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The Poisson equation has wide applications in many areas of science and engineering. Although there are
some quantum algorithms that can efficiently solve the Poisson equation, they generally require a fault-tolerant
quantum computer, which is beyond the current technology. We propose a variational quantum algorithm (VQA)
to solve the Poisson equation, which can be executed on noisy intermediate-scale quantum devices. In detail, we
first adopt the finite-difference method to transform the Poisson equation into a linear system. Then, according
to the special structure of the linear system, we find an explicit tensor product decomposition, with only
(2 log2 n + 1) items, of its coefficient matrix under a specific set of simple operators, where n is the dimension
of the coefficient matrix. This implies that the proposed VQA needs fewer quantum measurements, which
dramatically reduces the required quantum resources. Additionally, we design observables to efficiently evaluate
the expectation values of the simple operators on a quantum computer. Numerical experiments demonstrate that
our algorithm can solve the Poisson equation.
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I. INTRODUCTION

Quantum computing has been shown to be more computa-
tionally powerful than classical computing in solving certain
problems, such as factoring large numbers [1], unstructured
database searching [2], solving equations [3,4], classification
[5,6], linear regression [7,8], and dimensionality reduction
[9–11].

The Poisson equation has wide applications in many areas,
such as quantum mechanical continuum solvation [12] and
Markov chains [13,14]. In general, the finite-difference and
spectral methods [15–17] are used to discretize the Poisson
equation to obtain a linear system, the solution of which
can approximate the solution of the Poisson equation. Since
the dimension of the linear system is generally very large,
solving the linear system is quite time consuming. To solve the
Poisson equation efficiently, some related quantum algorithms
[18–22] have been proposed. These quantum algorithms have
shown significant speedups over their classical counterparts.

However, the advantages of quantum algorithms men-
tioned above usually rely on a fault-tolerant quantum
computer, which may take a long time horizon to im-
plement. Recent developments in quantum hardware have
motivated advances in algorithms to run in the so-called noisy
intermediate-scale quantum (NISQ) devices [23], which only
support a shallow quantum circuit, a restricted number of
physical qubits, and limited gate fidelity. An important ques-
tion is how to solve some practical and meaningful tasks on
such NISQ devices.

*qsujuan@bupt.edu.cn
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‡wqy@bupt.edu.cn

Variational quantum algorithms (VQAs) are a class of
hybrid quantum-classical algorithms, which are expected to
realize quantum advantages on NISQ devices [23–25]. Specif-
ically, VQAs employ a shallow-depth quantum circuit to
efficiently evaluate a cost function which depends on the
parameters of a quantum gate sequence on the quantum com-
puter, and the classical computer uses this cost information
to adjust the parameters of the gate sequence to minimize
the cost function. VQAs have been successfully applied to
calculate the ground state or the excited state of the physical
Hamiltonians [26–29], diagnose a quantum state [30], solve
combinatorial optimization problems [31,32], process classi-
fication tasks [33], solve linear systems [34–36], etc.

Here, our goal is to design a VQA to solve the Poisson
equation. A straightforward idea is to first adopt the finite-
difference method to discretize the Poisson equation to obtain
a linear system, and then solve the linear system directly
by using the existing technique of solving the linear system
with VQAs [34–36]. However, the algorithms proposed in
Refs. [34–36] always require a strategy to decompose the
coefficient matrix A into a sum of tensor products of some
operators, that is, A = ∑d

j=1 α jO j , where α j is a constant
coefficient and Oj is an operator. It is worth noting that d and
Oj should meet the following two requirements [24,25]:

(i) R1: The number of terms d = O[poly(log2 n)], where n
is the dimension of the coefficient matrix.

(ii) R2: Each Oj is a tensor product of some simple
operators which can be efficiently measured on a quantum
computer.

In fact, finding a strategy that satisfies the above require-
ments R1 and R2 is a nontrivial problem. Typically, one can
decompose the coefficient matrix under the Pauli basis, but
the number of decomposed items usually grows polynomially
with the dimension of the coefficient matrix, which does not
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meet the requirement R1. Thus, it is not feasible to use this
intuitive decomposition strategy to design a VQA that solves
the Poisson equation.

In this work, according to the special structure of the lin-
ear system, we find an explicit tensor product decomposition
of the coefficient matrix A under a set of simple operators
{I, σ+ = |0〉〈1|, σ− = |1〉〈0|}. It is worth emphasizing that the
number of decomposition terms is only (2 log2 n + 1), which
means that the proposed VQA needs fewer quantum mea-
surement terms than the decomposition under the Pauli basis.
Furthermore, we construct observables to efficiently evaluate
the expectation values of the simple operators on a quantum
computer. The above two requirements for the coefficient ma-
trix A are satisfied. As a result, we design a VQA to solve the
Poisson equation. Finally, we conduct numerical experiments
to simulate our algorithm on PROJECTQ [37], and experimen-
tal results show that our algorithm can solve the Poisson
equation.

The remainder of the paper is organized as follows. In
Sec. II, we adopt the finite-difference method to discretize
the Poisson equation to obtain a linear system. In Sec. III, we
propose a VQA for the Poisson equation. To show the fea-
sibility of our algorithm, we conduct numerical experiments
in Sec. IV. We analyze the performance of our algorithm in
Sec. V. Finally, we present our conclusion and discussion in
Sec. VI.

II. DISCRETIZE THE POISSON EQUATION

The d-dimensional Poisson equation with Dirichlet bound-
ary conditions is defined as follows:

− �μ(x) = f (x), x ∈ D,

μ(x) = 0, x ∈ ∂D,
(1)

where � is the Laplace operator, D = (0, 1)d is the domain
of μ(x), ∂D represents the boundary of D, and f : D → R
is a sufficiently smooth function [17]. Here, we adopt the
finite-difference method to discretize the Poisson equation to
obtain a linear system [15], and then we gain the approximate
solution of the Poisson equation by solving the linear system.
The linear system generated by the discretization of the one-
dimensional Poisson equation is

Ax = b, (2)

where

A =

⎡
⎢⎢⎢⎣

2 −1 0

−1 . . .
. . .

. . .
. . . −1

0 −1 2

⎤
⎥⎥⎥⎦ ∈ Rn×n. (3)

Here, A is a positive definite matrix and satisfies A† = A,
n comes from evenly dividing (0,1) into n + 1 parts dur-
ing discretization, and b is the vector obtained by sampling
the function f (x) on the interior grid points [38]. Similarly,
we can also obtain the coefficient matrix generated by the
discretization of the d-dimensional Poisson equation with

Dirichlet boundary conditions,

A(d ) = A ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d

+I ⊗ A ⊗ I ⊗ · · · ⊗ I

+ · · · + I ⊗ · · · ⊗ I ⊗ A, (4)

where I ∈ Rn×n and A(d ) ∈ Rnd ×nd
.

III. A VQA FOR THE POISSON EQUATION

To design a VQA to solve the Poisson equation, we assume
that there is an efficient unitary operator U that can prepare
a quantum state |b〉 ∝ b (the vector). This assumption is the
same as Refs. [3,34–36]. Following the idea in Refs. [34–36],
we transform the problem of solving the linear system in
Eq. (2) to find the ground state of a Hamiltonian,

H = A†(I − |b〉〈b|)A. (5)

Here, A is the coefficient matrix of the linear system in Eq. (2).
It can be verified that the solution |x〉 is the unique eigenstate
corresponding to the minimum eigenvalue 0 of H . The de-
tailed proof is shown in Appendix B.

To obtain the ground state |x〉, we first define the
cost function E (θ) = 〈ψ (θ)|H |ψ (θ)〉, where trial state
|ψ (θ)〉 = U (θ)|0〉, with unitary gate sequence U (θ) =
UL(θL ) · · ·U1(θ1), θ = (θL, . . . , θ1). The cost function E (θ)
represents the expectation value of H under the state |ψ (θ)〉.
Next we apply the classical optimizer (e.g., gradient descent)
to adjust the parameters θ to minimize E (θ), that is,

min
θ

E (θ) = min
θ

〈ψ (θ)|H |ψ (θ)〉

= min
θ

[〈ψ (θ)|A2|ψ (θ)〉 − |〈b|A|ψ (θ)〉|2]. (6)

Once we obtain θopt = arg minθ E (θ), the solution |x〉 ≈
|ψ (θopt )〉 can be produced by U (θopt ). The structure of the
entire algorithm is shown in Fig. 1.

Note that the output of VQA is a quantum state |x〉 cor-
responding to the solution vector x, and this kind of output
|x〉 is ubiquitous in previous works for solving a linear sys-
tem [3,34–36,39]. The solution |x〉 has several applications
in some scenarios. For example, the solution |x〉 of Harrow-
Hassidim-Lloyd (HHL) [3] can be used to obtain an estimate
of the expectation value 〈x|M|x〉 of the linear operator M.
Moreover, the existing quantum algorithms for solving dif-
ferential equations have obtained the quantum state of the
solution |x〉 [18,39]. They pointed out that the solution |x〉 can
be used to obtain the inner product 〈x|z〉 with the state |z〉.

In order to design a VQA to solve the linear system in
Eq. (2), we give a strategy to decompose A and A2 satisfying
the requirements R1 and R2 in Sec. I. In the following sec-
tions, for convenience, we first consider the coefficient matrix
A generated by the discretization of the one-dimensional Pois-
son equation and assume that n = 2m, where m is a positive
integer.

A. An explicit decomposition of A and A2

We will show the process of acquiring a sum of the tensor
products of A and A2 under a specific set of simple operators.
According to the special structures of A and A2, we first
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FIG. 1. Schematic diagram of the steps of the entire algorithm. (a) An explicit decomposition of A and A2 under a specific set of simple
operators is found. (b) The inputs of our algorithm are the precision ε, the initial parameters θ0, the unitary operator U such that U |0〉 = |b〉,
and every item of a sum of tensor products of A and A2. (c) To evaluate E (θ) on a quantum computer, we perform the unitary gate sequence
U (θ) to evaluate the expected value of each decomposition term of A2 under the state |ψ (θ)〉 to gain 〈ψ (θ)|A2|ψ (θ)〉. And we perform U
and U (θ) to evaluate the value of each decomposition term of A under the state |ψ (θ)〉 and |b〉 to gain |〈b|A|ψ (θ)〉|2. The phase gate S is
excluded when calculating the real part of 〈b|A|ψ (θ)〉 and included when calculating its imaginary part. (d) We apply a classical optimizer
(e.g., gradient descent) to minimize E (θ). If δE > ε, where δE denotes the variation value of E , then update θ to execute a new round of the
quantum algorithm, otherwise output θopt = θ. (e) The output of VQA is a quantum state, |ψ (θopt〉 ≈ |x〉, generated by U (θopt ).

write A and A2 into block matrices, respectively, then apply
a recursive algorithm to find their explicit decomposition. For
convenience, the matrices A and A2 corresponding to m qubits
are denoted as Am and A2

m, respectively.
Let us write Am as a block matrix,

Am =
[

Am−1 Dm−1

DT
m−1 Am−1

]
, (7)

where

Dm−1 =

⎡
⎢⎢⎣

0 0
. . .

0
−1 0 0

⎤
⎥⎥⎦. (8)

Then we provide a recursive decomposition strategy to find
the explicit decomposition of Am as follows:

A1 =
[

2 −1
−1 2

]
= 2I − σ+ − σ−, σ+ = |0〉〈1|, σ− = |1〉〈0|;

A2 =

⎡
⎢⎣

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎤
⎥⎦ = I ⊗ A1 − σ− ⊗ σ+ − σ+ ⊗ σ−;

A3 = I ⊗ A2 − σ− ⊗ σ+ ⊗ σ+ − σ+ ⊗ σ− ⊗ σ−
= I ⊗ I ⊗ (2I − σ+ − σ−) − I ⊗ σ− ⊗ σ+

− I ⊗ σ+ ⊗ σ− − σ− ⊗ σ+ ⊗ σ+ − σ+ ⊗ σ− ⊗ σ−. (9)
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Then we have

Am = I ⊗ Am−1 − σ− ⊗ σ+ ⊗ · · · ⊗ σ+︸ ︷︷ ︸
m−1

−σ+ ⊗ σ− ⊗ · · · ⊗ σ−︸ ︷︷ ︸
m−1

= I ⊗ · · · ⊗ I︸ ︷︷ ︸
m−1

⊗(2I − σ+ − σ−)

− I ⊗ · · · ⊗ I︸ ︷︷ ︸
m−2

⊗σ− ⊗ σ+ − · · · − I ⊗ σ− ⊗ σ+ ⊗ · · · ⊗ σ+︸ ︷︷ ︸
m−1

− I ⊗ · · · ⊗ I︸ ︷︷ ︸
m−2

⊗σ+ ⊗ σ− − · · · − I ⊗ σ+ ⊗ σ− ⊗ · · · ⊗ σ−︸ ︷︷ ︸
m−2

− σ− ⊗ σ+ ⊗ · · · ⊗ σ+︸ ︷︷ ︸
m−1

−σ+ ⊗ σ− ⊗ · · · ⊗ σ−︸ ︷︷ ︸
m−1

. (10)

It is shown that Am can be written as a linear combination of tensor products of simple operators {I, σ+, σ−} and the total
number of items of Am is 2m + 1, which is linear with respect to the logarithm of the dimension of the matrix. It means that
our algorithm requires fewer quantum measurement terms than the decomposition under the Pauli basis, which will dramatically
reduce the required quantum resources. Although the decomposition of A2

m can be obtained by Am, the number of terms is
(2m + 1)2. In order to further reduce the number of decomposition items of A2

m, next we use the similar method as Am to show
the decomposition process of A2

m:

A2
m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

5 −4 1 0
−4 6 −4 1

1 . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 1

1 −4 6 −4
0 1 −4 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

6 −4 1 0
−4 6 −4 1

1 . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 1

1 −4 6 −4
0 1 −4 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
0

. . .

0
0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

≡ Bm − Cm. (11)

According to Eq. (11), we only need to obtain the decomposition of Bm and Cm. We write Bm into a block matrix,

Bm =
[

Bm−1 Mm−1

MT
m−1 Bm−1

]
, (12)

where

Mm−1 =

⎡
⎢⎢⎢⎢⎣

0 0

0 . . .

1 0
−4 1 0 0

⎤
⎥⎥⎥⎥⎦. (13)

Next, we apply the recursive decomposition strategy to obtain the decomposition of Bm,

B1 =
[

6 −4
−4 6

]
= 6I − 4σ+ − 4σ−;

B2 =

⎡
⎢⎣

6 −4 1 0
−4 6 −4 1
1 −4 6 −4
0 1 −4 6

⎤
⎥⎦

= I ⊗ B1 + σ− ⊗ (I − 4σ+) + σ+ ⊗ (I − 4σ−);

B3 = I ⊗ B2 + σ− ⊗ σ+ ⊗ (I − 4σ+) + σ+ ⊗ σ− ⊗ (I − 4σ−)
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= I ⊗ I ⊗ (6I − 4σ+ − 4σ−)

+ I ⊗ σ− ⊗ (I − 4σ+) + σ− ⊗ σ+ ⊗ (I − 4σ+)

+ I ⊗ σ+ ⊗ (I − 4σ−) + σ+ ⊗ σ− ⊗ (I − 4σ−). (14)

And then we can obtain

Bm = I ⊗ Bm−1 + σ− ⊗ σ+ ⊗ · · · ⊗ σ+︸ ︷︷ ︸
m−2

⊗(I − 4σ+)

+ σ+ ⊗ σ− ⊗ · · · ⊗ σ−︸ ︷︷ ︸
m−2

⊗(I − 4σ−)

= I ⊗ · · · ⊗ I︸ ︷︷ ︸
m−1

⊗(6I − 4σ+ − 4σ−)

+ I ⊗ · · · ⊗ I︸ ︷︷ ︸
m−2

⊗σ+ ⊗ (I − 4σ−) + · · ·

· · · + I ⊗ σ+ ⊗ σ− ⊗ · · · ⊗ σ−︸ ︷︷ ︸
m−3

⊗(I − 4σ−)

+ I ⊗ · · · ⊗ I︸ ︷︷ ︸
m−2

⊗σ− ⊗ (I − 4σ+) + · · ·

· · · + I ⊗ σ− ⊗ σ+ ⊗ · · · ⊗ σ+︸ ︷︷ ︸
m−3

⊗(I − 4σ+)

+ σ− ⊗ σ+ ⊗ · · · ⊗ σ+︸ ︷︷ ︸
m−2

⊗(I − 4σ+)

+ σ+ ⊗ σ− ⊗ · · · ⊗ σ−︸ ︷︷ ︸
m−2

⊗(I − 4σ−).

(15)

Thus, Bm can be expressed as a sum of tensor products of operators {I, σ+, σ−} and the number of items is 4m − 1.
Finally, we obtain the decomposition of Cm via the recursive decomposition strategy,

C1 =
[

1 0
0 1

]
= σ+σ− + σ−σ+;

C2 =

⎡
⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎦ = σ+σ− ⊗ σ+σ− + σ−σ+ ⊗ σ−σ+;

C3 = σ+σ− ⊗ σ+σ− ⊗ σ+σ− + σ−σ+ ⊗ σ−σ+ ⊗ σ−σ+.

(16)

And we can obtain

Cm = σ+σ− ⊗ · · · ⊗ σ+σ−︸ ︷︷ ︸
m

+ σ−σ+ ⊗ · · · ⊗ σ−σ+︸ ︷︷ ︸
m

. (17)

It shows that Cm is presented in the form of a sum of the
tensor product of {σ+σ− = |0〉〈0|, σ−σ+ = |1〉〈1|}. Thus the
explicit decomposition form of A2

m can be obtained and the
total number of terms is 4m + 1.

In short, the decomposition strategy meets requirement
R1. Next we will show that the decomposition strategy also
satisfies requirement R2.

B. Evaluation of E(θ)

To evaluate E (θ) = 〈ψ (θ)|(B − C)|ψ (θ)〉 − |〈b|A|ψ
(θ)〉|2, we need to evaluate 〈ψ (θ)|B|ψ (θ)〉, |〈b|A|ψ (θ)〉|2, and
〈ψ (θ)|C|ψ (θ)〉, respectively.

(1) Evaluation of 〈ψ (θ)|B|ψ (θ)〉 and |〈b|A|ψ (θ)〉|2.

Since the decomposition terms of A and B are not Her-
mitian operators, we need to design special observables to
calculate

〈ψ (θ)|σ+ ⊗ σ− ⊗ · · · ⊗ σ−|ψ (θ)〉,
〈ψ (θ)|σ− ⊗ σ+ ⊗ · · · ⊗ σ+|ψ (θ)〉,
|〈b|σ+ ⊗ σ− ⊗ · · · ⊗ σ−|ψ (θ)〉|2,
|〈b|σ− ⊗ σ+ ⊗ · · · ⊗ σ+|ψ (θ)〉|2.

(18)

First consider the simplest case, that is, to construct
observables to obtain 〈ψ (θ)|σ+|ψ (θ)〉, 〈ψ (θ)|σ−|ψ (θ)〉,
|〈b|σ+|ψ (θ)〉|2, and |〈b|σ−|ψ (θ)〉|2. Specifically, the
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observables can be designed as follows:[
0 σ+
σ

†
+ 0

]
= |φ+

11〉〈φ+
11| − |φ−

11〉〈φ−
11| ≡ O11,

[
0 σ−
σ

†
− 0

]
= |φ+

12〉〈φ+
12| − |φ−

12〉〈φ−
12| ≡ O12,

(19)

where |φ±
11〉 = 1√

2
(|00〉 ± |11〉) and |φ±

12〉 = 1√
2
(|01〉 ± |10〉)

are Bell states. Then we can construct quantum states,

|0, 1〉 ≡ 1√
2

(|0〉 + |1〉), |0, i1〉 ≡ 1√
2

(|0〉 + i|1〉),

|b, ψ (θ)〉 ≡ 1√
2

[|0〉|b〉 + |1〉|ψ (θ)〉],

|b, iψ (θ)〉 ≡ 1√
2

[|0〉|b〉 + i|1〉|ψ (θ)〉].

(20)

Note that

〈ψ (θ)|σ+|ψ (θ)〉 = 〈0, 1|〈ψ (θ)|O11|0, 1〉|ψ (θ)〉
− i〈0, i1|〈ψ (θ)|O11|0, i1〉|ψ (θ)〉,

〈ψ (θ)|σ−|ψ (θ)〉 = 〈0, 1|〈ψ (θ)|O12|0, 1〉|ψ (θ)〉
− i〈0, i1|〈ψ (θ)|O12|0, i1〉|ψ (θ)〉,

|〈b|σ+|ψ (θ)〉|2 = [〈b, ψ (θ)|O11|b, ψ (θ)〉]2

+ [〈b, iψ (θ)|O11|b, iψ (θ)〉]2,

|〈b|σ−|ψ (θ)〉|2 = [〈b, ψ (θ)|O12|b, ψ (θ)〉]2

+ [〈b, iψ (θ)|O12|b, iψ (θ)〉]2.

(21)

Thus we can directly perform measurements in the Bell
basis and then calculate the relevant probabilities to ob-
tain 〈ψ (θ)|σ+|ψ (θ)〉, 〈ψ (θ)|σ−|ψ (θ)〉, |〈b|σ+|ψ (θ)〉|2, and
|〈b|σ−|ψ (θ)〉|2. We mention that the method we used is simi-
lar to the Hadamard test [34–36,40,41].

For the case that the number of σ+ and σ− in each row of
Eq. (18) is greater than 1, we show that observables can be
designed in a similar way as the simplest case. The details can
be found in Appendix C. By using Hadamard and CNOT gates,
the measurements required to calculate the value of Eq. (18)
can be transformed to the measurements in the computational
basis. The quantum circuit is shown in Fig. 2. In short, we can
evaluate each term of |〈b|A|ψ (θ)〉|2 and 〈ψ (θ)|B|ψ (θ)〉.

(2) Evaluation of 〈ψ (θ)|C|ψ (θ)〉.
Since σ−σ+ = |1〉〈1| and σ+σ− = |0〉〈0| are Hermitian op-

erators, we can directly perform the measurements in the
computational basis to obtain the expectation value of C under
the state |ψ (θ)〉. Due to the linearity property of operators, we
can evaluate E (θ) efficiently on the quantum computer.

Herein, A and A2 meet the requirement R2 in Sec. I. In
short, we can design VQA to solve the one-dimensional Pois-
son equation with Dirichlet boundary conditions.

Similarly, we can obtain the decompositions of A(d )

and (A(d ) )2 of the d-dimensional Poisson equation with
the number of terms d (2m + 1) and [d (2m + 1)]2, respec-
tively. When d = O(poly m), we can design VQA to solve
the d-dimensional Poisson equation with Dirichlet boundary
conditions.

FIG. 2. The quantum circuit of the measurement required in the
calculation of Eq. (18).

We extend our algorithm to the one-dimensional Poisson
equation with the common boundary conditions of Neu-
mann and Robin, and the mixed boundary conditions of
Dirichlet, Neumann, and Robin [42–45]. However, for the d-
dimensional Poisson equation, our algorithm cannot currently
be extended to Neumann and Robin and the mixed boundary
conditions of Dirichlet, Neumann, and Robin, except for the
Dirichlet boundary conditions. See Appendix A for the spe-
cific analysis.

In addition, our algorithm can also solve the general tridi-
agonal and pentadiagonal Toeplitz systems, which are often
utilized in solving partial differential equations [15–17,38].
See the detailed analysis in Appendix A.

IV. NUMERICAL EXPERIMENTS

We conduct numerical experiments to simulate our al-
gorithm by using the PROJECTQ package [37], which is a
high-performance simulator with emulation capabilities. In
the experiments, the size of the coefficient matrix A obtained
by the discretization of the one-dimensional Poisson equa-
tion with Dirichlet boundary conditions is 2m × 2m, with the
number of qubits m = 2, . . . , 6. The vector b is generated
by sampling from the function f (x) = x on the interior grid
points.

Next we design a parameterized circuit U (θ) to generate
a quantum state |ψ (θ)〉 to approximate the solution |x〉. In
VQAs, the popular selections of U (θ) include the hardware
efficient ansatz (HEA) [46], unitary coupled cluster (UCC)
ansatz [47], quantum alternating operator ansatz (QAOA)
[31,48], etc. Among them, the QAOA is known to be universal
as the number of circuit layers tends to infinity [31,49], and
the QAOA has obtained good results for several problems
with a finite number of circuit layers [50,51]. One of the
strengths of the QAOA is the fact that it reduces the size
of the feasible solution space to obtain a better performance
algorithm. Therefore, we choose the QAOA to construct U (θ)
in this problem.

In general, the QAOA is composed of a driver Hamiltonian
HD and a mixer Hamiltonian HM evolving the |+〉⊗n state at
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FIG. 3. A QAOA circuit with m = 3 qubits. RX and RZ are single-qubit rotation operators, respectively. The gray dashed box indicates the
repeated block.

specified layers. The form of U (θ) can be written as follows:

U (θ) = UM (θL
l )UD(θL

l−1)︸ ︷︷ ︸
layerL

· · ·UM (θ1
2 )UD(θ1

1 )︸ ︷︷ ︸
layer1

, (22)

where UD(θq
p ) = exp(−iHDθ

q
p ) and UM (θq

p ) = exp(−iHMθ
q
p ),

with p = 1, . . . , l, q = 1, . . . , L.
In our experiments, HM = ∑m−1

j=0 Xj , HD =∑m−1
j=0 ZjZ j+1 + Zm−1Z0 + Y0Y1, m = 2, . . . , 6, and each

initial parameter θ
q
p ∈ [0, 2π ) of θ is chosen randomly, where

Xj,Yj, Zj are Pauli operators. Specifically, the operators
UD(θq

p ) and UM (θq
p ) can be decomposed into single- and

double-qubit gates,

exp
(−iZ jZkθ

q
p

) =CNOT( j, k)RZ
(
k, θq

p

)
CNOT( j, k),

exp
(−iYjYkθ

q
p

) =RX

(
j,

π

2

)
RX

(
k,

π

2

)
CNOT( j, k)RZ

(
k, θq

p

)

× CNOT( j, k)RX

(
j,−π

2

)
RX

(
k,−π

2

)
,

(23)

where CNOT( j, k) is controlled by the jth qubit and targeted
on the kth qubit. For m-qubit circuits, the number of variable
parameters required is 2L and the depth of single- and double-
qubit gates required is 1 + (3m + 6)L. The number of the
variable parameters increases linearly with the increase of L,
and the depth of the single- and double-qubit gates increases
linearly with the increase of mL. Therefore, our algorithm can
employ a relatively shallow quantum circuit to approximate
|x〉, which is expected to be implemented on a NISQ device.

According to Eqs. (22) and (23), we provide the QAOA
quantum circuits with m = 2, . . . , 6. In Fig. 3, we plot de-
tails of the QAOA circuit in the scenario of m = 3. In each
iteration step, we perform 1000 quantum measurements for
each term in the operators A and A2. For example, to get
〈ψ (θ)|σ+|ψ (θ)〉, we need to perform the measurements in
Fig. 2 1000 times to calculate the correlation probabilities.
According to the measurement results, each expectation value
can be approximated and we can calculate the value of E (θ )
in the current stage. For the classical optimizer, we adopt

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) to adjust the
parameters θ. Figure 4 shows the experimental results of the
proposed algorithm, that is, the fidelity |〈x|ψ (θopt )〉| gradually
increases with the increasing of the layers of circuits. We
also obtain the minimum number of layers that is required to
guarantee the 0.99 fidelity, plotted as an inset.

V. ANALYSIS OF ALGORITHM PERFORMANCE

Here we make a detailed analysis of the performance of
the algorithm, including the solution precision and the run-
ning time of the algorithm. We conclude that the lower the
dimension of |x〉, the lower the precision and the less running
time of the algorithm. The specific analysis is as follows.

We first define three types of solutions:

FIG. 4. Experimental results of our algorithm. The fidelity
|〈x|ψ (θopt )〉| increases with the increase of layers and qubits. For
a given number of qubits, the number of circuit layers is increases
gradually until the fidelity reaches 0.99. The inset graph shows
the minimum number of layers in the simulation when the fidelity
reaches 0.99.
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(a) Exact solution: the exact solution of the Poisson equa-
tion.

(b) Numerical solution: the exact solution of the linear sys-
tem generated by the discretization of the Poisson equation.

(c) Quantum solution: the solution obtained by our quan-
tum algorithm.

(1) Analysis of the solution precision.
The error ε1 between the exact solution and the numerical

solution has been analyzed by the classical algorithm [52],
i.e., ε1 = O(1/n2), where n is the dimension of the solution x.
In our algorithm, the dimension n of |x〉 grows exponentially
with the increasing of m, i.e., n = 2m. Thus the error ε1 =
O( 1

22m ), that is, ε1, decreases exponentially when the number
of qubits m increases.

The error ε2 between the numerical solution and the quan-
tum solution is characterized by fidelity. Given a numerical
solution, our quantum algorithm can provide a quantum
solution with the fidelity of 0.99 by implementing 1000 mea-
surements to each term. As the number of measurements
increases, our algorithm will output a quantum solution with
higher fidelity.

We define ε as the error between the exact solution and
the quantum solution. Since ε � ε1 + ε2 and ε1 = O( 1

22m ), ε

is dominated by ε2 when m is large. Our experimental results
shown that our algorithm could output a quantum solution
with high fidelity. Therefore, when m is large, our algorithm
is expected to output a quantum solution that is closer to the
exact solution.

(2) Analysis of algorithm running time.
In our algorithm, the depth of single- and double-qubit

gates increases linearly with the increase of mL, which means
that the quantum circuit can be implemented in polynomial
time. Thus the running time to find the optimal parameters θopt

is mainly determined by the iteration steps. For small-scale
m, the classical optimization algorithm can converge to θopt

quickly. When m takes a large value (50–100 qubits), the
iteration steps of finding θopt cannot be accurately charac-
terized, which is related to the initial parameters, classical
optimization algorithms, and other factors. In addition, how
to find θopt quickly on NISQ devices is still an open question.
Nevertheless, with the development of quantum technology,
it is expected to efficiently solve this optimization problem in
the near future.

VI. CONCLUSION AND DISCUSSION

To summarize, we designed a VQA to solve the Poisson
equation with Dirichlet boundary conditions. In particular,
we found an explicit decomposition of the coefficient matrix
of the linear system that approximates the Poisson equation.
It is noteworthy that the number of decomposition items is
only 2 log2 n + 1, where n is the dimension of the coefficient

matrix, which greatly reduces the number of measurements in
the VQAs. In addition, we construct observables to efficiently
evaluate the expectation values of the simple operators on a
quantum computer.

Our algorithm can be used to solve the one-dimensional
Poisson equation with the common boundary conditions of
Neumann and Robin, and the mixed boundary conditions
of Dirichlet, Neumann, and Robin [42–45]. However, for
the d-dimensional Poisson equation, except for the Dirichlet
boundary conditions, our algorithm cannot currently be ex-
tended to the d-dimensional Poisson equation with Neumann
and Robin, and the mixed boundary conditions of Dirich-
let, Neumann, and Robin. How to design the corresponding
VQA to solve the d-dimensional Poisson equation with other
boundary conditions is still an interesting open problem. In
addition, our algorithm can also solve the general tridiagonal
and pentadiagonal Toeplitz systems, which are often utilized
in solving partial differential equations [15–17,38]. Our algo-
rithm is also expected to be extended to address the banded
Toeplitz systems that have wide applications in many fields,
such as Markov chains [53,54] and signal processing [55].

For the variational quantum algorithm applied in various
fields, one often needs to find a strategy that decomposes the
data matrix to meet the two requirements R1 and R2 men-
tioned in Sec. I. The most intuitive strategy that decomposes
the data matrix into the Pauli operators naturally meets these
two requirements for some problems in combinatorial opti-
mization and quantum chemistry, but it is not always feasible
for other problems such as a linear system, dimensionality
reduction, and classification. Our algorithm indicates that the
data matrix can be decomposed into a sum of tensor prod-
ucts of a class of simple operators with a small number of
decomposition terms. And these simple operators may not
be Pauli operators or even Hermitian operators, as long as
a quantum circuit can be designed to efficiently evaluate the
expected value of them. This idea may stimulate more VQAs
for solving problems of practical interest.

Recently, the authors of Ref. [56] proposed a general
framework for solving general nonlinear differential equations
using differentiable quantum circuits on gate-based quantum
hardware. But when using this framework to deal with Poisson
equations, many challenges will be faced. For example, it is
difficult to design an effective unitary operation to implement
quantum feature mapping of high-dimensional variables. De-
signing VQAs based on other frameworks to solve differential
equations is a goal worth considering.
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APPENDIX A: APPLICATION OF ALGORITHM

In this Appendix, we extend our algorithm to the one-dimensional Poisson equation with the common boundary conditions
of Neumann and Robin, and the mixed boundary conditions of Dirichlet, Neumann, and Robin [42–45]. However, for the
d-dimensional Poisson equation, our algorithm cannot currently be extended to Neumann and Robin, and the mixed boundary
conditions of Dirichlet, Neumann, and Robin, except for the Dirichlet boundary conditions. In addition, our algorithm can also
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solve the general tridiagonal and pentadiagonal Toeplitz systems, which often appear in solving partial differential equations
[15–17,38]. The specific analysis is as follows.

(1) The one-dimensional Poisson equation:
For convenience, the boundary conditions can be written uniformly as

α1μ
′(0) − α2μ(0) = 0, β1μ

′(1) + β2μ(1) = 0, (A1)

where α1, α2, β1, β2 are all positive constants. The types of boundary conditions are given by the nature of the quadruplet
(α1, α2, β1, β2). For example, (α1 = 0, α2 = 1, β1 = 0, β2 = 1), (α1 = 1, α2 = 0, β1 = 1, β2 = 0), and (α1 = 1, α2 = 1, β1 =
1, β2 = 1) correspond to the Dirichlet, Neumann, and Robin boundary conditions, respectively. We can also consider mixing
the Dirichlet, Neumann, and Robin boundary conditions, such as (α1 = 0, α2 = 1, β1 = 1, β2 = 0) and (α1 = 0, α2 = 1, β1 =
1, β2 = 1), which correspond to the Dirichlet-Neumann and Dirichlet-Robin boundary conditions, respectively.

Under the above unified boundary conditions, the coefficient matrix Ã obtained by finite-difference discretization is defined
as

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 − c −1
−1 2 −1

−1 2 −1
. . .

. . .

−1 2 −1
−1 2 − d

⎤
⎥⎥⎥⎥⎥⎥⎦

= A −

⎡
⎢⎢⎢⎢⎢⎢⎣

c 0
0

. . .

0
0

0 d

⎤
⎥⎥⎥⎥⎥⎥⎦

≡ A − C̃, (A2)

where c = α1
α1+α2h , d = β1

β1+β2h , h = 1/(n + 1), with n derived from evenly dividing (0,1) into n + 1 parts during discretization.

Ã2 can be calculated as follows:

Ã2 = B +

⎡
⎢⎢⎢⎢⎢⎢⎣

0 c
c 0 0

0 0 0
. . .

. . .

0 0 d
d 0

⎤
⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎣

4c + 1 − c2 0
0

. . .

0
0

0 4d + 1 − d2

⎤
⎥⎥⎥⎥⎥⎥⎦

≡ B + D − E . (A3)

We adopt the similar method as A to find the decompositions of C̃, D, and E as follows:

C̃ = c × (σ+σ− ⊗ · · · ⊗ σ+σ−) + d × (σ−σ+ ⊗ · · · ⊗ σ−σ+),

D = c × (σ+σ− ⊗ · · · ⊗ σ+σ− ⊗ X ) + d × (σ−σ+ ⊗ · · · ⊗ σ−σ+ ⊗ X ),

E = (4c + 1 − c2) × (σ+σ− ⊗ · · · ⊗ σ+σ−) + (4d + 1 − d2) × (σ−σ+ ⊗ · · · ⊗ σ−σ+).

(A4)

The number of decomposition terms of Ã and Ã2 is 2 log2 n + 3 and 4 log2 n + 3, respectively. Therefore, our algorithm can also
be used to solve the one-dimensional Poisson equation satisfying the common boundary conditions of Neumann and Robin, and
the mixed boundary conditions of Dirichlet, Neumann, and Robin.

(2) The d-dimensional Poisson equation:
Except for the Dirichlet boundary conditions, the coefficient matrices obtained by discretization with the common boundary

conditions of Neumann and Robin, and the mixed boundary conditions of Dirichlet, Neumann, and Robin, are complex. It is
difficult for our method to find an effective decomposition that satisfies the requirements R1 and R2 (see Sec. I) of the variational
quantum algorithm to solve a linear system. Thus our algorithm cannot currently be extended to the d-dimensional Poisson
equation with Neumann and Robin, and the mixed boundary conditions of Dirichlet, Neumann, and Robin. How to design the
corresponding variational quantum algorithm to solve the d-dimensional Poisson equation with other boundary conditions is still
an interesting open problem.

(3) The general tridiagonal and pentadiagonal Toeplitz matrices:
The general tridiagonal and pentadiagonal Toeplitz matrices are defined as

W =

⎡
⎢⎢⎢⎣

t0 t1 0

t−1
. . .

. . .
. . .

. . . t1
0 t−1 t0

⎤
⎥⎥⎥⎦ ∈ Rn×n, V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t0 t1 t2 0
t−1 t0 t1 t2

t−2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . t2
t−2 t−1 t0 t1

0 t−2 t−1 t0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn×n, (A5)
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where ti ∈ R, i = 0,±1,±2. The explicit decompositions of W and V can be expressed as

W = I ⊗ · · · ⊗ I︸ ︷︷ ︸
m−1

⊗(t0I + t−1σ+ + t1σ−) + I ⊗ · · · ⊗ I︸ ︷︷ ︸
m−2

⊗σ− ⊗ (t1σ+) + · · · + I ⊗ σ− ⊗ σ+ · · · ⊗ σ+︸ ︷︷ ︸
m−3

⊗(t1σ+)

+ I ⊗ · · · ⊗ I︸ ︷︷ ︸
m−2

⊗σ+ ⊗ (t−1σ−) + · · · + I ⊗ σ+ ⊗ σ− · · · ⊗ σ−︸ ︷︷ ︸
m−3

⊗(t−1σ−)

+ σ− ⊗ σ+ ⊗ · · · ⊗ σ+︸ ︷︷ ︸
m−2

⊗(t1σ+) + σ+ ⊗ σ− ⊗ · · · ⊗ σ−︸ ︷︷ ︸
m−2

⊗(t−1σ−),

V = I ⊗ · · · ⊗ I︸ ︷︷ ︸
m−1

⊗(t0I + t−1σ+ + t1σ−) + I ⊗ · · · ⊗ I︸ ︷︷ ︸
m−2

⊗σ− ⊗ (t2I + t1σ+) + · · · + I ⊗ σ− ⊗ σ+ ⊗ · · · ⊗ σ+︸ ︷︷ ︸
m−3

⊗(t2I + t1σ+)

+ I ⊗ · · · ⊗ I︸ ︷︷ ︸
m−2

⊗σ+ ⊗ (t−2I + t−1σ−) + · · · + I ⊗ σ+ ⊗ σ− ⊗ · · · ⊗ σ−︸ ︷︷ ︸
m−3

⊗(t−2I + t−1σ−)

+ σ− ⊗ σ+ ⊗ · · · ⊗ σ+︸ ︷︷ ︸
m−2

⊗(t2I + t1σ+) + σ+ ⊗ σ− ⊗ · · · ⊗ σ−︸ ︷︷ ︸
m−2

⊗(t−2I + t−1σ−).

(A6)
The total number of decomposed items of W and V are 2 log2 n + 1 and 4 log2 n − 1, respectively. Similarly, we can obtain the
decompositions of W 2 and V 2 with the number of terms (2 log2 n + 1)2 and (4 log2 n − 1)2. Therefore, our algorithm can also
be used to solve the general tridiagonal and pentadiagonal Toeplitz systems.

APPENDIX B: PROOF THAT |x〉 IS THE UNIQUE EIGENSTATE CORRESPONDING
TO THE MINIMUM EIGENVALUE 0 OF H

We prove in detail that the minimum eigenvalue of H is 0, and its corresponding unique eigenstate is |x〉 = A−1|b〉/‖A−1|b〉‖.
The proof process, which is similar to Refs. [34–36,57], is as follows:

(1) Let G = (I − |b〉〈b|)A. Then we have

G†G = A†(I − |b〉〈b|)(I − |b〉〈b|)A = A†(I − |b〉〈b|)A = H. (B1)

It implies that H is a semidefinite matrix.
(2) Note that

H |x〉 = A†(I − |b〉〈b|)A A−1|b〉
‖A−1|b〉‖ = 1

‖A−1|b〉‖A†(|b〉 − |b〉) = 0|x〉. (B2)

Herein, the minimum eigenvalue of H is 0, and its corresponding eigenstate is |x〉.
(3) Assume that |y〉 = A−1|c〉/‖A−1|c〉‖ is another eigenstate corresponding to the 0 eigenvalue of H . Then,

H |y〉 = A†(I − |b〉〈b|)A A−1|c〉
‖A−1|c〉‖ = 1

‖A−1|c〉‖A†(I − |b〉〈b|)|c〉 = 0|y〉. (B3)

Since A is invertible and the only eigenstate of the zero eigenvalue of I − |b〉〈b| is |b〉, we have |c〉 = |b〉, which means |y〉 = |x〉.
In short, |x〉 is the unique eigenstate corresponding to the minimum eigenvalue 0 of H .

APPENDIX C: EVALUATION OF THE CORRESPONDING VALUE OF EQ. (18)

For the case where the number of σ+ and σ− in each row of Eq. (18) is greater than 1, we show that observables can be
designed in a similar way as the simplest case.

To obtain 〈ψ (θ)|σ+ ⊗ σ−|ψ (θ)〉, 〈ψ (θ)|σ− ⊗ σ+|ψ (θ)〉, |〈b|σ+ ⊗ σ−|ψ (θ)〉|2, and |〈b|σ− ⊗ σ+|ψ (θ)〉|2, observables can be
designed as follows:[

0 σ+ ⊗ σ+
(σ+ ⊗ σ+)† 0

]
= |φ+

21〉〈φ+
21| − |φ−

21〉〈φ−
21| ≡ O21, |φ±

21〉 = 1√
2

(|000〉 ± |111〉),

[
0 σ+ ⊗ σ−

(σ+ ⊗ σ−)† 0

]
= |φ+

22〉〈φ+
22| − |φ−

22〉〈φ−
22| ≡ O22, |φ±

22〉 = 1√
2

(|001〉 ± |110〉),

[
0 σ− ⊗ σ+

(σ− ⊗ σ+)† 0

]
= |φ+

23〉〈φ+
23| − |φ−

23〉〈φ−
23| ≡ O23, |φ±

23〉 = 1√
2

(|010〉 ± |101〉),

[
0 σ− ⊗ σ−

(σ− ⊗ σ−)† 0

]
= |φ+

24〉〈φ+
24| − |φ−

24〉〈φ−
24| ≡ O24, |φ±

24〉 = 1√
2

(|011〉 ± |100〉).

(C1)
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Then we also need to construct the quantum states of Eq. (20). Note that

〈ψ (θ)|σ+ ⊗ σ−|ψ (θ)〉 = 〈0, 1|〈ψ (θ)|O22|0, 1〉|ψ (θ)〉 − i〈0, i1|〈ψ (θ)|O22|0, i1〉|ψ (θ)〉,
〈ψ (θ)|σ− ⊗ σ+|ψ (θ)〉 = 〈0, 1|〈ψ (θ)|O23|0, 1〉|ψ (θ)〉 − i〈0, i1|〈ψ (θ)|O23|0, i1〉|ψ (θ)〉,
|〈b|σ+ ⊗ σ−|ψ (θ)〉|2 = [〈b, ψ (θ)|O22|b, ψ (θ)〉]2 + [〈b, iψ (θ)|O22|b, iψ (θ)〉]2,

|〈b|σ− ⊗ σ+|ψ (θ)〉|2 = [〈b, ψ (θ)|O23|b, ψ (θ)〉]2 + [〈b, iψ (θ)|O23|b, iψ (θ)〉]2.

(C2)

Thus, 〈ψ (θ)|σ+ ⊗ σ−|ψ (θ)〉, 〈ψ (θ)|σ− ⊗ σ+|ψ (θ)〉, |〈b|σ+ ⊗ σ−|ψ (θ)〉|2, and |〈b|σ− ⊗ σ+|ψ (θ)〉|2 can be obtained by directly
performing measurements in the |φ±

2 j〉 basis and calculating the relevant probabilities, j = 1, . . . , 4. The required measurements
can be transformed to the measurements in the computational basis, which is shown in Fig. 2.

Similarly, we can also design observables to obtain 〈ψ (θ)|σ+ ⊗ σ− ⊗ · · · ⊗ σ−|ψ (θ)〉, 〈ψ (θ)|σ− ⊗ σ+ ⊗ · · · ⊗ σ+|ψ (θ)〉,
|〈b|σ+ ⊗ σ− ⊗ · · · ⊗ σ−|ψ (θ)〉|2, and |〈b|σ− ⊗ σ+ ⊗ · · · ⊗ σ+|ψ (θ)〉|2. For example, the observables corresponding to σ+ ⊗
σ− ⊗ · · · ⊗ σ−︸ ︷︷ ︸

m−1

and σ− ⊗ σ+ ⊗ · · · ⊗ σ+︸ ︷︷ ︸
m−1

are |φ+
m2〉〈φ+

m2| − |φ−
m2〉〈φ−

m2|, |φ±
m2〉 = 1√

2
(|00 1 · · · 1︸ ︷︷ ︸

m−1

〉 ± |11 0 · · · 0︸ ︷︷ ︸
m−1

〉) and |φ+
m3〉〈φ+

m3| −

|φ−
m3〉〈φ−

m3|, |φ±
m3〉 = 1√

2
(|01 1 · · · 1︸ ︷︷ ︸

m−1

〉 ± |01 0 · · · 0︸ ︷︷ ︸
m−1

〉), respectively.
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