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We study the role of average concurrence in entanglement swapping in quantum networks. We begin with
qubit pure states, and there is a very simple rule governing the propagation of average concurrence in multiple
swaps. We find a similarly simple rule for average concurrence when creating a Greenberger-Horne-Zeilinger
state from three entangled pairs. We look at examples of mixed qubit states and find that the relation for pure
states gives an upper bound on what is possible with mixed states. We then move on to qudits, where we make use
of the I-concurrence. Here the situation is not as simple as for qubits, but in some cases relatively straightforward
results can be obtained.
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I. INTRODUCTION

Entanglement swapping is a basic protocol in quantum
information [1–3]. One starts with two pairs of entangled
particles, then takes one particle from each pair, and finally
measures them in an entangled basis. The result is that the
two remaining particles are now entangled, whereas they were
not initially. Entanglement swapping has many uses. It can be
used to create multipartite entangled states from singlets [4]
and as a method of entanglement purification [5]. It can serve
as the basis for a quantum repeater, which would enable the
transmission of entanglement over long distances [6–9].

Here we wish to look at the connection between entan-
glement swapping and concurrence. In particular, we want to
study how the concurrences of the input states are related to
the average coherence of the output state. We first summarize
the results for qubit pure states and discuss earlier results
[5,10,11]. For pure states, the average concurrence of the final
state is found to be just the product of the concurrences of
the states used to do the entanglement swapping. This result
generalizes to multiple entanglement swaps. We then go on
to look at concurrence and entanglement swapping for noisy
qubits. Entanglement swapping of noisy qubits has been stud-
ied in connection with Bell nonlocality [12–14], enhancing
singlet fraction [15], and for X states [16]. An extensive study
of the concurrence that can be obtained by the entanglement
swapping of noisy qubits was done in [17], and what we do
here can be viewed as complementary to that work. There the
probabilities to find different values of the concurrence were
not incorporated, while here, since we are examining average
concurrence, they are. We then proceed to examine entangle-
ment swapping for qudits [18,19] and we use I-concurrence
for our concurrence measure [20]. Qudits can be used in quan-
tum networks, and recent work suggests that qudit networks
can be realized and have some advantages [21]. We conclude
with a study of I-concurrence and entanglement swapping of
noisy qudit states.

II. ENTANGLEMENT SWAPPING OF QUBITS

A. Pure states

We will start with two two-qubit entangled states, one
being a state of qubits a and b and the other being a state of
qubits c and d . These states can be expressed in terms of their
Schmidt bases, so we have

|ψ〉ab =
√

λ0|u0〉a|v0〉b +
√

λ1|u1〉a|v1〉b,

|ψ〉cd =
√

λ′
0|u′

0〉c|v′
0〉d +

√
λ′

1|u′
1〉c|v′

1〉d . (1)

Here λ0 + λ1 = 1 and 〈u j |uk〉 = 〈v j |vk〉 = δ jk and similar
conditions hold for the primed quantities. The initial state for
the procedure is

|�〉 = |ψ〉ab|ψ〉cd . (2)

Defining the measurement basis for the bc qubits,

|�̃+〉 = α0|v0〉b|u′
0〉c + β0|v1〉b|u′

1〉c,

|�̃−〉 = β∗
0 |v0〉b|u′

0〉c − α∗
0 |v1〉b|u′

1〉c,
(3)

|	̃+〉 = α1|v0〉b|u′
1〉c + β1|v1〉b|u′

0〉c,

|	̃−〉 = β∗
1 |v0〉b|u′

1〉c − α∗
1 |v1〉b|u′

0〉c,

where α j and β j remain to be determined and |α j |2 + |β j |2 =
1 for j = 0, 1. We then have that

|v0〉|u′
0〉 = α∗

0 |�̃+〉 + β0|�̃−〉,
|v1〉|u′

1〉 = β∗
0 |�̃+〉 − α0|�̃−〉,

|v0〉|u′
1〉 = α∗

1 |	̃+〉 + β1|	̃−〉,
|v1〉|u′

0〉 = β∗
1 |	̃+〉 − α1|	̃−〉. (4)

This then gives us, for |�〉,
|�〉 = (

√
λ0λ

′
0α

∗
0 |u0〉a|v′

0〉d +
√

λ1λ
′
1β

∗
0 |u1〉a|v′

1〉d )|�̃+〉bc

+ (
√

λ0λ
′
0β0|u0〉a|v′

0〉d −
√

λ1λ
′
1α0|u1〉a|v′

1〉d )|�̃−〉bc
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+ (
√

λ0λ
′
1α

∗
1 |u0〉a|v′

1〉d +
√

λ′
0λ1β

∗
1 |u1〉a|v′

0〉d )|	̃+〉bc

+ (β1

√
λ0λ

′
1|u0〉a|v′

1〉d −
√

λ′
0λ1α1|u1〉a|v′

0〉d )|	̃−〉bc.

(5)

In order to compute the average concurrence of the ad state
after measuring in the above bc basis, we multiply the prob-
ability of getting a particular bc state times the concurrence
of the resulting ad state. For example, we obtain the result
|�̃+〉bc with probability

P+ = λ0λ
′
0|α0|2 + λ1λ

′
1|β0|2, (6)

and the concurrence of the resulting state is C+ =
2(λ0λ

′
0λ1λ

′
1)1/2|α0β0|/P+, so the contribution of this measure-

ment result to the average concurrence is P+C+. Adding up all
of the contributions, we find that

Cav = 4(|α0β0| + |α1β1|)
√

λ0λ1λ
′
0λ

′
1. (7)

This is maximized when α j = β j = 1/
√

2 for j = 0, 1. In that
case we have that [11]

Cav = 4
√

λ0λ1λ
′
0λ

′
1. (8)

Noting that the concurrences of the two input states are Cab =
2
√

λ0λ1 and Ccd = 2
√

λ′
0λ

′
1, we find

Cav = CabCcd . (9)

This is less than or equal to either Cab or Ccd unless one of
the states is maximally entangled, so, in most cases, the use
of nonmaximally entangled states in entanglement swapping
will degrade the average concurrence.

We can next ask what happens if we do a second entan-
glement swap [11]. We start with Eq. (5) and set αk and βk

equal to 1/
√

2 for k = 0, 1. We will denote the states in the
measurement basis with this choice as before, but without the
tildes. If we measure the bc qubits, the probability of obtaining
|�±〉bc is

P� = 1
2 (λ0λ

′
0 + λ1λ

′
1) (10)

and the probability of measuring either |	±〉bc is

P	 = 1
2 (λ0λ

′
1 + λ1λ

′
0). (11)

If we measure either |�±〉bc, then we append the state

|ψ ′′
1 〉e f =

√
λ′′

0|u0〉e|v′
0〉 f +

√
λ′′

1|u1〉e|v′
1〉 f , (12)

and if we measure either |	±〉bc, then we append the state

|ψ ′′
2 〉e f =

√
λ′′

0|u0〉e|v′
1〉 f +

√
λ′′

1|u1〉e|v′
0〉 f . (13)

We then measure the de qubits in the Bell basis. If we find
|�±〉bc in the first measurement, then the average concurrence
of the a f state is

C�
av = 1

4P�

2
√

λ0λ1λ
′
0λ

′
12
√

λ′′
0λ

′′
1

= 1

4P�

CabCcdCe f , (14)

where Ce f = 2
√

λ′′
0λ

′′
1 is the concurrence of |ψ ′′

1 〉e f . Similarly,
if we find |	±〉bc in the first measurement, then the average
concurrence of the a f state is

C	
av = 1

2P	

2
√

λ0λ1λ
′
0λ

′
12
√

λ′′
0λ

′′
1

= 1

4P	

CabCcdCe f , (15)

where Ce f = 2
√

λ′′
0λ

′′
1 is the concurrence of |ψ ′′

2 〉e f , which is
the same as that of |ψ ′′

1 〉e f . Finally, the total average concur-
rence Cav is

Cav = 2
(
P�C�

av + P	C	
av

) = CabCcdCe f . (16)

This implies that if we do a string of entanglement swaps, the
average concurrence between the first and the last qubit is just
the product of the concurrences of the states we used to do the
swaps.

The same reasoning can be applied to a more general situ-
ation. Suppose we have an N-qubit state |�N 〉 and we single
out one of the qubits, which we denote by a. We have from
the Schmidt representation that

|�N 〉 =
∑
j=0,1

√
λ′

j |u j〉a|Vj〉ā, (17)

where a〈u0|u1〉a = ā〈V0|V1〉ā = 0, and the states |u j〉a are
single-qubit states and |Vj〉ā are states of the N − 1
qubits that are not a. If we now append the state
(1/

√
2)
∑

j=0,1

√
λ j |u j〉c|u j〉b to |�N 〉 and measure qubits a

and b in the Bell basis, then the average concurrence between
qubit c and the N − 1 qubits ā is CbcCaā, where Caā = 2

√
λ′

0λ
′
1

is the original concurrence between qubit a and the N − 1
qubits ā. This relation also holds if the N-qubit state is
the result of a previous entanglement swap, whose average
concurrence is Caā

av . Then the average concurrence after the
entanglement swap with the bc qubits is Caā

avCbc.

B. Greenberger-Horne-Zeilinger measurements

We will start this section with a note on notation. For
the rest of the paper, we will take advantage of the fact
that the Schmidt bases of the two parts of a bipartite state
can be transformed into computational bases by local uni-
tary transformations. Such transformations do not affect the
entanglement, so we can assume that the Schmidt bases are
the computational bases. Now suppose we start with three
entangled pairs and make a measurement in the Greenberger-
Horne-Zeilinger (GHZ) basis in order to create a GHZ state
[4,12]. In more detail, we start with the three states, in Schmidt
form,

|ψ〉ab = 1√
2

(
√

λ0|00〉ab +
√

λ1|11〉ab),

|ψ〉cd = 1√
2

(
√

γ0|00〉cd + √
γ1|11〉cd ),

|ψ〉e f = 1√
2

(
√

μ0|00〉e f + √
μ1|11〉e f ) (18)
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and measure the bdf qubits in the basis

|G±
0 〉 = 1√

2
(|000〉 ± |111〉),

|G±
1 〉 = 1√

2
(|001〉 ± |110〉),

|G±
2 〉 = 1√

2
(|010〉 ± |101〉),

|G±
1 〉 = 1√

2
(|100〉 ± |011〉). (19)

The result will be a generalized GHZ state for the qubits ace.
For example, if we get |G+

0 〉, the resulting state is

1√
2p(G+

0 )
(
√

λ0γ0μ0|000〉ace +
√

λ1γ1μ1|111〉ace ), (20)

where p(G+
0 ) = (λ0γ0μ0 + λ1γ1μ1)/2 is the probability of

obtaining |G+
0 〉.

We can now view the resulting state as a bipartite state
by singling out one qubit and looking at its entanglement
with the other two. In the example above, we could look at
the entanglement between qubit a and qubits bc. This allows
us to compute a concurrence, which we denote by C21, and
this concurrence does not depend on which qubit is singled
out. The average value of this concurrence is C(av)

21 and it is
given by

C(av)
21 = CabCcdCe f , (21)

so we again find a product rule for the final average concur-
rence. This result also holds if the two-qubit concurrences are
average concurrences.

C. Noisy qubits

We now want to look at entanglement swapping with qubits
in states of the form

ρ = p
I

4
+ (1 − p)|ψ〉〈ψ |, (22)

where |ψ〉 = √
λ0|00〉 + √

λ1|11〉. These states are obtained
due to partial depolarization of pure states |ψ〉〈ψ | through
mixing with the completely depolarized state I/4 with the
mixing parameter p. The form of the generalized Bell state
here does not affect the essence of our conclusions; only
its Schmidt coefficients are important. The concurrence of
these states is easy to evaluate if we consider their X -state
[22] form, with nontrivial entries only along the diagonal and
antidiagonal, as evident in its matrix representation

ρ =

⎛
⎜⎜⎜⎝

p
4 + (1 − p)λ0 0 0 (1 − p)

√
λ0λ1

0 p
4 0 0

0 0 p
4 0

(1 − p)
√

λ0λ1 0 0 p
4 + (1 − p)λ1

⎞
⎟⎟⎟⎠.

(23)

For this class of states the concurrence is given by

CX = 2 max[0, |ρ14| − √
ρ22ρ33, |ρ23| − √

ρ11ρ44 ], (24)

FIG. 1. Concurrence CX of the input state as a function of p and
λ0. The white curve indicates the boundary between zero and positive
concurrence.

which in our case reduces to

CX = 2 max[0, |ρ14| − √
ρ22ρ33]

= 2 max
[
0, (1 − p)

√
λ0λ1 − p

4

]
, (25)

because ρ23 = 0 and
√

ρ11ρ44 � 0 and therefore |ρ23| −√
ρ11ρ44 � 0. In what follows, we will use the expression for

CX from Eq. (25) for its simplicity. The region of positive
concurrence of ρ in the (p, λ0) plane is shown in Fig. 1. The
border between zero and positive concurrence is given by

p = 1 − 1

1 + 4
√

λ0(1 − λ0)
. (26)

We now ask for which values of the mixing parame-
ter p and the pure state entanglement parameter λ0 do we
get a positive concurrence of ρ, i.e., the domain for which
(1 − p)

√
λ0λ1 − p/4 > 0. The allowed value of the mixing

p will be largest when |ψ〉 is maximally entangled. There-
fore, setting λ0 = λ1 = 0.5, we get the threshold condition,
wherein p < p∗ = 2

3 for ρ to be entangled.1 Further, for any
value of p less than the threshold, a nonzero concurrence is
obtained only when λ0 satisfies

λ0 ∈ ( 1
2 − �0(p), 1

2 + �0(p)
)
, (27)

where �0(p) = 1
2

√
1 − p2

4(1−p)2 . This implies that for a given
value of p < p∗, the state |ψ〉 has to be sufficiently entangled
for ρ to be entangled since the entanglement of |ψ〉 decreases
as one moves away from λ0 = 0.5 in the domain λ0 ∈ [0, 1].

Next we want to find the average concurrence of the output
state resulting from entanglement swapping two states of the
form given in Eq. (22). For the sake of simplicity, we assume
that the states are the same and that we make standard Bell

1The state ρ is a Werner state when |ψ〉 is a maximally entangled
state. The threshold p∗ = 2

3 coincides with the distillation threshold
of Werner states.
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FIG. 2. Probabilities P	 and P� as functions of p and λ0.

measurements in order to accomplish the entanglement swap-
ping. We start with the four-qubit state

ρabcd =
[ p

4
Iab + (1 − p)|ψ〉ab〈ψ |

][ p

4
Icd +(1 − p)|ψ〉cd〈ψ |

]
(28)

and measure qubits b and c in the Bell basis. We then need to
find the average concurrence of the resulting state.

The result of the measurement will be one of the four states

|	±〉bc = 1√
2

(|00〉bc ± |11〉bc),

‖�±〉bc = 1√
2

(|01〉bc ± |10〉bc). (29)

If we obtain |	±〉bc the resulting state is

ρ
	±
ad = 1

P	

[
Dad + 1

2
(1 − p)2(λ0|00〉ad ± λ1|11〉ad )

× (λ0 ad〈00| ± λ1 ad〈11|)
]
, (30)

and if we obtain |�±〉bc, the state is

ρ
�±
ad = 1

P�

[
Dad + 1

2
(1 − p)2λ0λ1(|01〉ad ± |10〉ad )

× (ad〈10| ± ad〈10|)
]
. (31)

Here

Dad = p2

16
Iad + (1 − p)

p

8
[(λ0|0〉a〈0| + λ1|1〉a〈1|) ⊗ Id

+ Ia ⊗ (λ0|0〉d〈0| + λ1|1〉d〈1|)]. (32)

The probabilities of obtaining either |	+〉bc or |	−〉bc as a
result of the Bell state measurement are the same and we
denote them by P	. Similarly, the probabilities of obtaining
|�+〉bc and |�−〉bc are the same and we denote them by P� .
Explicitly, we find (see Fig. 2)

P	 = p(2 − p)

4
+ 1

2
(1 − p)2

(
λ2

0 + λ2
1

)
,

P� = p(2 − p)

4
+ (1 − p)2λ0λ1. (33)

FIG. 3. Concurrence C	 in Eq. (34) of the output state after the
entanglement swapping as a function of p and λ0. The white curve
indicates the boundary between zero and positive concurrence.

In order to evaluate the average concurrence of the output
state, we find the concurrence of each of the four density
matrices above and then weight them with the appropri-
ate probability. The concurrence of the states ρad given in
Eqs. (30) and (31) for any of the four measurement outcomes
above can be obtained by noticing that they are also of the
X -state form [17]. Their explicit expressions are given by

CX
(
ρ

	+
ad

) = CX
(
ρ

	−
ad

)
= 1

P	

max

[
0, (1 − p)2λ0λ1 − p(2 − p)

8

]
(34)

and

CX
(
ρ

�+
ad

) = CX
(
ρ

�−
ad

)
= 1

P�

max

[
0, (1 − p)2λ0λ1

− p

8

√
p2 + 4p(1 − p) + 16(1 − p)2λ0λ1

]
.

(35)

These are shown in Figs. 3 and 4. From Figs. 3 and 4 we
notice that the behavior of CX (ρ	±

ad ) and CX (ρ�±
ad ) at p = 0

is different. This is because of the form of the input state (22)
to the entanglement swapping operation. The |ψ〉 is closer to
a |	±〉 state than a |�±〉 state. The average concurrence of the
entanglement-swapped state is then given by

Cav = 2P	CX
(
ρ

	+
ad

)+ 2P�CX
(
ρ

�+
ad

)
. (36)

This is shown in Fig. 5.
The threshold of p for which the average concurrence Cav

can be nonzero is obtained by numerically determining the
thresholds for CX (ρ	+

ad ) and CX (ρ�+
ad ). For both, we find the

threshold p∗,1 = (1 − 1/
√

3) = 0.422. However, the thresh-
old boundaries for these concurrences do not overlap in the
(p, λ0) plane. This is because, for p < p∗,1, the state ρ

	±
ad is

entangled if

λ0 ∈ ( 1
2 − �	

1 (p), 1
2 + �	

1 (p)
)
, (37)
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FIG. 4. Concurrence C� in Eq. (35) of the output state after the
entanglement swapping as a function of p and λ0. The white curve
indicates the boundary between zero and positive concurrence.

where �	
1 (p) = 1

2

√
1 − p(2−p)

2(1−p)2 , while, also for p < p∗,1, the

state ρ
�±
ad is entangled if

λ0 ∈ ( 1
2 − ��

1 (p), 1
2 + ��

1 (p)
)
, (38)

where ��
1 (p) = 1

2

√
1 − p2+p

√
2p(2−p)

2(1−p)2 . Since ��
1 (p) > �	

1 (p)

for p < p∗,1, we find that the swapped states ρ
�±
ad may be

entangled over a larger region of λ0 than ρ
	±
ad . Further, from

Eq. (27), we find that �0(p) > ��
1 (p),�	

1 (p), and therefore
the region around λ0 = 1

2 for nonzero concurrence becomes
narrower for a given p after an entanglement swap.

For pure states, the ratio Cav/C2
X is one, and we now have

the results at hand to see how it behaves for mixed states of
the form given in Eq. (22). The ratio is plotted as a function
of p for a number of different values of λ0 in Fig. 6. As we
can see, it is a decreasing function of p, and the smaller the

FIG. 5. Average concurrence Cav of the output state after the
entanglement swapping as a function of p and λ0. The boundary
between zero and positive concurrence is indicated by the solid white
curve for C	 and the dashed white curve for C� .

FIG. 6. Ratio Cav/C2
X as a function of p for several values of λ0.

From left to right, the values of λ0 are 0.01 (blue dotted line), 0.025
(blue solid line), 0.1 (green dotted line), 0.15 (green solid line), 0.25
(red dotted line), and 0.5 (red solid line).

entanglement in the original states (the smaller the λ0), the
faster the falloff with p. These results strongly suggest that
for mixed states, the product of the concurrences of the initial
states is an upper bound to the average concurrence of the
entanglement-swapped state.

Upper bound to the average concurrence

It can be useful to have an upper bound to the aver-
age concurrence that can be obtained from the entanglement
swapping of two mixed states. Let us use a pure state decom-
position for the two-qubit states ρab

1 on Ha ⊗ Hb and ρcd
2 on

Hc ⊗ Hd . So we have

ρab
1 =

∑
i

pi

∣∣ψab
i

〉 〈
ψab

i

∣∣,
ρcd

2 =
∑

j

q j

∣∣φcd
j

〉 〈
φcd

j

∣∣. (39)

For the pure state pair |ψab
i 〉, |φcd

j 〉 we define

pi j(k) = Trad
〈
χbc

k

∣∣ψab
i φcd

j

〉 〈
ψab

i φcd
j

∣∣χbc
k

〉
,

(40)

ρad
i j(k) =

〈
χbc

k

∣∣ψab
i φcd

j

〉 〈
ψab

i φcd
j

∣∣χbc
k

〉
pi j(k)

,

where |χ jk〉 is an orthonormal basis of Hb ⊗ Hb. We then have
that

Cav

( ∣∣ψab
i

〉
,
∣∣φcd

j

〉 ) =
d2∑

k=1

pi j(k)C
(
ρad

i j(k)

)
(41)

and

rk = Trad
〈
χbc

k

∣∣ρab
1 ⊗ ρcd

2

∣∣χbc
k

〉 = ∑
i j

piq j pi j(k),

ρad
k =

〈
χbc

k

∣∣ρab
1 ⊗ ρcd

2

∣∣χbc
k

〉
rk

=
∑

mn pmqn pmn(k)ρ
ad
mn(k)∑

uv puqv puv(k)
.

(42)
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The average concurrence in this case is

C̄ =
d2∑

k=1

rkC
(
ρad

k

) =
d2∑

k=1

∑
i j

piq j pi j(k)C
(
ρad

k

)

=
d2∑

k=1

∑
i j

piq j pi j(k)C

(∑
mn pmqn pmn(k)ρ

ad
mn(k)∑

uv puqv puv(k)

)

�
d2∑

k=1

∑
i j

piq j pi j(k)

∑
mn pmqn pmn(k)C

(
ρad

mn(k)

)
∑

uv puqv puv(k)

=
∑
mn

pmqn

d2∑
k=1

pmn(k)C
(
ρad

mn(k)

)

=
∑
mn

pmqnCav

( ∣∣ψab
m

〉
,
∣∣φcd

n

〉 )
. (43)

To obtain this inequality we have used the convexity of the
concurrence and, in the last line, Eq. (41).

Now we note from Eq. (7) that for any m and n the
average concurrence Cav (|ψab

m 〉, |φcd
n 〉) is maximized for the

basis |χbc
k 〉 that is maximally entangled (at least for qubits).

Therefore, Cav (|ψab
m 〉, |φcd

n 〉) is maximized by performing the
swapping measurement in a maximally entangled basis. We
note that the tightness of the upper bound,

C̄ �
∑
mn

pmqnCav

( ∣∣ψab
m

〉
,
∣∣φcd

n

〉 )
, (44)

depends on the optimality of the pure state decompositions
in Eq. (39). If the pure state decompositions are chosen to be
the ones that minimize the concurrence, then the bound above
can be tight. For example, consider ρab

1 = Iab and ρcd
2 = Icd

and the two pure state decompositions of the identity

I = 1
4 (|�+〉〈�+| + |�−〉〈�−| + |	+〉〈	+| + |�−〉〈�−|),

I = 1
4 (|00〉〈00| + |11〉〈11| + |22〉〈22| + |33〉〈33|). (45)

In the first case, Eq. (44) suggests C̄ � 1, while in the second
case C̄ � 0.

We can apply this reasoning to obtain a simple upper bound
for the average concurrence of the entanglement-swapped
qubits resulting from the four-qubit density matrix in Eq. (28).
First, note that Dad is an incoherent superposition of product
states, so its concurrence is zero. This implies that

C
(
ρ

	±
ad

)
� 1

P	

(1 − p)2
√

λ0λ1,

(46)

C
(
ρ

�±
ad

)
� 1

P�

(1 − p)2
√

λ0λ1,

with the result that Cav � 4(1 − p)2λ0λ1.

III. QUDITS

A. Pure states

We can also look at entanglement swapping for higher-
dimensional systems [18,19]. We will start with two states, the
first in Ha ⊗ Hb and the second in Hc ⊗ Hd , with all spaces

having dimension N ,

|�ab〉 =
N−1∑
j=0

√
λ j |u j〉a|v j〉b,

(47)

‖�cd〉 =
N−1∑
j=0

√
λ′

j |u′
j〉c|v′

j〉d ,

where we have expressed both states in their Schmidt rep-
resentations. In order to quantify the entanglement of these
states, we use the I-concurrence [20], which, for |�ab〉, is

CI (�ab) =
√

2
[
1 − Tr

(
ρ2

a

)] =
[

2

(
1 −

N−1∑
j=0

λ2
j

)]1/2

, (48)

with a similar expression for CI (�cd ). In the above expression,
ρa is the reduced density matrix of |�ab〉.

In order to accomplish the entanglement swapping we mea-
sure the b and c qudits in the basis

|χmn〉bc = 1√
N

N−1∑
j=0

e2π i jm/N |v j〉b|u′
j+n〉c, (49)

where 0 � m, n � N − 1. If the measurement yields the state
|χmn〉bc, then the resulting state in Ha ⊗ Hd is

|�ad〉 = ηmn√
N

N−1∑
j=0

√
λ jλ

′
j+ne−2π i jm/N |u j〉a|v′

j+n〉d . (50)

Here ηmn is a normalization factor satisfying

η2
mn

1

N

(
N−1∑
j=0

λ jλ
′
j+n

)
= 1 (51)

and the probability of obtaining the result |χmn〉bc is 1/η2
mn.

The I-concurrence of the state |�mn〉ad is

CI (�mn) =
[

2

(
1 − 1

N2

N−1∑
j=0

η4
mn(λ jλ

′
j+n)2

)]1/2

. (52)

To obtain the average I-concurrence we multiply the above
expression by the probability to obtain |χmn〉bc and add the
results, yielding

C(av)
I =

√
2

N−1∑
n=0

⎡
⎣(N−1∑

j=0

λ jλ
′
j+n

)2

−
N−1∑
j=0

(λ jλ
′
j+n)2

⎤
⎦

1/2

.

(53)

A simple application of this result is to the case in which
the ab state is general, but the cd state is maximally entangled,
that is, λ′

j = 1/N for all j. We then find that

C(av)
I = CI (�ab), (54)

so the I-concurrence of the output state is completely deter-
mined by that of |�ab〉.

We can also look at the case in which one of the initial
states has a small I-concurrence and see what kind of limits
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this places on the average I-concurrence of the state after the
entanglement swap. Let

ε = 1 −
N−1∑
j=0

λ2
j , (55)

which implies that CI (�ab) = √
2ε, and we will assume that ε

is small, in particular, that ε < 2(N − 1)/N2. We can assume,
without loss of generality, that λ0 is the largest of the λ j , that
is, λ j � λ0, for j > 0. Now

λ2
0 +

N−1∑
j=1

λ2
j � λ2

0 + (1 − λ0)2, (56)

where we have used the fact that
∑N−1

j=1 λ2
j � (

∑N−1
j=1 λ j )2.

From this we have

2λ2
0 − 3λ0 + ε � 0. (57)

This implies that either

0 � λ0 � 1
2 − 1

2 (1 − 2ε)1/2 (58)

or

1
2 + 1

2 (1 − 2ε)1/2 � λ0 � 1. (59)

We want to show that λ0 must be in the upper range. Let us
assume it is in the lower range and show that this violates our
assumptions. If λ0 is in the lower range, then

N−1∑
j=1

λ j = 1 − λ0 � 1
2 + 1

2 (1 − 2ε)1/2. (60)

Let m be the maximum value of λ j for j > 0. The minimum
value of m occurs when all of the λ j for j > 0 are the same,
and this implies that

m � 1 − λ0

N − 1
� 1

N − 1

[
1

2
+ 1

2
(1 − 2ε)1/2

]
. (61)

Now, we have assumed that λ0 � m. We will not be able to
satisfy this condition for λ0 in the lower range if

1

N − 1

[
1

2
+ 1

2
(1 − 2ε)1/2

]
>

1

2
− 1

2
(1 − 2ε)1/2. (62)

If this condition is satisfied, then λ0 must be in the up-
per range. The above condition is satisfied when ε < 2(N −
1)/N2, which we have assumed to be true. Therefore, λ0 is in
the upper range.

We can now return to Eq. (53). First,

N−1∑
j=0

λ jλ
′
j+n = λ0λ

′
n + (1 − λ0) � λ0λ

′
n + �, (63)

where � = 1
2 − 1

2 (1 − 2ε)1/2 ∼ ε/2. Next

N−1∑
j=0

(λ jλ
′
j+n)2 � (λ0λ

′
n)2. (64)

These estimates give us that

C(av)
I �

√
2

N−1∑
n=0

[2λ0λ
′
n� + �2]1/2

�
√

2
N−1∑
n=0

[(2λ0λ
′
n�)1/2 + �]. (65)

The Schwarz inequality gives us that

N−1∑
n=0

(λ′
n)1/2 �

√
N, (66)

so that

C(av)
I � 2(N�)1/2 + N�. (67)

From this inequality, we see that the important quantity is
N� ∼ NCI (�ab)2/4. For CI (�ab) of order N−1/2, the bound
is of order one, but if it is of order 1/N , then the average
I-concurrence is small. This gives us an estimate of how small
the I-concurrence of a state has to be before it can make the
average concurrence of an entanglement-swapped state small
as well.

A simple example can illuminate the relation between
the I-concurrences of the initial states and that of the final
entanglement-swapped state. We will assume that

λ j =
{ 1

M , 0 � j � M − 1

0, M � j � N − 1
(68)

for M < N/2. We choose λ′
j to be the same. We then find that

N−1∑
j=0

λ jλ
′
j+n =

M−1∑
j=0

λ jλ
′
j+n = M − n

M2
(69)

for 0 � n � M − 1. The sum is zero for M � n � N − m and
is (n + M − N )/M2 for N − M + 1 � n � N − 1. We then
find that

C(av)
I =

√
2

M2

{
M−1∑
n=0

(M − n)(M − n − 1)]1/2

+
N−1∑

n=N−n+1

[(n + M − N )(n + M − N − 1)]1/2

}

=
√

2

M2

{
M∑

k=1

[k(k − 1)]1/2 +
M−1∑
k=1

[k(k − 1)]1/2

}
. (70)

It is possible to obtain upper and lower bounds to this expres-
sion. To obtain a lower bound just replace k in the sums by
k − 1, yielding

C(av)
I �

√
2

(
M − 1

M

)2

=
√

2

(
1 − 2

M

)
+ O

(
1

M2

)
. (71)

For an upper bound we can use the Schwarz inequality, for
example,

M∑
k=1

[k(k − 1)]1/2 � M

2
(M2 − 1)1/2, (72)
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to yield

C(av)
I � M − 1√

2M

{(
M + 1

M − 1

)1/2

+
(

1 − 2

M

)1/2}

=
√

2

(
1 − 1

M

)
+ O

(
1

M2

)
. (73)

We also note that in this case

CI (�ab) =
√

2

(
1 − 1

M

)1/2

. (74)

What we see in this example is that, up to O(1/M2), the square
of the I-concurrence of one of the initial states times 1/

√
2

coincides with an upper bound for the I-concurrence of the
entanglement-swapped state, so the actual I-concurrence of
the entanglement-swapped state is less than or equal to 1/

√
2

times the square of the I-concurrence of one of the initial states
[up to O(1/M2)]. We also note that both bounds are increasing
functions of M, which implies that increasing the number of
basis states in the initial entangled states will lead to a greater
average I-concurrence of the output state.

B. Noisy qudits

We will consider states that are a mixture of the maximally
entangled state |	(N )〉 = 1√

N

∑N−1
j=0 |u j〉 |v j〉 with the totally

mixed state I/N2 in N × N dimensions. Therefore, our noisy
qudits are of the isotropic form

ρ (N )(p) = p
I

N2
+ (1 − p) |	(N )〉 〈	(N )| , (75)

which are a one-parameter family of mixed states that are
invariant under twirling. The invariance property implies that∫

dUU ⊗ U ∗ρ (N )(p)U † ⊗ U ∗† = ρ (N )(p), where the asterisk
denotes complex conjugation in a fixed basis and the dagger
denotes the adjoint operation.

Entanglement swapping can be performed on two such
states ρab = ρcd = ρ (N )(p) via a complete set of projec-
tive measurements |χmn〉〈χmn| on the bc systems where the
states |χmn〉 are given in Eq. (28). We find that there are
N2 distinct output states ρ

(mn)
ad corresponding to the values

of m, n ∈ {0, 1, . . . , N − 1} that each occur with probability
1/N2. These output states are given by

ρ
(mn)
ad = p(2 − p)

Iad

N2
+ (1 − p)2

N

(
N−1∑
k=0

e−2π imk/N |uk−nv
′
k〉
)

×
(

N−1∑
l=0

e+2π iml/N 〈ul−nv
′
l |
)

. (76)

Each of these output states is found to be re-
lated to the isotropic state ρ (N )(p′), where p′ = p(2 −
p), via local unitaries Ua(m, n) ⊗ IN , with Ua(m, n) =∑N−1

r=0 |ur−n〉 〈ur | e−2π imr/N , by noticing that

[Ua(m, n) ⊗ Id ]ρ (mn)
ad [U †

a (m, n) ⊗ Id ] = ρ
(N )
ad (p′). (77)

Therefore, the I-concurrence of each ρ
(mn)
ad is the same as that

of ρ
(N )
ad (p′) for all m and n. Entanglement swapping results in

an average output concurrence of C(av)
I = CI (p′).

For mixed states the I-concurrence is the ensemble mini-
mum over all pure state decompositions of ρ (N )(p),

CI (ρ) := min
pi,|ψi〉

{
piCI (|ψi〉)

∣∣∣∣∣
N∑

i=1

pi |ψi〉〈ψi| = ρ (N )(p)

}
,

(78)

with
∑

i pi = 1, pi > 0. For isotropic states ρ (N )(p) the op-
timal decomposition is in the form of factorizable states for
Fp � 1/N where Fp := 〈	|ρ (N )(p)|	〉 = 1 − p + p/N2 is the
fidelity [23]. For Fp ∈ (1/N, 1) we use the approach developed
in Ref. [24] to find that the I-concurrence is given by the
convex hull of the function

Q(Fp) = min
μ̄

⎧⎨
⎩K (μ̄)|Fp =

∣∣∣∣∣
N∑

i=1

√
μi

∣∣∣∣∣
2/

N ;
N∑

i=1

μi = 1

⎫⎬
⎭,

(79)

where K (μ̄) =
√

1 −∑
i μ

2
i .

Using the method of Lagrange multipliers to solve the con-
strained minimization problem, we obtain the cubic equation
(with xi = √

μi)

4x3
i − 2�1xi − �2 = 0, (80)

which for fixed �1 and �2 determines the whole set {xi}. Note
that for nonzero �2 the above equation admits no solution that
is zero. Further, since the sum of its roots α + β + γ = 0, at
most two of the roots can be positive. Therefore, all vectors
μ̄ that are a solution to the minimization problem (79) have
entries μi ∈ {α2, β2}, where we denote the positive-definite
solutions of Eq. (80) by α and β. For any vector μ̄ with r
entries that are α2 and the rest N − r entries that are β2 the
minimization problem is reduced to a minimization of√

1 − rα2 − (N − r)β2 (81)

for a fixed r. There are also the constraints which imply

{rα2 + (N − r)β2 = 1, rα + (N − r)β = √
FpN}. (82)

The constraint equations can be solved to obtain

α±
r (Fp) =

√
rFp ±√

(N − r)(1 − Fp)√
rN

(83)

and, correspondingly, β±
r (Fp) = [

√
FpN − rα±(Fp)]/(N −

r). Since α−
r = β+

N−r and β−
r = α+

N−r , the function in Eq. (81)
takes the same values for α+

r and α−
N−r ; therefore, we restrict

ourselves to the set (α, β ) = (α+
r , β+

r ). The function Q(Fp) is
thus obtained as the pointwise minimum over possible choices
of r of the function

Qr (Fp) =
√

1 − rα+
r (Fp)4 − (N − r)β+

r (Fp)4, (84)
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FIG. 7. The I-concurrence of isotropic states vs the mixing pa-
rameter p in various dimensions N .

defined on the domain r/N � Fp. The restriction on the do-
main comes from requiring positivity of β+

r (Fp). One can
verify that α+

r (Fp) � β+
r (Fp) for all 0 � Fp � 1 and 0 � r �

N . The pointwise minimum of the function in Eq. (84) is
then obtained for r = 1, i.e., Q(Fp) = Q1(Fp) is the desired
function in Eq. (79) for any N � 2.

We find that the function Q1(Fp) is concave in the
entire domain Fp ∈ (1/N, 1] ∀N � 2; therefore, its convex
hull is the straight line through the points (1/N, 0) and
(1,

√
2(1 − 1/N )) in the (Fp,CI (ρ (N )(p))) plane. Thus the

I-concurrence of ρ (N )(p) is found to be (see Fig. 7)

CI (ρ (N )(p)) :=
⎧⎨
⎩

0, Fp � 1
N

√
2N√

N−1
Fp −

√
2√

N (N−1)
, 1

N < Fp � 1.
(85)

The I-concurrence of each of the states ρ
(mn)
ad in Eq. (76) is

thus CI (ρ (N )(p′)) and equals the average I-concurrence. The
I-concurrence of the output states is shown as a function of p
and N in Fig. 7 and the ratio of the input I-concurrence to the
output I-concurrence is shown in Fig. 8.

The threshold of the mixing parameter can now be obtained
from Eq. (85). For input states the threshold evaluates to p <

p∗ = N/(N + 1) whereas the threshold for the output states is
given by p∗ = 1 − √

N3 − N2 − N + 1/(N2 − 1).

FIG. 8. Ratio of the I concurrence of the output states to that of
the input states for noisy qudits vs the mixing parameter p in various
dimensions N .

IV. CONCLUSION

We have studied the dependence of the average concur-
rence of the output state of entanglement swapping on the
concurrences of the input states. In the case of qubit pure
states, the dependence is simple; the average concurrence of
the output state is just the product of the concurrences of
the input states. This result is easily generalized to multiple
swaps. An example with mixed state inputs suggests that
the product of the input concurrences is an upper bound for
the output concurrence. For qudits we made use of the I-
concurrence. While the relation between the I-concurrence of
the input states and that of the output state is more complicated
than in the qubit case, there are some cases in which the
result is simple. In particular, if one of the input states is
maximally entangled, the output I-concurrence is the same
as the I-concurrence of the nonmaximally entangled input
state. Finally, we examined the entanglement swapping of
noisy qudits for a particular class of qudits and found how
the average I-concurrence of the entanglement-swapped states
depends on that of the input qudits.
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