂

∂t
�(x, t ) = −H�(x, t ), (6)

where H is an effective Hamiltonian that reads

H = K + V, (7)

K = −T
∂2

∂x2
, (8)

V = 1

4T

(
∂v(x)

∂x

)2

− 1

2

∂2v(x)

∂x2
. (9)
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FIG. 1. Double well potential. (a) Shapes of the effective potentials V (x) (thick solid black) and V S (x) (dashed black), and the first seven
eigenfunctions (light colored) ψi(x) of the operator H [Eq. (7)] with v(x) given by Eq. (11), and T = 0.2. Each curve is shifted vertically by
the corresponding eigenvalue Ei. The vertical axis units are dimensionless units for the potentials as well for the wave functions. (b) v(x) given
by Eq. (11) (black line), the square modulus of the first two eigenstates (dashed and dot-dashed lines), and the classical probability distribution
ρ(x) defined by Eq. (3) and T = 0.2 (thick red line). (c) Energy gaps of H between the ground state and the first excited state (solid markers)
and between the first and the second excited states (empty markers) as a function of the inverse temperature, and for three different choices of
the potential parameter h. Solid lines correspond to the Kramer rate of Eq. (12).

Interestingly, the ground state of H is exactly given by ψ0,
with eigenvalue E0 = 0. This connection takes the name of
stochastic quantization, because a quantum evolution in imag-
inary time can be recast as a classical stochastic process, and
it can be used to solve quantum physics problems through
classical numerical methods. Here instead, we take the reverse
route, using this connection to map a classical statistical me-
chanics problem into a quantum formalism, to be eventually
solved on a quantum computing machine.

For example, we already notice that sampling from the
ground state |ψ0(x)|2 means to sample from the equilibrium
density function ρ(x), at every finite temperature T , that is one
of our targets. To conclude, we provide a one-to-one mapping
between a classical potential surface v(x) (and a temperature
T ) and an effective quantum operator H . This simple obser-
vation marks already a difference with the recent Ref. [28],
where the obtained parent lattice Hamiltonian depends on the
specific choice of the classical Markov chain to be quantized.

IV. SUPERSYMMETRIC HAMILTONIAN
AND REACTION RATES

Before detailing the quantum computing approach to tackle
this quantum problem, let us further explore the possibilities
that this formalism unlocks. Indeed, we can extract additional
information from the spectrum of H . The gap between the
fundamental and the first excited state 	 = E1 − E0 = E1
provides the relaxation time toward equilibrium, which is the
dominant timescale at which the diffusion process takes place
[33]. While the calculation of excited-state energies can be
quite elusive, luckily this formalism reserves an additional
surprise. Since the Hamiltonian H defines a ground state
with a zero eigenvalue, we can construct its super-symmetric
partner, HS , such that its ground state ES

0 directly provides the
fundamental gap of H [35,36]. For example, if we consider
a simple one-dimensional potential, this new operator HS =
K + V S is readily obtained by adding the second derivative of
v to the effective potential V ,

V S = V + ∂2v(x)

∂x2
. (10)

The multidimensional generalization of Eq. (10) is discussed
in Ref. [36].

A. A double well potential

Before going further, it could be beneficial to familiarize
ourselves with this formalism on a well-studied benchmark,
the one-dimensional double-well model. In this case, a valid
potential reads

v(x) = h
(
x2 − x2

0

)2
(11)

and features two local minima at positions ±x0, separated by
an energy barrier with height h (see Fig. 1). If T � h, the
hopping process becomes a thermally activated rare event,
which rate is well described by Kramers theory,

k ≈ ωx0ω0

2π
e−h/T , (12)

where ωx and ω0 are the characteristic frequencies of the
harmonic approximation of the potential at the bottom x = x0

and at the barrier x = 0 [13]. The timescale 1/k represents the
relaxation time of any local update Markov chain simulations,
namely a fully ergodic simulation is achieved if both wells are
visited multiple times (one each, to the very least) during the
simulation.

We construct the effective potentials V (x) and V S (x), and
we numerically solve the associated Schrödinger equations.
In Fig. 1(a), we plot these potentials and the first seven
eigenfunctions of Eq. (7). The two lowest lying states are
the symmetric and antisymmetric combinations of the two
distributions localized at the left and the right wells, namely
ψ0(x) = 1/

√
2[ψL(x) + ψR(x)] and ψ1(x) = 1/

√
2[ψL(x) −

ψR(x)]. The energy gap 	 separating these two states de-
creases exponentially with the inverse temperature and the
height of the potential energy barrier, in perfect agreement
with Eq. (12), while the gap between the first and the sec-
ond excited states remains O(1) [see also Fig. 1(c)]. This
numerically confirms that the gap 	 of Eq. (7), or equivalently
the ground-state energy ES

0 of the supersymmetric partner of
Eq. (7), gives the thermalization rate of the system at finite
temperature.

Let us notice again that, despite the fact we are solving a
Schrödinger equation, the rate obtained is the one correspond-
ing to a purely classical thermally activated process, not to a
quantum tunneling event [37–40].
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In Fig. 1(b), we also numerically demonstrates that
|ψ0(x)|2 = ρ(x).

V. QUANTUM COMPUTING AND QUANTUM ADVANTAGE

The last and essential step of the framework is to propose
several quantum computing implementations to make use of
this formalism, as well as to discuss avenues for quantum
advantage in all these specific applications. Before going fur-
ther, let us preemptively discuss a possible concern a reader
could raise at this point: After all, Eq. (7) presents a sign-
problem free Hamiltonian and could in principle be solved
with classical quantum Monte Carlo (QMC) methods, without
the need for quantum hardware. However, this is not true in
general, as a QMC simulation boils down to a classical MC
simulation featuring an extended system, as in path-integral
MD [41,42]. Given that the shape of this effective potential
V (x) is even more corrugated compared to the physical one,
v(x), this approach would inherit all the sample complexity of
the MC sampling on the original v(x), which is precisely what
our program aims to avoid.

A. Qubit encoding and quantum primitives

In this section, we find a convenient representation of
the problem and its mapping to a qubit register. We use the
real-space representation, and we discretize the space using
a grid of 2n points, where n is the number of qubits [30,31].
Without loss of generality, we can consider a finite domain
x ∈ [−L/2, L/2]. The position of a particle in the qubit reg-
ister is denoted by an integer i ∈ [0, 2n − 1], which is simply
connected to the real-valued physical coordinate through the
relation xi = −L/2 + i × L/2n. Interestingly, the qubit regis-
ter size n needed to represent each degree of freedom scales
logarithmically with the precision needed, and therefore this
encoding is very efficient memory-wise. The multidimen-
sional case simply requires adding one qubit register per
dimension d , such that, for a system made of Np particles,
the total memory scales as Npd [43,44].

In the following, we will use the bra-ket notation |ψ〉 to
denote a quantum state stored in a qubit register and ψ (x) to
indicate a wave function in real space. These two objects are
essentially the same, with the difference that the squared am-
plitudes of first quantum state are normalized to one, whereas
the normalization of the second is given by a continuous space
integral. There is, however, an obvious metric factor 2n/L that
connects the two measures.

Concerning the problem Hamiltonians H and HS respec-
tively, the encoding depends on the quantum primitive of
choice. For example, one could prepare the ground states
of these operators by means of a variational approach [46],
the variational quantum eigensolver (VQE). In this case, the
cost function to minimize is the energy of the Hamiltonian
of Eq. (7), for the task of preparing the ρ(x) distribution, or
the energy of the modified operator HS [Eq. (10)] that readily
provides the reaction rate, as discussed in Sec. IV.

Crucially, these Hamiltonians, which are made of a poten-
tial operator diagonal in the computational basis, and a kinetic
operator, can be efficiently evaluated in two bases only, the

position and the momentum ones, as shown in Ref. [44], with-
out the need to decompose the Hamiltonian as a sum of Pauli
strings, which number would be exponentially increasing with
the system size (see Appendix A). The variational approach
features a parametrized quantum circuit, which parameters
can be optimized to minimize the target cost function [46].

In Fig. 2(a), we show a possible choice of such
parametrized circuit, the so-called RY-CNOT ansatz, that fea-
tures RY and CNOT gates, and produces a real-valued quantum
state. In Refs. [44,47], it has been shown empirically that
this circuit produces exponentially accurate Gaussian dis-
tributions as the circuit depth is increased. Other circuits
used to approximate solution of a Schrödinger equation on
a grid include the Hamiltonian variational inspired ansatz of
Ref. [48], and the matrix product state ansatz of Ref. [49].
In Ref. [50], it is shown that the latter circuit can represent
the solution of a nonlinear Schrödinger equation on a grid,
using an exponentially fewer number of resources compared
to the classical counterpart. Irrespective of the ansatz and the
Hamiltonian encoding used, the number of circuit repetitions
to accumulate sufficient statistic and resolve a target energy
accuracy, ε, scales with 1/ε2 (cf. Refs. [51,52] for electronic
structure Hamiltonians and Ref. [50] for real-space problems
discretized on a grid). Furthermore, the shot noise also has
an impact on optimization schemes like the quantum natural
gradient method [53], which are likely to be needed to op-
timize circuits featuring a large number of parameters (see,
e.g., Ref. [54]).

As a consequence, we also present a second strategy to
find such ground states, based on quantum phase estimation
(QPE) algorithm [45,55]. QPE requires the possibility to per-
form controlled application of powers of the unitary U = eiHt .
Therefore, one needs to provide a circuit to perform the time
evolution primitive U ≈ eiKt eiV t , for a finite time t , with op-
erators given by Eqs. (7) or (10), by using a Trotter time
discretization [55]. The QPE algorithm allows us to obtain
a digital representation of the phase E0t , if |ψ0〉 is taken as
the input of the QPE module. In every realistic case, the input
state |u〉 will not be exactly |ψ0〉, yet, when we measures the
phase, |u〉 collapses into an exact eigenstate |ψn〉 of H and
gives its energy En. In this case, the success probability of
getting E0 is given by |〈u|ψ0〉|2.

The circuit needed to create the unitary U is essentially
composed of two repeating blocks. The kinetic part eiKt can be
efficiently performed in polynomial time using the quantum
Fourier transform as shown in several prior works [27,44,56].
The “effective” potential part eiV t (eiV St ) could be more chal-
lenging since not every function can be evaluated exactly in
polynomial time. However, polynomial [43] and piecewise
polynomial functions [44,57] fall within this class. Moreover,
also the Coulomb and the Lennard-Jones potentials can be
evaluated efficiently, as shown in Ref. [43].

More generally, if there exists an efficient classical algo-
rithm to compute the potential function V (x), there also exists
an efficient quantum circuit [45]. A counterexample would be
the case of a random function stored in an exponentially large
database [43], but crucially this is not the case for physical
potentials. This allows us to approximate a function V (x) with
arbitrarily good precision efficiently in term of run time and
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FIG. 2. Sampling and rate in the double-well model from VQE. (a) The circuit used to implement the VQE algorithm. The first part is the
standard parametrized circuit to create the variational form. Here we use the so-called RY-CNOT ansatz, with linear connectivity (here we plot
a circuit with a depth of two entangling blocks). The second part is used to measure the expectation value of the Hamiltonian, and is therefore
system dependent. In this case, the potential term (V ) can be evaluated by measuring directly in the computational basis, while the kinetic term
(K) requires a QFT gate before the readout (see text). Details about quantum circuits, gates and operations can be found in Ref. [45]. Panel
b. Distributions |�0(x)|2 (blue, double-peaked) and |�S

0 (x)|2 (red, single peaked) that can be obtained with VQE from the same potentials
V (x) and V S (x) as in Fig. 1(a) (i.e., calculated from the physical potential v(x) of Sect. IV A, with h = 1, and T = 0.2). We use n = 5 qubits
(i.e., 32 grid points), as this is the smallest number that allows us to retrieve the continuous limit value for the rate and a circuit depth of four
blocks. The rate is obtained as ground-state energy ES

0 , corresponding to the supersymmetric partner of H (see text). The vertical axis units
are dimensionless units for the potentials as well for the wave functions (c) Converge of ES

0 as a function of the expressibility of variational
ansatz, defined as the depth of the circuit. The relative error is given as [E (VQE) − Eexact )/Eexact], and reaches a satisfactorily value of ≈10−3

with depth of about four repeating blocks.

qubit register size (ancilla registers are required to perform the
computation). We refer the reader to Ref. [44] for concrete ex-
amples of quantum circuits to evaluate an harmonic potential
and a piecewise linear function.

In the standard quantum Fourier transform based approach
to QPE [58], an additional evaluation register is needed to
run the algorithm. Following Nielsen and Chuang [45], it
features nε + 
log2(2 + 1

2ε
)� to obtain the output phase with

nε precision bits, and an overall success probability of the
algorithm, 1 − ε. The error in estimating the energy scales
as 1/(nεt ), as nε controls the total number of applications of
U (t ). We do not discuss other quantum implementation for
the phase estimation algorithm, such as the so-called Kitaev
algorithm [59] and iterative phase estimation [60], that enable
shallower circuits at the expense of multiple readouts and
classical processing.

B. Canonical sampling

Let us consider first the canonical sampling problem. We
make use of the quantum-to-classical connection of Sec. III

and aim to solve the associated quantum stationary problem

H�(x) = E0�(x), (13)

where we already know that E0 = 0 for the ground state
and �0 = ψ0 = √

P0. This means that sampling from |�0|2
allows us to sample from the canonical distribution at finite
T . An advantage of this framework is that we can obtain in
principle certified samples. A sample x can be discarded if
the corresponding energy value is E0 �= 0. In the variational
approach, once that the circuit has been optimized as to reach
the cost function E0 = 0, every (rescaled) readout in the com-
putational basis |i〉 can be accepted, and this direct sampling
method from the discretized quantum state

|ψ0〉 =
2n−1∑

i

ψ0[i]|i〉 (14)

provides an optimal correlation time as every sample is statis-
tically independent (independent wave function collapses). In
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Fig. 2(b), we provide an example VQE optimization providing
|�0|2 for the double-well potential of Sec. IV A.

However, since it appears unlikely that a variational proce-
dure alone can retrieve the exact ground state, within accuracy
	, a QPE algorithm could be used to achieve exact sampling
from ψ0(x). In this case, we have to set ε < 	 (see Sec. V A),
to have sufficient nε bits to resolve an energy difference of
	, and therefore project the time-evolved state into ψ0 as the
phase is measured.

While these arguments seem particularly encouraging, one
should not forget that, while it is true that in the standard QFT-
based implementation the total circuit depth scales with 1/ε,
the energy scale we target for exact sampling is given by the
gap 	, that in turn vanishes exponentially with the system size
and the inverse temperature, for the hardest problem instances
(see Sec. IV A), which is exactly the regime where classical
samplers also struggle.

Further, also quantum imaginary time evolution algorithms
[61,62] could be adapted to obtain this classical Gibbs distri-
bution.

C. Rates and currents

The quantum calculation of classical rate can follow the
same ideas discussed above. The difference is that, here, we
are interested in the ground-state energy value ES

0 , which
gives the reaction rate k, rather than sampling from the cor-
responding ground state �S

0 (x). Moreover, being variational
in essence, the method always provides an upper bound to
the calculated rate. Going further, the probability density
we could sample from using a quantum computer |�S

0 (x)|2
is localized on the saddle points of the effective potential,
which would approximately give the transition states for the
reaction. This information is indeed useful to prepare an ini-
tial guess for the solution, which is an input for either a
variational or QPE-based quantum algorithm. In Fig. 2, we
provide an example VQE optimization providing |�S

0 |2, as
well as ES

0 , for the double-well potential of Sec. IV A. In
particular, we observe that the accuracy of the result improves
exponentially with the ansatz circuit depth, in agreement with
Ref. [47].

Moreover, the reaction current j(x) could be in principle
be retrieved as

j(x) = √
ρ(x)�S

0 (x) = �0(x)�S
0 (x) (15)

(cf. Ref. [36]), where �0(x) can be prepared using methods
presented in Sec. V B. While classically this multiplication
would be trivial, quantumly this operation requires quan-
tum arithmetic types of approaches or other state preparation
methods [63].

Basically, all classical state-of-the-art methods devoted to
this task employ Monte Carlo sampling schemes. For exam-
ple, the celebrated transition path sampling method [64,65],
calculates the rate from the expectation value of reactive flux
correlation functions, in turn, computed using umbrella sam-
pling. Approaches such as Chandler’s theory [66] or transition
state theory [67] may also require a Monte Carlo sampling
in realistic cases, e.g., nonsmooth energy surfaces or finite
temperatures. Finally, in Ref. [68] rates are calculated from

the computation of expectation values over an ensemble of
transition paths around dominant reaction pathway [69,70]. It
is worth noticing that this approach does not require an ac-
curate determination the hypersurface separating the reactants
and the products, as well as any reaction coordinate.

Most importantly, as discussed above, the calculation of the
reaction rate as ground-state energy of an effective quantum
Hamiltonian using the QPE could offer a quadratic speedup
compared to the above classical method that relies on sam-
pling. In the quantum case, the circuit depth to reach a target
error ε scales with 1/nε , where nε is the number of applica-
tions of the unitary circuit, while in the classical case it scales
as 1/M, where M is the sampling duration.

It should be noted, however, that the wall time required to
perform a single classical Markov chain Monte Carlo itera-
tion can be generally much shorter than the one required to
execute the unitary subcircuit in QPE [71]. This means that
the quadratic advantage scaling-wise can be overshadowed by
a larger prefactor. The threshold for quantum advantage in
realistic problems should be assessed case by case and is left
for future studies.

D. Minima hopping via quantum global updates

We conclude by pointing out another possible avenue for
quantum advantage in exploring potential energy surfaces
featuring several deep local minima. We propose a hybrid
approach, where the task of accurately sampling the partition
function at the various local minima can be efficiently per-
formed using a classical Markov chain Monte Carlo, while the
task of generating effective, global, T (x, x′) proposal moves
is left to the quantum part of the algorithm. In this way, we
make the most out of the quantum processing unit (QPU) wall
time.

Following Tanase-Nicola and Kurchan [36], we observe
that the spectrum of H [Eq. (7)], when v(x) is a potential en-
ergy surface featuring K metastable minima, is characterized
by K lowest energy eigenstates, clearly separated by a gap
of order O(1) by the rest. This feature is visible in Fig. 1(c),
for the double-well potential where K = 2, and there are two
lowest lying eigenstates, ψ0(x), and ψ1(x). While the energy
gap 	 (that is the transition rate in our language) between
them is small, the gap with respect to the third (K + 1) eigen-
state remains large, O(1) at each temperature, and barrier
height parameter. Moreover, these K eigenstates are a linear
combination of K Gaussian distributions of width

√
T located

at each minima.
The existence of a finite and large gap between the K th and

the (K + 1)-th eigenenergies allows for practical implementa-
tion of the quantum primitives described above as a sampling
tool. It is indeed much simpler to access any one of these
K eigenstates, rather than |ψ0〉 exactly, for example, using
QPE. After one of these lowest lying states has been prepared,
there is order O(1/K ) probability that the state collapses
into a configuration belonging to each of the K basins of
attraction.

In the case of the double-well potential, it would be suffi-
cient to prepare the a quantum state localized in the reactant
well |ψL〉 ≈ (|ψ0〉 + |ψ1〉)/

√
2 (cf. notation of Sec. IV A),
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FIG. 3. Quantum global updates. In the three panels, we pictorially represents the steps described in Sec. V D, to realize the hybrid
quantum-classical sampling procedure with heuristic quantum advantage. In the first step, we require a local Gaussian shaped state preparation,
|ψx〉. This state can be expressed as a linear combination of K eigenstates of H , below the gap, namely |ψx〉 ≈ ∑K

i ci|ψi〉. After the execution
of a QPE subroutine, the state prepared in the register is one of these K nonlocal eigenstates (in this cartoon, we assume |ψ1〉). These states
have typically support over order O(K ) in many local basins of attraction of the real potential v(x) (K = 3 in this example). The configuration
x′ readout after the wave-function collapse will therefore belong with probability 1 − O(1/K ), to a different local minima.

then perform a short QPE subroutine to simply resolve an en-
ergy difference of order O(1) (i.e., without the need to achieve
an higher precision of 	), to prepare either the state |ψ0〉 or
|ψ1〉. In both cases, this would result in a hopping probability
of 50% (e.g., from the left to the right well), because both
states are delocalized across the whole space [see Fig. 1(b)],
readily realizing an exponential speedup (with respect to an
increasing complexity if the energy landscape) compared to
a classical local-update sampling method, for instance, based
on Langevin dynamics.

To engineer such a global move, classically, one would
need to include additional information such as the direction
and the range of the proposed displacement x → x′.

We summarize in Fig. 3 the procedure to realize this
hybrid quantum-classical enhanced sampling. In particular,
the quantum-mediated global hopping step x → x′, to be
performed in between the sampling of the local basins
using classical Monte Carlo, features the following parts:
(i) Assume x is the starting position, localized in the current
metastable basin of attraction. Prepare a Gaussian quantum
state |ψx〉, centered in x with width

√
T . This can be done effi-

ciently using, for instance, the VQE approach, and optimizing
a suitable harmonic oscillator Hamiltonian, which quadratic
potential is centered in x [44,47].

The state |ψx〉 prepared is superposition of order O(K )
delocalized eigenstates of H (cf. Ref. [36]).

(ii) Run a QPE quantum algorithm, using |ψx〉 as initial
state, using an appropriate number of repetitions of controlled
unitaries to resolve an energy scale of order O(1).

(iii) When the energy is measured, the state is projected on
one of the O(K ) eigenstates of Eq. (7), having finite overlap
with |ψx〉. The readout of the register provides a single
configuration x′, belonging to a different basin of attraction
with probability 1 − O(1/K ), with respect to the original
position x.

The new domain of attraction can be then conveniently
explored by means of a classical Monte Carlo sampler.

E. Minima hopping in spin Hamiltonians

In this subsection, we illustrate this procedure focusing
on a small toy model: the one-dimensional quantum Ising
Hamiltonian defined on Ns qubits (or quantum spins), with

nearest neighbor interactions and open-boundary conditions

HIsing = −J
Ns−1∑
s=1

σ z
s σ z

s+1 − �

Ns∑
s=1

σ x
s + JNs, (16)

where J > 0 is the ferromagnetic coupling constant and � is
the real-valued transverse field parameter, and the shift JNs

has been introduced for convenience to ensure the spectrum is
positive. We choose this model for two reasons: (i) the Ising
Hamiltonian is central in discrete optimization problems, and
(ii) it realizes a simple qubit Hamiltonian with a potential (i.e.,
its diagonal part) that features two distant wells, separated by
a large barrier, if J  |�|.

The shapes of the ground and the first excited states are
also qualitatively similar to the ones of double-well effective
potential of Fig. 1, with ψ0 (ψ1) being (approximately) the
symmetric (antisymmetric) combination of the states |0〉⊗Ns

and |1〉⊗Ns . If we read the basis states in binary format, as
explained in Sec. V A, i.e., as discretized positions along a
line, we see that the two minima are located at xL = 0 and
xR = 7 [see Fig. 4(a).

We apply the procedure proposed above to demonstrate
that we can use QPE to hop between the localized states |0〉⊗Ns

and |1〉⊗Ns , without any ad hoc procedure that would require
knowledge of the position of the second minima. (in this case,
the gate realizing the operator |σ x〉⊗Ns ). Numerical tests have
been performed using QISKIT software package [72].

(i) The initialization step in this particular problem in-
stance simply creates the string state xL = |0〉⊗Ns .

(ii) The QPE step requires the circuit of Fig. 4(b), with
nε controlled unitaries Uj = exp(i2 jHIsing). The total number
of qubits required for this algorithm is Ns + nε . In this small
numerical example, we can simply create this unitary without
resorting to Trotterization. In a real circuit, the implemen-
tation of a single Trotter step of the Ising Hamiltonian is
particularly efficient, as it features one layer of Rx single-qubit
rotation gates, and a layer of two qubits parametrized eiλZZ

gates; each of them can be created using two CNOT gates and
one Rz(λ) gate.

(iii) The collapse step is the readout of the Ns qubit register.
If we repeat the QPE algorithm multiple times, a typical
counts of the readouts would look like Fig. 4(c). It is possible
to see that a sizable fraction of the collapses would end in
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(b)(a)

(d)(c)

FIG. 4. Minima hopping in the ferromagnetic Ising model. (a) Potential energy landscape of the Ns = 3 Ising model with J = 1. The two
degenerate solutions of associate classical model (with � = 0) are the configurations “000” and “111.” At finite, small field (here � = J/10),
the two lowest lying eigenstates are made of the symmetric and antisymmetric combination of these two configurations (these wave functions
are shifted vertically by the corresponding eigenvalues). Notice the similarity the double-well example of Fig. 1(a). (b) The QPE circuit defined
with a state register of Ns qubits and a count register of nε qubits. See text for details. The red block is the state preparation circuit, which is
empty in this example as we start from the “000” state, and aim to hop to the “111” local minima. If we want to start in the opposite minima,
we can prepare this state by means of Ns X gates, one for each qubit. We checked that if we prepare here one of the eigenstates of HIsing instead,
the state remains unchanged at the end of the execution. (c) Histogram of the readouts of the state register, with nε = 10. As the initial state
“000” has overlap with both ψ0 and ψ1, there is sizable probability to collapse into the state “111.” (d) This probability reaches the limiting
value of 0.5 as the number of iterations nε is increased, for every problem size considered.

the desired localized state, across the barrier, xR, even if
the number nε is not sufficient to resolve the tiny energy
difference between E0 and E1.

We define this probability as hopping probability, and we
study its behavior as a function of the system size Ns and nε

in Fig. 4(d).
In this numerical experiment, we choose J = 1 and � =

J/10 that correspond to a deep tunneling regime for the trans-
verse Ising model, as the system is strongly ferromagnetic.
The gap between E0 and E1 closes exponentially with Ns

and classical simulations based on local updates of Monte
Carlo sampling become inefficient [40]. While the classical
simulation of the ferromagnetic model becomes simple again
by introducing global Monte Carlo updates [7], this procedure
can be tested against classical samplers on the much more
challenging random Ising models. This investigation is, how-
ever, left for future works as it is clearly outside the scope of
the present paper.

For completeness, in Appendix B, we apply the same
quantum algorithms to a Hamiltonian defined directly using
the position and momentum operators (in real space) as in
Sec. V A, obtaining the same outcomes.

VI. CONCLUSIONS

We introduce an elegant, decades-old formalism, stochas-
tic quantization, to the realm of quantum computation, to
enable applications related to sampling in real-space prob-
lems. This formalism allows us to establish a rigorous
connection from a quantum system to a classical diffusion
problem. Here we proceed in the reverse direction, as we aim
to solve classical statistical mechanics using quantum formal-
ism, algorithms, and hardware, eventually. The approach is
completely unrelated to the quantum walk quantum primitive
and only requires a parametrization of the potential energy
surface v(x).

We show how this idea can be used to address three impor-
tant applications, which are ubiquitous in physics, chemistry,
machine learning, and optimization: (i) sampling from the
un-normalized canonical distribution e−v(x)/T and the reaction
current j(x), (ii) computing reaction rates in the case of multi-
stable energy surfaces, and (iii) achieving a faster exploration
of the energy landscape. In the latter case, the quantum for-
malism allows us to generate effective and automatic global
moves and can be complemented with classical Markov Chain
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algorithm to sample the local basin of attraction, taking the
best of the two worlds. This method can be used also in
optimization-related tasks, especially when more than a single
candidate solution is needed.

The merits and the weakness of the approach, as well as
the possibility for achieving a quantum advantage in all the
above applications, is critically discussed. For example, the
quadratic speedup in the calculation of the rates could be over-
shadowed by the large prefactor typical of QPU operations.

The hybrid classical-quantum sampling scheme, which
could offer an exponential speedup compared to local update
Metropolis sampling as the ratio of the barrier height over the
temperature ratio increases, should be benchmarked against
the best possible classical Monte Carlo sampling method,
which crucially depends on the application chosen. Future
research directions include (i) assessing the threshold for
quantum advantage in realistic and important problems in
physics and chemistry, and (ii) generalizing the present frame-
work to discrete models.

To conclude, we believe that this work could stimulate
further investigations in the quest for quantum speedup in
realistic problems in classical statistical mechanics.
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APPENDIX A: MEASURING A REAL-SPACE MODEL
HAMILTONIAN WITH VQE

Assuming a Hamiltonian of the form H = K + V , where
V is a potential operator, diagonal in the computational basis,
and K is a kinetic operator K = − 1

2m
d2

dx2 , the energy, E , of the
variational state is calculated as

EV = 1

Nshots

2n−1∑
j=0

Ncounts( j)V [ j × 	x − L/2], (A1)

EK = 1

Nshots

2n−1∑
j=0

1

2m
Ncounts( j)( j × 	p)2, (A2)

and

E = EV + EK, (A3)

where EV and EK are the potential and kinetic energy
respectively. Nshots is the total number of measurements
done on the quantum computer to obtain the statistics, per
basis. Therefore, these sums contain only a finite num-
ber of elements. Ncounts( j) (with 0 � Ncounts( j) � Nshots,∑

j Ncounts( j) = Nshots) is the number of measurement that
collapsed onto the qubit basis state corresponding to the bi-
nary representation of integer j. For the potential energy term,
the counts are obtained by measuring in the position basis
where measurements can directly be applied, whereas the
kinetic term requires applying a QFT beforehand to ensure
that measurements are done in the momentum basis. Note
that to account for negative values of the momentum, a shift
of pc = 	p2n−1, where 	p = 2π

2n	x , is applied, placing the

zero momentum value at the center of the Brillouin zone.
This choice implies the use of a centered quantum Fourier
transform (cQFT) operator to implement the switch from the
position to the momentum space.

In the case where the momentum space in centered exactly
around the middle of the array, we can simply add an X gate
on the last qubit right before and after the QFT and QFT−1

operations such that they undergo a cyclic permutation:

cQFT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0

· · · . . .

0 · · · 1
1 · · · 0

. . . · · ·
0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

QFT. (A4)

More details can be found in Ref. [44].

APPENDIX B: MINIMA HOPPING IN
A REAL-SPACE MODEL

In this section, we show another numerical example of the
QPE-based minima hopping algorithm, using a Hamiltonian
operator constructed from grid discretized, real-space contin-
uous operator. We suppose to have a potential V (x) showing a
double-well shape. The kinetic operator can be constructed

(a)

(b)

FIG. 5. Minima hopping in a real-space double-well model.
(a) Potential energy landscape of the model (black upper line) and
the first two eigenstates (below). Arbitrary units are assumed to label
the vertical axis. (b) Histogram of the readouts of the state register,
with nε = 4.
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in momentum space, using the quantum Fourier transform,
which matrix form is given by

K = − 1

2m∗ (QFT)†[k2](QFT), (B1)

where [k2] is a shorthand notation for a diagonal matrix,
which diagonal contains an array of the form c[i2], with
i = 0, . . . , 2n − 1, c = π2n+1/L is a constant, and n is the
number of qubits used to discretize the simulation box of side
L with 2n points. More details can be found in Ref. [27].

The effective mass m∗ controlling the kinetic operator is
related, in the formalism introduced in the main text, to the
temperature via 2m∗ = 1/T [see Eq. (7)]. However, here we
keep the “mass” parameter for the reader’s convenience, to
compare with the existing literature, such as Refs. [27,44,56],
which also explain how to perform real-time dynamics of a
quantum state evolving on a potential energy surface.

We adopt a minimal model with n = 2. The potential shape
is shown in Fig. 5(a), and the full Hamiltonian reads

H =

⎡
⎢⎢⎣

J −t1 t2 −t1
−t1 3J −t1 t2
t2 −t1 3J −t1

−t1 t2 −t1 J

⎤
⎥⎥⎦ (B2)

with parameters J = 1, t1 ≈ 0.39, and t2 ≈ 0.20, which re-
sults from arbitrarily setting m∗ = 0.5 and L = 10. Also, in
this numerical experiment we numerically construct the con-
trolled unitaries via direct matrix exponentiation. We apply
the same circuit depicted in Fig. 4(c), with starting state in the
left well: xL = 0 = “00.” In Fig. 5(b), we observe that after
a sufficient number of application of controlled unitaries, we
reach a state that enables hopping to the right well (“11”), with
≈50% probability.
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