
PHYSICAL REVIEW A 104, 022422 (2021)

Optimal quantum discrimination of single-qubit unitary gates between two candidates
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We analyze a discrimination problem of a single-qubit unitary gate with two candidates, where the candidates
are not provided with their classical description, but their quantum sample is. More precisely, there are three
unitary quantum gates—one target and one sample for each of the two candidates—whose classical description
is unknown except for their dimension. The target gate is chosen equally among the candidates. We obtain
the optimal protocol that maximizes the expected success probability, assuming the Haar distribution for the
candidates. This problem is originally introduced in Ref. [5] which provides a protocol achieving 7/8 in the
expected success probability based on the “unitary comparison” protocol of Ref. [6]. The optimality of the
protocol has been an open question since then. We prove the optimality of the comparison protocol, implying
that only one of the two samples (one for each candidate) is needed to achieve an optimal discrimination. The
optimization includes protocols outside the scope of quantum testers due to the dynamic ordering of the sample
and target gates within a given protocol.
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I. INTRODUCTION

A problem solving is an attempt to make the best judgment
based on available resources. In discrimination problems, the
main goal is to correctly guess the identity of the target,
provided that the target is chosen from a set of candidates with
whatever information available regarding the candidates.

Quantum gates model time evolutions of quantum systems
over a fixed duration. The evolution may be a result of internal
interaction of the system, or, perhaps, of a black-box device
which transforms the state of the system via an evolution
determined by the device. There may be a physical operation
performed at some distant location, say a “quantum server”
or an “oracle,” to which a quantum state is sent. The state
undergoes a prefixed evolution, and returns back to its origin.

Discrimination of quantum gates whose candidates are
provided with their complete classical description reduces
to finding the optimal initial state and measurement so that,
when the target gate (i.e., the target of the discrimination) is
applied, the possible output states, determined by which can-
didate the target resumes, become the most distinguishable.
(See Refs. [1,2] and references therein for more on quantum
state discrimination.) For discrimination of unitary operations
among two known candidates (i.e., with complete classical
description), an explicit closed formula in terms of the overlap
between the unitary operations is known for SU(2) [3].
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Quantum theory introduces a unique challenge to dis-
crimination problems in that a full classical description of a
quantum object cannot be deduced by physical operation in
general when the number of copies of the quantum object is
limited. It is possible to introduce quantum process tomogra-
phy to attempt to identify a complete classical description of
the candidates and then proceed with the standard discrimina-
tion of known candidates. (See Ref. [4] and references therein
for more on quantum process tomography.) Quantum tomog-
raphy may be unavoidable if the discrimination also requires
us to identify a complete classical description of the target,
but not so if discrimination is more focused on particular
properties of the target.

Suppose that a single-qubit unitary gate is given as a dis-
crimination target, which is allowed to be used once. The
target is chosen between the two candidates with an equal
probability. A full classical description of the candidates is not
available except that they are chosen independently and uni-
formly randomly from the set of all single-qubit unitary gates.
Instead of a classical description, we have one quantum gate
as a “quantum sample” for each candidate, implementing the
unitary operation specified by the respective candidate. With-
out any quantum sample of the candidates, discrimination
would be impossible, while infinite access to the candidates
would provide their complete classical descriptions. We as-
sume that the target and sample gates can be applied on any
qubit and that a given gate has the same action on any qubit.
See Fig. 1 for a pictorial description of our problem.

In this paper, we assume that each sample gate is allowed
to be used once. More precisely, there are three unitary quan-
tum gates—one target and one sample for each of the two
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1, 2, ? 1, 2, ? 1, 2, ?

FIG. 1. Pictorial representation of our problem. Pale orange
boxes indicate the variable gates (U[1], U[2], and U?), each implement-
ing a single-qubit unitary operation whose action is not revealed to
the discriminator. Semicircle elements represent a quantum measure-
ment, whose outcome can affect all the elements subsequent to it.
U? denotes the target of the discrimination, while U[1] and U[2] are a
quantum sample of the first and second candidate, respectively. More
detailed descriptions are in the text and Fig. 2.

candidates—whose classical description is unknown except
for their dimension. The performance of a given discrimina-
tion protocol will be measured by the expected probability
of identifying the correct candidate. We seek for the best
performing protocol using a quantum system of an arbitrary
size whose dynamics can be fully controlled, adopting a quan-
tum circuit model as the basis of analysis. We shall further
specify the types of protocols to allow mathematically rig-
orous arguments but preserve the generality of the result.
The optimization will include all protocols of arbitrary circuit
complexity. Classical computation will be considered free.

This problem is originally introduced in Ref. [5] which
provides a protocol that achieves 7/8 in the expected suc-
cess probability based on the “unitary comparison” protocol
of Ref. [6]. This protocol “compares” one of the quantum
samples of the candidates against the target gate. Thus the
other quantum sample is discarded, but Ref. [5] reports to
have not found any protocol outperforming the comparison.
The optimality of the protocol has been an open question since
then. Reference [7] derives 7/8 for discrimination protocols in
which the sample and target gates are used in a predetermined
order. There still remained the possibility that more dynamic
ordering of the gates depending on measurement outcomes
used during a protocol can increase the expected success
probability. Recently, Ref. [8] numerically verified that 7/8
is optimal, but analytic proof has been lacking.

The problem discussed above may be seen as a kind
of “programmable” discrimination of unitary gates, where
the “reference” gates serve as a program. The problem is
also an instance of “pattern-matching” of unitary operations.
Analogous problem setting for quantum states are studied,
for instance, in Refs. [9–38]. Unitary comparison is further
studied in Ref. [39] with the unambiguousness condition. Ref-
erence [40] investigates unambiguous comparison of quantum
measurements. Identification of malfunctioning quantum de-
vices [41] and real-time calibration of optical receivers [42]
are more examples of more focused quantum process tomog-
raphy.

Each quantum gate implements some quantum operation.
Discrimination of quantum operations with a complete clas-
sical description of the candidates has been investigated for
unitary operations [3,43–67], nonunitary deterministic quan-

tum channels [43,49,55,68–85], quantum dynamics [86–90],
and stochastic quantum operations including quantum mea-
surements [91–97]. Discrimination of quantum dynamics
is also studied in the context of quantum metrology (see
Ref. [98] for review) which typically deals with continuously
parametrized candidates.

Section II introduces the notations used in this paper. The
problem setting and the main result are stated in Sec. III. We
argue in Sec. IV that an upper bound to the optimal discrimi-
nation can be obtained by solving a semidefinite programming
(SDP) problem. A dual SDP problem is derived in Sec. V,
which proves that 7/8 is an upper bound on the optimal per-
formance, hence settling the optimality question of Ref. [5].
We conclude in Sec. VI.

II. PRELIMINARY

Hilbert spaces are denoted by H with possible subscripts
for distinction, e.g, H1 and H2. A vector will have a subscript
to indicate the Hilbert space to which it belongs as in |ψ〉H.
Often, we will use the subscript of the Hilbert space to specify
the corresponding Hilbert space as in |ψ〉1 ∈ H1. If a vector
is in a tensor product of two or more Hilbert spaces, then the
vector will have multiple subscripts as in |ϕ〉12 ∈ H1 ⊗ H2.
Given a Hilbert space H, we denote its copy, i.e., another
Hilbert space of the same dimension, with an overline as in
H. The index of |λ〉H1

will be abbreviated as |λ〉1. Similar
conventions on subscripts will be adopted for operators and
maps, throughout. The Roman alphabet I always represents
the identity operator on its respective Hilbert space. To each
Hilbert space we designate a computational basis which will
be identified with a tilde symbol above vectors as in |̃i〉. The
symbol φ+ shall be reserved for the “unnormalized” maxi-
mally entangled state as in

φ+
ab =

d−1∑
i, j=0

|̃i〉〈 j̃|a ⊗ |̃i〉〈 j̃|b, (1)

assuming Ha and Hb are both dimension d .
A deterministic quantum operation on a quantum system,

identified by its corresponding Hilbert space H, is described
by a completely positive and trace-preserving (CPTP) map
from L(H)—the set of linear operators on H—to itself. We
denote the identity CPTP map from L(H) to itself as IH.

A quantum channel takes the state of a given system to
that of another system. The state of the first system may
have undergone a transformation, resulting in a different state
in the latter system. Thus, deterministic quantum operations
and quantum channels share the same mathematical structure.
This motivates us to regard a quantum operation on a single
quantum system also as a quantum channel.

A quantum channel may be implemented without a quan-
tum measurement, but with measurements and addition and
removal of subsystems, the set of possible quantum operations
extends to quantum instruments. A quantum instrument J is
characterized by an indexed set of completely positive maps
J = {J (i)|J (i) : CP}i such that their sum J =∑i J (i) is
trace-preserving. The index i is returned as a measurement
outcome.
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Given a unitary matrix U , Ca→b(∗;U ) is a unitary quantum
channel from L(Ha) to L(Hb) defined by its action on the
computational basis,

Ca→b
(|̃k〉〈̃l|a;U

) =
∑
k′l ′

U [k′, k]U [l, l ′]∗|k̃′〉〈̃l ′|b,

where U [k′, k] denotes the (k′, k) element of the unitary ma-
trix U and U [l, l ′]∗ denotes the complex conjugate of the
(l, l ′) element. In the case where a = b, we will use Ca;U as
an abbreviation of Ca→b(∗;U ).

III. PROBLEM SETTING AND MAIN RESULT

The sample gates and target gate constitute the “variables”
of the task. Each variable gate may be applied on any single-
qubit system. The variable gates may be interpreted as a
unitary channel Ca→b(∗;U ) for some suitable U ∈ SU(2), the
set of 2 × 2 special unitary matrices. The corresponding U
depends on the computational basis of the qubit on which
a variable gate applies, but we assume that the bases are so
chosen that, given a particular variable gate, the corresponding
unitary channel is always represented by the same unitary
matrix. This is, for instance, guaranteed by assuring that the
“up” direction of each spin is properly aligned, assuming
spin- 1

2 s are used for the qubits. Let U[1] and U[2] correspond to
the first and second candidate, respectively, while the unitary
matrix of the target gate is either U[1] and U[2], depending on
to which candidate the target corresponds.

Given a protocol P , its probability of success,
psuc(U[1],U[2], t,P ), is determined by the action of the
variable gates and the protocol P , where t = 1 if the first
candidate is chosen for the target, and t = 2 if the second.
The expected success probability ESP(P ) of a given P is

ESP(P ) = 1

2

∑
t=1,2

∫
psuc(U[1],U[2], t,P )dU[1]dU[2], (2)

where the integral for U[1] and U[2] is taken over the Haar
measure of SU(2). The protocol must be independent of U[1],
U[2], and t , because these are hidden at the beginning of the
protocol.

We assume that a discrimination protocol always uses a
finite-dimensional system and consists of a “gate sequence.”
A gate sequence in the quantum circuit model consists of
applying quantum gates, which may implement any quantum
operation, possibly nondeterministic, whose outcome is dis-
tinguished by a natural number. The gates may also include
any addition and removal of subsystems. The outcomes of
nondeterministic operations may affect the choice of subse-
quent operations, determined by classical computation on the
preceding outcomes. A protocol shall execute in a series of
“steps,” where one gate is applied at each step, all subject to
the outcomes of previous steps. It terminates with producing
a “guess label,” interpreted as its guess for the candidate gate
to which the target gate corresponds.

If P outputs a label other than 1 and 2, then there always
exists another protocol which assigns this label to either 1 or 2,
only to increases from ESP(P ). The guess label is a function
of all measurement outcomes produced during the protocol.
Ignoring circuit complexity, any protocol can always be re-

FIG. 2. Pictorial representation of the protocols P considered in
this paper. Pale orange boxes indicate the variable gates. The state
σ

(r1 )
11′ is chosen with probability p(r1 ). See Sec. III for exact description

of each element.

designed without sacrificing ESP so that it terminates with
a quantum measurement whose outcome is the guess label.
Without loss of generality, we optimize over protocols whose
final step involves only a two-outcome measurement that out-
puts labels 1 and 2 and that this outcome is the guess label.

We further assume that P proceeds in seven steps. A picto-
rial representation is given in Fig. 2.

(1) Probabilistically prepare a quantum state labeled by
r1 according to a probability distribution p(r1 ). The quantum
system used in this step must contain at least one qubit and the
rest of the system be a finite-dimensional system. The Hilbert
space of this qubit is H1 and the rest of the system is H1′ .
The state so prepared is σ ′(r1 )

11′ . It is more convenient that we
introduced its unnormalized form including p(r1 ), namely,

σ
(r1 )
11′ := p(r1 )σ ′(r1 )

11′ . (3)

(2) Choose one variable gate, depending on r1, and apply
it to the qubit corresponding to H1. We denote the unitary
matrix corresponding to the chosen gate by UU[1],U[2] (1|t, r1).
Set the input Hilbert space of this gate as H1 and the output
as H2. The action of the gate is given by

C[1|t,r1]
1→2;U[1],U[2]

(∗) := C1→2(∗;UU[1],U[2] (1|t, r1)). (4)

(3) Apply a nondeterministic quantum operation, deter-
mined by r1. This operation returns an outcome r2 and must
leave at least one qubit in the system. The Hilbert space of this
qubit after the quantum operation is H3. The Hilbert space of
the rest of the system after the quantum system is H2′ . This
quantum operation is a quantum instrument from H2 ⊗ H1′

to H3 ⊗ H2′ ,

J [1|r1]
21′→32′ = {J [1|r1](r2 )

21′→32′
}

r2
.

(4) Choose one of the two remaining variable gates, de-
pending on r1 and r2, and apply it to the qubit corresponding to
H3. We denote the unitary matrix corresponding to the chosen
gate by UU[1],U[2] (2|t, r1, r2). Set the input Hilbert space of this
gate as H3 and the output as H4. The action of the gate is
given by

C[2|t,r1,r2]
3→4;U[1],U[2]

(∗) := C3→4(∗;UU[1],U[2] (2|t, r1, r2)). (5)

(5) Apply a nondeterministic quantum operation, deter-
mined by r1 and r2. This operation returns an outcome r3 and
must leave at least one qubit in the system. The Hilbert space
of this qubit after the quantum operation is H5. The Hilbert

022422-3



SOEDA, SHIMBO, AND MURAO PHYSICAL REVIEW A 104, 022422 (2021)

space of the rest of the system after the quantum system is
H3′ . This quantum operation is a quantum instrument from
H4 ⊗ H2′ to H5 ⊗ H3′ ,

J [2|r1,r2]
42′→53′ = {J [2|r1,r2](r3 )

42′→53′
}

r3
.

(6) Apply the last variable gate to the qubit corresponding
to H5. We denote the unitary matrix corresponding to the
chosen gate by UU[1],U[2] (3|t, r1, r2). This is the last remaining
variable gate and hence is independent of r3. Set the input
Hilbert space of this gate as H5 and the output as H6. The
action of the gate is given by

C[3|t,r1,r2]
5→6;U[1],U[2]

(∗) := C5→6(∗;UU[1],U[2] (3|t, r1, r2)). (6)

(7) Apply a quantum measurement given by a positive-
operator valued measure (POVM) on H6 ⊗ H3′ with g as its
outcome. The choice of this POVM may depend on r1, r2,
and r3. The elements of the POVM are denoted as �

[r1,r2,r3](g)
63′ ,

where g is 1 or 2. The outcome g is used as the guess label.
Strictly speaking, we are asserting the universality of such

a protocol under the standard quantum gate model. Proving
the universality would require an additional set of axioms,
which if they were to be justified calls for yet another set
of arguments. The line of argument must be continued in-
definitely, hence the universality is asserted, instead. In fact,
the universality of a certain model can only be confirmed,
empirically, as in the case of Turing machines in defining

computable functions. The protocols defined above lie outside
the scope of quantum testers introduced in Ref. [49], with a
definite causal structure (i.e., under the quantum comb for-
malism), since the variable gates are chosen according to the
measurement outcomes obtained at intermediate steps.

We state our main result as a theorem.
Theorem 1. The optimal ESP is 7

8 .

IV. UPPER BOUND ON EXPECTED SUCCESS
PROBABILITY BY SEMIDEFINITE PROGRAMMING

We shall see that an upper bound to the optimal ESP can
be formulated within semidefinite programming (SDP). For
that, we present a construction of another protocol P ′ that
achieves the same ESP as any given P . P ′ has an arguably
simpler causal structure in that the order in which the variable
gates are used is fixed by a random variable at the beginning
of P ′ unlike P , which in general dynamically decides on the
variable gates to apply only after subsequent measurements
are performed. The general strategy is to begin by obtaining
an operator description of the protocol using the state-map
duality as in between CPTP maps and Choi operators. We then
use these operator descriptions to find the necessary states and
operations.

First, we take the maps and states of P and define ρ
(r1,r2,r3,g)
123456

(i.e., the “Choi” operator) by

ρ
(r1,r2,r3,g)
123456

:= Tr63′
[
�

([r1,r2,r3](g)
63′

(
J [2|r1,r2](r3 )

42′→53′ ◦ J [1|r1](r2 )
21′→32′

)(
σ

(r1 )
11′ ⊗ φ+

22
⊗ φ+

44
⊗ φ+

66

)]
. (7)

We then define

ρ̃
(r1,r2,r3,g)
123456

:=
∫

(C1;V ⊗ C2;W ⊗ C3;V ⊗ C4;W ⊗ C5;V ⊗ C6;W )
(
ρ

(r1,r2,r3,g)
123456

)
dV dW. (8)

We start from ρ̃
(r1,r2,r3,g)
123456

and compute the following operators and numbers:

μ
(r1,r2,r3 )
123456

:=
∑

g

ρ̃
(r1,r2,r3,g)
123456

, (9)

ν
(r1,r2,r3 )
12345

:= 1
2 Tr6

[
μ

(r1,r2,r3 )
123456

]
, (10)

ξ
(r1,r2 )
12345

:=
∑

r3

ν
(r1,r2,r3 )
12345

, (11)

ζ
(r1,r2 )
13 := 1

4 Tr245ξ
(r1,r2 )
12345

, (12)

p(r1,r2 ) := Tr13ζ
(r1,r2 )
13 . (13)

We further define several rank 1 operators. A consecutive sequence of numbers like 1234 will be abbreviated as 1 . . . 4. ψ ′
55

, ψM ,
and ψM ′ appear below can be any fixed pure-state density operator (cf. there may be multiple instances of P ′ for a given P , in
general.). The rank 1 operators of interest are

η
(r1,r2,r3 )
1...61...6M ′ :=

∑
g,g′

√
ρ̃

(r1,r2,r3,g)
123456

(
6⊗

k=1

φ+
kk

)√
ρ̃

(r1,r2,r3,g′ )
123456

⊗ |g〉〈g′|M ′ , (14)

η′(r1,r2,r3 )
1...61...6M ′ :=

√
ν

(r1,r2,r3 )
12345

(
5⊗

k=1

φ+
kk

)√
ν

(r1,r2,r3 )
12345

⊗ φ+
66

⊗ ψM ′ , (15)

τ
(r1,r2 )
1...51...5M

:=
∑
r3,r′

3

√
ν

(r1,r2,r3 )
12345

(
5⊗

k=1

φ+
kk

)√
ν

(r1,r2,r′
3 )

12345
⊗ |r3〉〈r′

3|M, (16)

τ ′(r1,r2 )
1...51...5M

:=
√

ζ
(r1,r2 )
13 φ+

1313

√
ζ

(r1,r2 )
13 ⊗ φ+

22
⊗ φ+

44
⊗ ψ ′

55
⊗ ψM . (17)
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Lemma 1. There exists a unitary operator U ′(r1,r2,r3 )
123456M ′ such

that

η
(r1,r2,r3 )
1...61...6M ′ = U ′(r1,r2,r3 )

123456M ′η
′(r1,r2,r3 )
1...61...6M ′

(
U ′(r1,r2,r3 )

123456M ′
)†

. (18)

Proof. Observe that η
(r1,r2,r3 )
1...61...6M ′ is a purification of

μ
(r1,r2,r3 )
123456

, while η′(r1,r2,r3 )
1...61...6M ′ is that of ν

(r1,r2,r3 )
12345

⊗ I6. We have∑
g �

[r1,r2,r3](g)
63′ = I63′ and Tr6[φ+

66
] = I6, thus

μ
(r1,r2,r3 )
123456

= ν
(r1,r2,r3 )
12345

⊗ I6. (19)

Therefore, there exists a unitary operator satisfying Eq. (18).
�

We see that quantities defined above are related.
Lemma 2.

Tr5ξ
(r1,r2 )
12345

= ζ
(r1,r2 )
13 ⊗ I2 ⊗ I4. (20)

Proof. We have

Tr5ξ
(r1,r2 )
12345

= 1
2 Tr45

[
ξ

(r1,r2 )
12345

]⊗ I4 (21)

from the trace-preserving condition of J [2|r1,r2]
42′→53′ and

Tr4[φ+
44

] = I4. The symmetry induced from Eq. (8) implies
that

Tr45

[
ξ

(r1,r2 )
12345

] = 1
2 Tr245

[
ξ

(r1,r2 )
12345

]⊗ I2. (22)

Substituting this to the previous equation proves the claim. �
Lemma 3. There exists a unitary operator U (r1,r2 )

245135M
such that

τ
(r1,r2 )
1...51...5M

= U (r1,r2 )
245135M

τ ′(r1,r2 )
1...51...5M

(
U (r1,r2 )

245135M

)†
. (23)

Proof. τ
(r1,r2 )
1...51...5M

is a purification of Tr5[ξ (r1,r2 )
12345

]. τ ′(r1,r2 )
1...51...5M

is that of ζ
(r1,r2 )
13 ⊗ I2 ⊗ I4. Therefore, τ (r1,r2 )

1...51...5M
and τ ′(r1,r2 )

1...51...5M

are related by a unitary operation U (r1,r2 )
245135M

due to Lemma 2.�
Finally, p(r1,r2 ) is a probability distribution over (r1, r2),

because ∑
r1,r2

Tr13
[
ζ

(r1,r2 )
13

] = 1. (24)

We define the following protocol P ′ Fig. 3:

(1) Prepare state

σ ′(r1,r2 )
1313

:= (p(r1,r2 ))−1
√

ζ
(r1,r2 )
13 φ+

1313

√
ζ

(r1,r2 )
13 (25)

with probability p(r1,r2 ).
(2) Choose UU[1],U[2] (1|t, r1) and UU[1],U[2] (2|t, r1, r2) according to r1 and r2. Apply the former to H1 and the latter to H3.
(3) Apply a quantum operation given by

J ′[r1,r2]
1234→123455MM ′ (∗) := U (r1,r2 )

245135M

(∗ ⊗ ψ ′
55

⊗ ψM ⊗ ψM ′
)(

U (r1,r2 )
245135M

)†
. (26)

(4) Apply the final remaining variable gate UU[1],U[2] (3|t, r1, r2) to H5.
(5) Perform a measurement given by {�′[r1,r2](g)

123456MM ′ }g, where

�′[r1,r2](g)
123456MM ′ =

∑
r3

(
U ′(r1,r2,r3 )

123456M ′
)†

(I123456 ⊗ |g〉〈g|M ′ )U ′(r1,r2,r3 )
123456M ′ ⊗ |r3〉〈r3|M . (27)

(6) Declare g as the guess of the candidate gate corresponding to the target gate.
We define

�̃
(r1,r2,g)
123456

= Tr123456MM ′
[
�′[r1,r2](g)

123456MM ′J ′[r1,r2]
1234→123455MM ′

(
σ ′(r1,r2 )

1313
⊗ φ+

22
⊗ φ+

44
⊗ φ+

66

)]
. (28)

In P ′, the order of the variable gates is fixed once (r1, r2) is chosen. Nevertheless, we have the following lemma:
Lemma 4. P and P ′ achieve the same ESP.
Proof. Introducing

M ′[t,r1,r2]
123456;U[1],U[2]

= (C[3|t,r1,r2]
5→6;U[1],U[2]

)† ◦ (C[2|t,r1,r2]
3→4;U[1],U[2]

)† ◦ (C[1|t,r1]
1→2;U[1],U[2]

)†(
φ+

22
⊗ φ+

44
⊗ φ+

66

)
, (29)

we have for the original protocol

psuc(U[1],U[2], t,P ) =
∑

r1,r2,r3

Tr123456

[
M ′[t,r1,r2]

123456;U[1],U[2]
ρ

(r1,r2,r3,t )
123456

]
. (30)

The probability psuc(U[1],U[2], t,P ′) of correctly guessing the target gate with the new protocol is

psuc(U[1],U[2], t,P ′) =
∑
r1,r2

p(r1,r2 )Tr123456MM ′
[
�′[r1,r2](t )

123456MM ′
(
C[3|t,r1,r2]

5→6;U[1],U[2]

× ◦J ′[r1,r2]
1234→123455MM ′ ◦ C[2|t,r1,r2]

3→4;U[1],U[2]
◦ C[1|t,r1]

1→2;U[1],U[2]

)(
σ ′(r1,r2 )

1313

)]
. (31)

Hence,

psuc(U[1],U[2], t,P ′) =
∑
r1,r2

p(r1,r2 )Tr123456

[
M ′[t,r1,r2]

123456;U[1],U[2]
�̃

(r1,r2,t )
123456

]
. (32)
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FIG. 3. Pictorial representation of P ′, including PM. All the elements of the protocol are chosen according to the random variables r1 and
r2 chosen at the beginning of the protocol with probability p(r1,r2 ). For PM, r1 and r2 are fixed to rM

1 and rM
2 , respectively. See Sec. IV for exact

descriptions of each element.

The states and operations of P ′ are chosen so that

psuc(U[1],U[2], t,P ′) (33)

=
∑

r1,r2,r3

Tr123456

[
M ′[t,r1,r2]

123456;U[1],U[2]
ρ̃

(r1,r2,r3,t )
123456

]
(34)

=
∫ ∑

r1,r2,r3,g

Tr123456

[
M ′[t,r1,r2]

123456;W T U[1]V,W T U[2]V
ρ

(r1,r2,r3,g)
123456

]
dV dW (35)

=
∫

psuc
(
W T U[1]V,W T U[2]V, t,P

)
dV dW, (36)

where T denotes the transpose of a matrix. To see the first equality, trace back the chain of definitions from Eq. (9) to (17) and
also utilize Lemmas 1 and 3. The “off-diagonal” terms of η and τ (i.e., for r3 
= r′

3 or g 
= g′) operators will disappear once the
trace is taken over M and then over M ′.

Finally,

ESP(P ′) (37)

= 1

2

∑
t=1,2

∫
psuc(U[1],U[2], t,P ′)dU[1]dU[2] (38)

= 1

2

∑
t=1,2

∫ (∫
psuc
(
W T U[1]V,W T U[2]V, t,P

)
dU[1]dU[2]

)
dV dW (39)

=
∫ (

1

2

∑
t=1,2

∫
psuc(U[1],U[2], t,P )dU[1]dU[2]

)
dV dW (40)

=
∫

ESP(P )dV dW = ESP(P ), (41)

where the third to last equality follows from the group invariance of the Haar measure. This proves that ESP(P ) = ESP(P ′). �
We are now ready to state the SDP problem that gives an upper bound to the optimal ESP. We define

M〈1〉
123456

:=
∫

(C1;U ⊗ C3;U ⊗ C5;V )
(
φ+

12
⊗ φ+

34
⊗ φ+

56

)
dUdV, (42)

M〈2〉
123456

:=
∫

(C1;U ⊗ C3;V ⊗ C5;U )
(
φ+

12
⊗ φ+

34
⊗ φ+

56

)
dUdV (43)

M〈3〉
123456

:=
∫

(C1;V ⊗ C3;U ⊗ C5;U )
(
φ+

12
⊗ φ+

34
⊗ φ+

56

)
dUdV, (44)
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which are the Choi operators of a certain random unitary channel as defined in each equation. The SDP optimization of interest
is given by

maximize 1
2 Tr123456

[
M〈 j〉

123456
ρ

(1)
123456

+ M〈 j′〉
123456

ρ
(2)
123456

]
(45)

subject to ρ
(g)
123456

, ρ
{1}
12345

, ρ
{2}
13 � 0, g = 1, 2, (46)∑

g

ρ
(g)
123456

= ρ
{1}
12345

⊗ I6, (47)

Tr5
[
ρ

{1}
12345

] = ρ
{2}
13 ⊗ I2 ⊗ I4, (48)

Tr13
[
ρ

{2}
13

] = 1, (49)

for { j, j′} = {1, 2}, {2, 3}, {3, 1}.
More formally stated:
Lemma 5. The SDP problem stated above gives an upper bound on the optimal ESP for at least one of the following

assignments of j and j′; namely, { j, j′} = {1, 2}, {2, 3}, {3, 1}.
To see this, first observe that the probability psuc(U[1],U[2], t,P ′|r1, r2) of correctly guessing the target gate given r1 and r2 is

psuc(U[1],U[2], t,P ′|r1, r2) = Tr123456MM ′ [�′[r1,r2](t )
123456MM ′

(
C[3|t,r1,r2]

5→6;U[1],U[2]
◦ J ′(r1,r2 )

1234→123455MM ′

◦ C[2|t,r1,r2]
3→4;U[1],U[2]

◦ C[1|t,r1]
1→2;U[1],U[2]

)(
σ ′(r1,r2 )

1313

)
]. (50)

Each (r1, r2) corresponds a valid protocol. Define

ESP(P ′|r1, r2) := 1

2

∑
t=1,2

∫
psuc(U[1],U[2], t,P ′|r1, r2)dU[1]dU[2]. (51)

Let PM be the protocol corresponding to (rM
1 , rM

2 ) that maximizes ESP(P ′|r1, r2). Then,

ESP(P ′) =
∑
r1,r2

p(r1,r2 )ESP(P ′|r1, r2) � ESP
(
PM). (52)

Let σ M
1313

, J M
1234→123455MM ′ , and {�M (g)

123456MM ′ } be the corresponding operations used in PM. Define ρ
M(g)
123456

by

ρ
M(g)
123456

:= Tr123456MM ′

[
�M (g)

123456MM ′J M
1234→123455MM ′

(
σ M

1313
⊗ φ+

22
⊗ φ+

44

)⊗ φ+
66

]
. (53)

With this,

ESP(PM) = 1

2

∑
t=1,2

Tr123456

[
M[t |rM

1 ,rM
2 ]

123456
ρ

∗(t )
123456

]
, (54)

where

M[t |rM
1 ,rM

2 ]
123456

=
∫ (

C[3|t,rM
1 ,rM

2 ]
5→6;U[1],U[2]

)†
◦
(
C[2|t,rM

1 ,rM
2 ]

3→4;U[1],U[2]

)†
◦
(
C[1|t,rM

1 ]
1→2;U[1],U[2]

)†(
φ+

22
⊗ φ+

44
⊗ φ+

66

)
dU[1]dU[2], (55)

with † symbols indicating the adjoint map. Regardless of the

order of the variable gates and the value of t , M
[t |rM

1 ,rM
2 ]

123456
is equal

to one of M〈1〉
123456

, M〈2〉
123456

, or M〈3〉
123456

. The operators ρ
M(g)
123456

satisfy the following relations:

ρ
M(g)
123456

� 0, (56)∑
g

ρ
M(g)
123456

= ρ
{1}
12345

⊗ I6, (57)

where ρ
{1}
12345

= 1
2 Tr6[

∑
g ρ

M(g)
123456

]. In addition,

Tr5
[
ρ

{1}
12345

] = ρ
{2}
13 ⊗ I2 ⊗ I4, (58)

where ρ
{2}
13 = 1

4 Tr245[ρ{1}
12345

]. We also have that

Tr13
[
ρ

{2}
13

] = 1. (59)

Notice that ρ
{1}
12345

and ρ
{2}
13 are both positive operators. This

completes the proof of Lemma 5. In principle, any optimal
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solution to the (primal) SDP problem gives a valid optimal
discrimination protocol.

V. UPPER BOUND ON THE PRIMAL SEMIDEFINITE
PROGRAMMING

Lemma 6. An upper bound to the SDP (45)–(49) is given
by the following SDP:

minimize λ

subject to �123456,�
′
1234

, λ � 0, (60)

1
2 M〈 j〉

123456
− �123456 � 0, (61)

1
2 M〈 j′〉

123456
− �123456 � 0, (62)

Tr6[�123456] = �′
1234

⊗ I5, (63)

Tr24[�′
1234

] = λI1 ⊗ I3. (64)

To see this, the maximum on quantity (45) is unaffected by
adding constraints (60)–(64) because (45) does not contain �s
and so do constraints (46) to (49). One choice is to set �s pro-
portional to the identity operators and set the proportionality
constants large enough to satisfy conditions (61) and (62).

Under the constraints (46) to (49) and (60) to (64), quantity
(45) is equal to

L := 1

2
Tr123456

[
M〈 j〉

123456
ρ

(1)
123456

+ M〈 j′〉
123456

ρ
(2)
123456

]− Tr123456

[
�123456

((∑
g

ρ
(g)
123456

)
− ρ

{1}
12345

⊗ I6

)]

− Tr1234

[
�′

1234

(
Tr5
[
ρ

{1}
12345

]− ρ
{2}
13 ⊗ I2 ⊗ I4

)]− λ
(
Tr13

[
ρ

{2}
13

]− 1
)
. (65)

Rewriting L, we have

L = Tr123456

[
ρ

(1)
123456

(
1

2
M〈 j〉

123456
− �123456

)]
+ Tr123456

[
ρ

(2)
123456

(
1

2
M〈 j′〉

123456
− �123456

)]
+ Tr12345

[
ρ

{1}
12345

(
Tr6[�123456] − �′

1234
⊗ I5

)]
+ Tr13

[
ρ

{2}
13

(
Tr24

[
�′

1234

]− λI1 ⊗ I3
)]+ λ. (66)

The constraints imply that L � λ. Clearly, any such λ is feasible if we remove constraints (46)–(49). Hence any feasible λ under
constraints (60) to (64) is an upper bound on all feasible values of quantity (45) under constraints (46)–(49).

The minimum attainable λ depends on j and j′ via constraints (61) and (62). At this point there are three possible combinations
of { j, j′}, namely, {1, 2}, {2, 3}, and {3, 1}. Combinations {1, 2} and {3, 1} reach the same minimum because they are related by
swapping 1 with 3 and 2 with 4.

We provide explicit choices of λ, �s, and �′s that satisfy the constraints (60)–(64), all with λ = 7
8 . This shows that 7

8 is
an upper bound on the SDP in Lemma 6. The choices are expressed using the irreducible representation of SU(2), which is
motivated by the fact that M〈i〉

123456
are all block-diagonal in this basis, as we see below.

We define the following basis of a three-qubit system Ha ⊗ Hb ⊗ Hc,

|v 1
2 00〉abc = 1√

2
(|0̃1̃0̃〉abc − |1̃0̃0̃〉abc), (67)

|v 1
2 10〉abc = 1√

2
(|0̃1̃1̃〉abc − |1̃0̃1̃〉abc), (68)

|v 1
2 01〉abc =

√
2

3
|0̃0̃1̃〉abc −

√
1

6
(|0̃1̃0̃〉abc + |1̃0̃0̃〉abc), (69)

|v 1
2 11〉abc = −

√
2

3
|1̃1̃0̃〉abc +

√
1

6
(|0̃1̃1̃〉abc + |1̃0̃1̃〉abc), (70)

|v 3
2 0〉abc = |0̃0̃0̃〉abc, (71)

|v 3
2 1〉abc =

√
1

3
(|0̃1̃0̃〉abc + |0̃0̃1̃〉abc + |1̃0̃0̃〉abc), (72)

|v 3
2 2〉abc =

√
1

3
(|0̃1̃1̃〉abc + |1̃1̃0̃〉abc + |1̃0̃1̃〉abc), (73)

|v 3
2 3〉abc = |1̃1̃1̃〉abc. (74)
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We parametrize M〈1〉
123456

as an example:

M〈1〉
123456

=

⎛⎜⎜⎜⎜⎜⎝
∑

k1, k2, l1, l ′
1,

l2, l ′
2 = 0, 1

m( 1
2

1
2 )

l1l ′1l2l ′2
|v 1

2 k1l1〉〈v 1
2 k1l ′1

|135 ⊗ |v 1
2 k2l2〉〈v 1

2 k2l ′2
|246

⎞⎟⎟⎟⎟⎟⎠
+
(

3∑
k1=0

∑
k2=0,1

∑
l,l ′=0,1

m( 3
2

1
2 )

ll ′ |v 3
2 k1

〉〈v 3
2 k1

|135 ⊗ |v 1
2 k2l〉〈v 1

2 k2l ′ |246

)

+
( ∑

k1=0,1

3∑
k2=0

∑
l,l ′=0,1

m( 1
2

3
2 )

ll ′ |v 1
2 k1l〉〈v 1

2 k1l ′ |135 ⊗ |v 3
2 k2

〉〈v 3
2 k2

|246

)

+
(

3∑
k1=0

3∑
k2=0

m( 3
2

3
2 )|v 3

2 k1
〉〈v 1

2 k1
|135 ⊗ |v 3

2 k2
〉〈v 3

2 k2
|246

)
. (75)

In this parametrization, ⎛⎜⎜⎜⎜⎜⎜⎝
m( 1

2
1
2 )

0000 m( 1
2

1
2 )

0001 m( 1
2

1
2 )

0010 m( 1
2

1
2 )

0011

m( 1
2

1
2 )

0100 m( 1
2

1
2 )

0101 m( 1
2

1
2 )

0110 m( 1
2

1
2 )

0111

m( 1
2

1
2 )

1000 m( 1
2

1
2 )

1001 m( 1
2

1
2 )

1010 m( 1
2

1
2 )

1011

m( 1
2

1
2 )

1100 m( 1
2

1
2 )

1101 m( 1
2

1
2 )

1110 m( 1
2

1
2 )

1111

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1
2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
6

⎞⎟⎟⎟⎟⎠, (76)

⎛⎝m( 3
2

1
2 )

00 m( 3
2

1
2 )

01

m( 3
2

1
2 )

10 m( 3
2

1
2 )

11

⎞⎠ =
(

0 0

0 1
6

)
, (77)

⎛⎝m( 1
2

3
2 )

00 m( 1
2

3
2 )

01

m( 1
2

3
2 )

10 m( 1
2

3
2 )

11

⎞⎠ =
(

0 0

0 1
6

)
, (78)

m( 3
2

3
2 ) = 1

6 . (79)

The other M〈i〉
123456

are obtained by suitably swapping the qubits.
Next, we introduce the basis of a two-qubit system Ha ⊗ Hb as

|w0〉ab = 1√
2

(|0̃1̃〉ab − |1̃0̃〉ab
)
, (80)

|w10〉ab = |0̃0̃〉ab, (81)

|w11〉ab = 1√
2

(|0̃1̃〉ab + |1̃0̃〉ab
)
, (82)

|w12〉ab = |1̃1̃〉ab. (83)

We parametrize �123456 and �′
1234

as

�123456 =

⎛⎜⎜⎜⎜⎜⎝
∑

k1, k2, l1, l ′
1,

l2, l ′
2 = 0, 1

ω
( 1

2
1
2 )

l1l ′1l2l ′2
|v 1

2 k1l1〉〈v 1
2 k1l ′1

|135 ⊗ |v 1
2 k2l2〉〈v 1

2 k2l ′2
|246

⎞⎟⎟⎟⎟⎟⎠
+
(

3∑
k1=0

∑
k2=0,1

∑
l,l ′=0,1

ω
( 3

2
1
2 )

ll ′ |v 3
2 k1

〉〈v 3
2 k1

|135 ⊗ |v 1
2 k2l〉〈v 1

2 k2l ′ |246

)
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+
( ∑

k1=0,1

3∑
k2=0

∑
l,l ′=0,1

ω
( 1

2
3
2 )

ll ′ |v 1
2 k1l〉〈v 1

2 k1l ′ |135 ⊗ |v 3
2 k2

〉〈v 3
2 k2

|246

)

+
(

3∑
k1=0

3∑
k2=0

ω( 3
2

3
2 )|v 3

2 k1
〉〈v 1

2 k1
|135 ⊗ |v 3

2 k2
〉〈v 3

2 k2
|246

)
(84)

�′
1234

= (ω′(00)|w0〉〈w0|135 ⊗ |w0〉〈w0|246

)+
(

2∑
k2=0

ω′(01)|w0〉〈w0|135 ⊗ |w1k2〉〈w1k2 |246

)

+
(

2∑
k1=0

ω′(10)|w1k1〉〈w1k1 |135 ⊗ |w0〉〈w0|246

)
+
(

2∑
k1=0

2∑
k2=0

ω′(11)|w1k1〉〈w1k1 |135 ⊗ |w1k2〉〈w1k2 |246

)
. (85)

For j = 1 and j′ = 2, a feasible set of parameters of the dual SDP is

λ = 7
8 , (86)⎛⎜⎜⎜⎜⎜⎜⎝

ω
( 1

2
1
2 )

0000 ω
( 1

2
1
2 )

0001 ω
( 1

2
1
2 )

0010 ω
( 1

2
1
2 )

0011

ω
( 1

2
1
2 )

0100 ω
( 1

2
1
2 )

0101 ω
( 1

2
1
2 )

0110 ω
( 1

2
1
2 )

0111

ω
( 1

2
1
2 )

1000 ω
( 1

2
1
2 )

1001 ω
( 1

2
1
2 )

1010 ω
( 1

2
1
2 )

1011

ω
( 1

2
1
2 )

1100 ω
( 1

2
1
2 )

1101 ω
( 1

2
1
2 )

1110 ω
( 1

2
1
2 )

1111

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1
4 0 0 0

0 1
16

1
16

1
8
√

3

0 1
16

1
16

1
8
√

3

0 1
8
√

3
1

8
√

3
1
6

⎞⎟⎟⎟⎟⎠, (87)

⎛⎝ω
( 3

2
1
2 )

00 ω
( 3

2
1
2 )

01

ω
( 3

2
1
2 )

10 ω
( 3

2
1
2 )

11

⎞⎠ =
(

1
16 − 1

16
√

3

− 1
16

√
3

5
48

)
, (88)

⎛⎝ω
( 1

2
3
2 )

00 ω
( 1

2
3
2 )

01

ω
( 1

2
3
2 )

10 ω
( 1

2
3
2 )

11

⎞⎠ =
(

1
16 − 1

16
√

3

− 1
16

√
3

1
6

)
, (89)

ω

( 3
2

3
2

)
= 5

48 , ω′(00) = 1
2 , ω′(01) = 1

8 , (90)

ω′(10) = 1
8 , ω′(11) = 1

4 . (91)

A feasible set of parameters of the dual SDP for the other pair ( j = 2 and j′ = 3) is

λ = 7
8 , (92)⎛⎜⎜⎜⎜⎜⎜⎝

ω
( 1

2
1
2 )

0000 ω
( 1

2
1
2 )

0001 ω
( 1

2
1
2 )

0010 ω
( 1

2
1
2 )

0011

ω
( 1

2
1
2 )

0100 ω
( 1

2
1
2 )

0101 ω
( 1

2
1
2 )

0110 ω
( 1

2
1
2 )

0111

ω
( 1

2
1
2 )

1000 ω
( 1

2
1
2 )

1001 ω
( 1

2
1
2 )

1010 ω
( 1

2
1
2 )

1011

ω
( 1

2
1
2 )

1100 ω
( 1

2
1
2 )

1101 ω
( 1

2
1
2 )

1110 ω
( 1

2
1
2 )

1111

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1

16 0 0 1
16

0 1
8

1
8 0

0 1
8

1
8 0

1
16 0 0 11

48

⎞⎟⎟⎟⎠, (93)

⎛⎝ω
( 3

2
1
2 )

00 ω
( 3

2
1
2 )

01

ω
( 3

2
1
2 )

10 ω
( 3

2
1
2 )

11

⎞⎠ =
(

1
8 0
0 1

24

)
, (94)

⎛⎝ω
( 1

2
3
2 )

00 ω
( 1

2
3
2 )

01

ω
( 1

2
3
2 )

10 ω
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VI. CONCLUSION

We analyzed the discrimination of a single-qubit unitary
gate with two candidates whose complete classical descrip-
tions are unknown but provided with one quantum sample
for each candidate. The target gate is chosen equally among
the candidates. The expected success probability (ESP) was
chosen as the figure of merit. We assumed the Haar distribu-
tion for the candidates. This problem, originally introduced
in Ref. [5], is known to achieve at least 7/8 in ESP. We
proved that this indeed is the optimal by deriving an upper
bound of the optimal ESP as a semidefinite programming
(SDP) problem and providing explicit feasible parameters for
its dual SDP. Thus, we confirmed that the optimal discrim-

ination is achievable without one of the quantum samples
of the candidates. The optimization covers all the protocols
allowing dynamic ordering of the variable gates depending on
measurement outcome obtained at the intermediate steps of a
given protocol, thus going beyond the quantum testers.
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[27] M. Sedlák, M. Ziman, O. Přibyla, V. Bužek, and M. Hillery,
Unambiguous identification of coherent states: Searching a
quantum database, Phys. Rev. A 76, 022326 (2007).

[28] Y. Ishida, T. Hashimoto, M. Horibe, and A. Hayashi, Locality
and nonlocality in quantum pure-state identification problems,
Phys. Rev. A 78, 012309 (2008).

[29] M. Sedlák, M. Ziman, V. Bužek, and M. Hillery, Unambiguous
comparison of ensembles of quantum states, Phys. Rev. A 77,
042304 (2008).

[30] M. Sedlák, M. Ziman, V. Bužek, and M. Hillery, Unambiguous
identification of coherent states. II. multiple resources, Phys.
Rev. A 79, 062305 (2009).

[31] S. Olivares, M. Sedlák, P. Rapčan, M. G. A. Paris, and V. Bužek,
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Distinguishing classically indistinguishable states and channels,
J. Phys. A: Math. Theor. 52, 475303 (2019).

[82] M. M. Wilde, Coherent quantum channel discrimination, in
2020 IEEE International Symposium on Information Theory
(ISIT) (IEEE, 2020).

[83] V. Katariya and M. M. Wilde, Evaluating the advantage
of adaptive strategies for quantum channel distinguishability,
arXiv:2001.05376.

[84] J. Bavaresco, M. Murao, and M. T. Quintino, Strict hierarchy
between parallel, sequential, and indefinite-causal-order strate-
gies for channel discrimination, arXiv:2011.08300.

[85] J. L. Pereira and S. Pirandola, Bounds on amplitude-damping-
channel discrimination, Phys. Rev. A 103, 022610 (2021).

[86] A. M. Childs, J. Preskill, and J. Renes, Quantum information
and precision measurement, J. Mod. Opt. 47, 155 (2000).

[87] Y. Aharonov, S. Massar, and S. Popescu, Measuring energy,
estimating Hamiltonians, and the time-energy uncertainty rela-
tion, Phys. Rev. A 66, 052107 (2002).

[88] Y.-M. Wang, J.-G. Li, J. Zou, and B.-M. Xu, Quantum process
discrimination with information from environment, Chin. Phys.
B 25, 120302 (2016).

[89] H. Yuan and C.-H. F. Fung, Quantum parameter estimation with
general dynamics, npj Quantum Inf. 3, 14 (2017).

[90] Y. Chen and H. Yuan, Zero-error quantum hypothesis testing
in finite time with quantum error correction, Phys. Rev. A 100,
022336 (2019).

[91] A. Chefles and M. Sasaki, Retrodiction of generalized measure-
ment outcomes, Phys. Rev. A 67, 032112 (2003).

[92] Z. Ji, Y. Feng, R. Duan, and M. Ying, Identification and Dis-
tance Measures of Measurement Apparatus, Phys. Rev. Lett. 96,
200401 (2006).
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