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Random quantum circuits are a central concept in quantum information theory with applications ranging
from demonstrations of quantum computational advantage to descriptions of scrambling in strongly interacting
systems and black holes. The utility of random quantum circuits in these settings stems from their ability to
rapidly generate quantum pseudorandomness. In a seminal paper by Brandão, Harrow, and Horodecki [Commun.
Math. Phys. 346, 397 (2016)] it was proven that the t th moment operator of local random quantum circuits on
n qudits with local dimension q has a spectral gap of at least �(n−1t−5−3.1/ ln(q) ), which implies that they are
efficient constructions of approximate unitary designs. As a first result, we use Knabe bounds for the spectral
gaps of frustration-free Hamiltonians to show that one-dimensional random quantum circuits have a spectral gap
scaling as �(n−1), provided that t is small compared to the local dimension: t2 � O(q). This implies a (nearly)
linear scaling of the circuit depth in the design order t . Our second result is an unconditional spectral gap bounded
below by �[n−1 ln−1(n)t−α(q)] for random quantum circuits with all-to-all interactions. This improves both the n
and t scaling in design depth for the nonlocal model. We show this by proving a recursion relation for the spectral
gaps involving an auxiliary random walk. Lastly, we solve the smallest nontrivial case exactly and combine with
numerics and Knabe bounds to improve the constants involved in the spectral gap for small values of t .
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Random unitary matrices are widespread in quantum in-
formation theory, with applications in tomography, state
distinguishability, cryptography, randomized benchmarking,
and decoupling. Nevertheless, achieving full uniform random-
ness can be prohibitively expensive and requires exponential
resources. Therefore, one often resorts to “less random” prob-
ability distributions, so-called unitary t-designs [1,2]. These
are probability distributions that produce the same expectation
values as the uniform (Haar) measure on the unitary group up
to polynomials of degree t .

As opposed to full Haar randomness, unitary designs
can be approximately generated with polynomial resources.
Specifically, it is known that random quantum circuits
(RQCs), with randomly chosen two-local unitary gates, form
approximate unitary designs [3–7], following a line of work
studying their convergence properties [8–11]. In particular, it
was proven in Ref. [4] that n-qudit random quantum circuits
in a parallelized one-dimensional architecture constitute ε-
approximate unitary t-designs in depth O(nt11).

Recently, a direct connection between higher approximate
designs and circuit complexity was established in Ref. [12].
This result implies that the complexity of quantum circuits
of depth T = O(nt11) grows at least as T 1/11. In fact, a
conjecture by Brown and Susskind [13,14], motivated by
the long-time behavior of black holes in the context of the
AdS/CFT correspondence, anticipates that the complexity of
local random circuits grows linearly in time for an expo-
nentially long time. This would be implied by a T = O(nt )

scaling of the circuit depth. Finally, progress towards proving
this scaling was made in Ref. [6], using a mapping to the
statistical mechanics of a lattice model to show that O(nt )
depth RQCs form approximate t-designs in the limit of large
local dimensions.

In this work we first show that it suffices to choose the local
dimension as q = �(t2), thus independent of the system size
and polynomial in t to ensure that random quantum circuits of
depth O[nt ln(t )] converge to approximate unitary t-designs.
This is a consequence of a bound on the spectral gap of
random quantum circuits, which we define as the difference
between the highest eigenvalue of 1 and the second highest
eigenvalue λ2 of the t th moment operator. The key tool we
use is a finite-size criterion for spectral gaps, so-called Knabe
bounds [15,16] as opposed to the martingale (or Nachtergaele)
method [17] used in [4]. Combining these bounds with an
approximate orthogonality result from Ref. [4] we obtain a
simple proof that random quantum circuits have a constant
spectral gap in the regime q = �(t2).

Our second result is a polynomial spectral gap for ran-
dom quantum circuits with all-to-all interactions, which we
will refer to as nonlocal random quantum circuits. In this
model, the best known bound on the spectral gap is de-
rived from the one-dimensional (1D) result and scales like
�(n−2t−5−3.1/ ln(q) ). We prove a recursion relation for the
second highest eigenvalue involving the second highest eigen-
value of an auxiliary random walk. We use methods from [4],
specifically a version of path-coupling method by Bubley and
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Dyer [18] due to Oliveira [19], to bound the auxiliary walk and
obtain a bound on the spectral gap of the nonlocal model of
�[n−1 ln−1(n)t−α(q)], with an improvement in n dependence,
and where

α(q) := 2.03 ln−1(q) ln

[
1 −

(
1 − 1

2.1q2

) 1
4

]−1

. (1)

In particular, we have limq→∞ α(q) = 4.06, hence also
slightly improving the t dependence for the nonlocal model.
We do not require an application of the martingale method and
believe that the auxiliary walk might be a useful tool towards
the proof of a constant spectral gap.

Furthermore, we analytically and numerically improve on
the spectral gaps for small values of t . We prove an exact
formula for the smallest nontrivial case, n = 3 and t = 2, for
(1D) RQCs with open boundary conditions. We find that the
second highest eigenvalue of the moment operator in this case
is exactly

λ2 = 1

2
+ q

2(q2 + 1)
. (2)

Combined with Knabe bounds, this yields much smaller ex-
plicit constant for the generation of approximate 2-designs.
Similarly, we numerically compute the local spectral gaps
for small values of q and t to obtain improved constants in
the design depths for 1D random quantum circuits. Lastly,
we extend the results to random quantum circuits constructed
from local orthogonal gates, and show that orthogonal ran-
dom quantum circuits converge to approximate orthogonal
t-designs, reproducing moments of the Haar measure on the
orthogonal group.

I. PRELIMINARIES

A central object of this paper is the moment superoperator,
the t-fold channel of an operator A with respect to a probabil-
ity distribution ν on the unitary group U (d ), defined as

�(t )
ν (A) :=

∫
U ⊗t A(U †)⊗t dν(U ). (3)

We denote the Haar measure on the unitary group by μH .
We can then use the vectorization isomorphism vec :

CD×D → CD2
defined by vec(|i〉〈 j|) = |i〉 ⊗ | j〉. This isomor-

phism uniquely extends to a map from superoperators to
matrices: vec(T )vec(M ) := vec[T (M )] for all M ∈ CD×D for
a superoperator T .

A principal notion for us will be the spectral gap of mo-
ment operators. For convenience, we define the second highest
eigenvalue of the moment operator:

g(ν, t ) := ‖M(ν, t ) − M(μH , t )‖∞, (4)

where the t th moment operator of a probability distribution is
defined as

M(ν, t ) := vec
(
�(t )

ν

) =
∫

U ⊗t ⊗ U ⊗t dν(U ) (5)

and ‖ . . . ‖∞ denotes the Schatten ∞-norm. The spectral gap
of the moment operator is then 1 − g(ν, t ).

The second highest eigenvalue g(ν, t ) can in fact be easily
amplified. Specifically, the k-fold convolution of ν has the

property that

g(ν∗k, t ) � g(ν, t )k . (6)

Upper bounds on the second highest eigenvalue can be used
to imply an approximate version of unitary designs [4]. We
define approximate designs in two (inequivalent) ways, with
a relative error and with an exponentially small additive error.
As we will shortly see, the relation to the spectral gap turns
out to be the same.

Definition 1 (Approximate unitary designs).
(1) A probability distribution ν on U (d ) is an ε-

approximate unitary t-design if the t-fold channel obeys∥∥�(t )
ν − �(t )

μH

∥∥

 � ε

dt
. (7)

(2) A probability distribution ν on U (d ) is a (relative) ε-
approximate unitary t-design if

(1 − ε)�(t )
ν � �(t )

μH
� (1 + ε)�(t )

ν , (8)

where here A � B if and only if B − A is a completely positive
map.

Combined with the above definition of an approximate
unitary design, Lemma 4 in [4], as well as the fact that
‖�(t )

ν − �(t )
μH

‖
 � dt g(ν, t ) [20], allow us to establish the
following:

Lemma 1. Let ν be a probability distribution on U (d ) such
that g(ν, t ) � ε/d2t . Then ν is an ε-approximate unitary t-
design and obeys both Eqs. (7) and (8).

Therefore, whenever we refer to an ε-approximate design
in this work, we mean in both the additive and relative sense
in Definition 1. In this paper we consider the following ar-
chitectures of random quantum circuits comprised of 2-local
unitary gates on a system of n qudits with local dimension
q. Here, “local” stands for locally interacting circuits and not
“noninteracting.”

Definition 2 (Random quantum circuits).
(1) Local (1D) random quantum circuits: Let νn denote

the probability distribution on U ((Cq)⊗n) defined by first
choosing a random pair of adjacent qudits and then applying
a Haar random unitary Ui,i+1 from U (q2). Without further
clarification we assume periodic boundary conditions (PBC),
i.e., we identify the qudits 1 and n + 1, else we speak of local
random circuits with open boundary conditions (OBC).

(2) Brickwork random quantum circuits: Apply first a uni-
tary U1,2 ⊗ U3,4 ⊗ · · · and then a unitary U2,3 ⊗ U4,5 ⊗ · · · ,
where all Ui,i+1 are drawn Haar randomly. For simplicity we
assume in this case an even number of qudits. We denote this
distribution by νbw

n .
(3) Nonlocal random quantum circuits: In each step of the

nonlocal random quantum circuit we randomly draw a pair of
qudits (i, j) and apply a Haar-random gate from U (q2) to this
subsystem. We denote the corresponding measure on U (qn)
by νnon

n .
Each of these probability distributions defines a single time

step for the random quantum circuit model. We will often
discuss the RQC depth. A depth T random quantum circuit
will refer to the evolution after T time steps in the model,
namely, the distribution ν∗T . Note that in the case of brick-
work RQCs, each time step consists of two layers containing
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n gates. Therefore, a circuit of depth T contains nT many
gates.

We now mention some previous results which computed
the design depth for random quantum circuits. As we will be
interested in manipulating the local dimension to improve on
previous results, we present two extremes in this regard.

Theorem 1 (Corollary 6 in [4]). Local random quantum
circuits on n qubits, q = 2, form ε-approximate unitary de-
signs if the circuit depth is

T � Cn�ln(4t )�2t9.5(2nt + ln 1/ε), (9)

where the constant is taken to be C = 4 × 107.
At the other extreme, we have the following:
Theorem 2 ([6]). Brickwork random quantum circuits on

n qudits, with large local dimension q, form ε-approximate
unitary designs if the circuit depth is

T � 4nt + logq 1/ε, (10)

for some q � q0 which depends on t and the size of the circuit.
Part of the goal of this work is to try and close the gap

between these two results. We focus on the former approach,
where was observed that the circuit size T required for local
random quantum circuits to form an ε-approximate unitary
t-designs can be determined from the spectral gap � of a
Hamiltonian, as described below. Lastly, Ref. [4] also showed
that a lower bound on the depth needed for 1D random circuits
to form unitary designs is �(nt/ ln(nt )), and thus the linear
scaling in n and t cannot be further improved.

For higher-dimensional random quantum circuits, the scal-
ing in the number of qudits can be improved, and in Ref. [5]
they showed that RQCs on a D-dimensional lattice form ap-
proximate designs in O[n1/Dpoly(t )] depth. It remains to be
seen if a linear design growth holds in higher dimensions.
Other (non-RQC) implementations of approximate unitary
designs are also known [21], including some time-dependent
Hamiltonian constructions [22,23]. More recently, Ref. [24]
took a different approach towards efficiency and proved that
O[n poly(t )] depth local random Clifford circuits are approx-
imate t-designs [for t2 � O(n)] with only Õ(t4) non-Clifford
gates dispersed throughout the circuit.

We end the section by emphasizing the utility of high-
degree designs. While some applications of approximate
unitary designs in the literature only require control over
the first few moments, higher moments are important for
establishing concentration bounds [25] and have recently been
essential in proving statements about the saturation of entan-
glement [26], the late-time equilibration of subsystems [27],
and the growth of quantum complexity [12]. Specifically,
Ref. [12] proved a linear relation between the circuit com-
plexity of unitaries in an approximate design and the degree
of the design t . This was established for both the standard
circuit complexity of a unitary, as well as a stronger notion of
complexity in terms of optimal distinguishing measurements.
Consequent to this work is a relation between circuit depth
and complexity growth; rigorously showing a linear design
growth proves a linear growth of the quantum complexity in
time.

II. CONSTANT SPECTRAL GAP FOR LARGE LOCAL
DIMENSIONS FROM KNABE BOUNDS

In this section we bound spectral gaps for large local di-
mensions and use them to deduce the depth at which random
quantum circuits form designs.

Theorem 3 (Spectral gaps for large q). Local random quan-
tum circuits have a second highest eigenvalue that can be
bounded by

g(νn, t ) � 1 − 1

2n
(11)

for all q � 6t2, n � 4, and t � 1.
As explained in the preliminaries, this implies the follow-

ing:
Corollary 1 (Unitary designs for large q). Assume that

q � 6t2 and n � 4. Then the following statements hold:
(1) Local random quantum circuits of depth

2n[2nt ln(q) + ln(1/ε)] are ε-approximate unitary t-designs.
(2) Brickwork random quantum circuits of depth

18[2nt ln(q) + ln(1/ε)] are ε-approximate unitary t-designs.
Notice that for q = �(t2), we have an ultimate scaling of

O[nt ln(t )]. We can insert O[t ln(t )] into the main result of
Ref. [12] to show that the complexity of the vast majority of
instances has almost linear complexity growth at least until
t ∼ √

q. This provides further evidence for the long-time lin-
ear growth of quantum complexity.

As in Ref. [[4], Lemma 16], it proves useful to reformulate
the difference in operator norm in terms of a one-dimensional
local Hamiltonian:

g(νn, t ) = 1 − �(Hn,t )

n
, (12)

where the Hamiltonian is defined as

Hn,t =
n∑

i=1

Pi,i+1, (13)

with local terms

Pi,i+1 := 1 − 1[1,i−1] ⊗ P(2)
H ⊗ 1[i+2,n], (14)

and where we introduced the shorthand notation

P(m)
H := M(μH , t ) (15)

on m qudits. The local Hamiltonian Hn,t is frustration free,
i.e., it has a ground space with eigenvalue 0. In fact this
ground space can be characterized as the space spanned by
permutations. Denote by r(π ) the standard representation of a
permutation π ∈ St :

r(π )| j1〉 ⊗ · · · ⊗ | jt 〉 := | jπ (1)〉 ⊗ · · · ⊗ | jπ (t )〉. (16)

Then the ground space of Hn,t is spanned by the vectors
|ψπ 〉⊗n, where

|ψπ 〉 := q−t/2vec[r(π )] = [1 ⊗ r(π )]|�〉,

|�〉 := q−t/2
qt∑

i=1

|i, i〉, (17)

and where |i〉 denotes an orthonormal basis of (Cq)⊗t . Notice
that |ψπ 〉 is normalized with respect to the Frobenius norm.
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Moreover, we denote the density matrix of the states as

ψπ := |ψπ 〉〈ψπ |. (18)

To bound the gap of the Hamiltonian, we use the following
finite-size criteria from Refs. [15,16]:

Lemma 2 (Knabe bound). Consider a frustration-free
translation-invariant Hamiltonian Hn = ∑n

i=1 Pi,i+1

with projectors Pi,i+1. Define the bulk Hamiltonian
Hbulk

m := ∑m−1
i=1 Pi,i+1. Let m > 2 and n > 2m. Then

�(Hn) � 5

6

m2 + m

m2 − 4

(
�

(
Hbulk

m

) − 6

m(m + 1)

)
. (19)

In particular, we need the bound for m = 3:

�(Hn) � 2

(
�

(
Hbulk

3

) − 1

2

)
. (20)

We review Knabe bounds of this type and some generaliza-
tions in Appendix C.

We proceed by defining the frame operator of the basis
{|ψπ 〉} as

S :=
∑
π∈St

ψπ. (21)

The following lemma was proven in Ref. [4].
Lemma 3 (Approximate orthogonality of permutations).

Consider the Haar projector PH on the unitary group U (d ).
Assume that d > t2. Then, the following bound holds:

‖PH − S‖∞ � t2

d
. (22)

The proof of Lemma 3 carries over from Ref. [[4], Lemma
16] without further modifications.

Proof of Theorem 3. Consider the probability distribution
that applies a Haar-random unitary from U (q2) to a random
pair of qudits (i, i + 1) with 1 � i � m − 1. Denote this prob-
ability distribution by νbulk

m . Then, we have the difference of
moment operators

M
(
νbulk

3 , t
) − M(μH , t ) = 1

2

(
P(2)

H ⊗ 1 + 1 ⊗ P(2)
H

) − P(3)
H .

(23)
This expression is a positive-semidefinite operator. We can
thus apply Lemma 3 and obtain∥∥M

(
νbulk

3 , t
) − M(μH , t )

∥∥
∞

�
∥∥∥∥1

2

(
S(2) ⊗ 1 + 1 ⊗ S(2)

) − S(3)

∥∥∥∥
∞

+ t2

q2
+ t2

q3

� 1

2

∥∥∥∥∑
π

(
ψ⊗2

π ⊗ 1 + 1 ⊗ ψ⊗2
π

) − 2ψ⊗3
π

∥∥∥∥
∞

+ t2

q2
+ t2

q3
.

(24)

Consider an orthonormal basis {|π〉} for span{|ψπ 〉} and de-
fine the synthesis operator

B :=
∑
π∈St

|π〉〈ψπ |. (25)

Notice that B†B = S. Then, we have∥∥M
(
νbulk

3 , t
) − M(μH , t )

∥∥
∞

� 1

2

∥∥∥∥(1 ⊗ B†⊗ 1)

(∑
π

ψπ ⊗ |π〉〈π | ⊗ 1 + 1 ⊗ |π〉〈π | ⊗ ψπ

− 2ψπ ⊗ |π〉〈π | ⊗ ψπ

)
(1 ⊗ B ⊗ 1)

∥∥∥∥
∞

+ t2

q2
+ t2

q3
.

(26)

Hence, we can upper bound as follows:∥∥M
(
νbulk

3 , t
) − M(μH , t )

∥∥
∞

� 1

2
‖B†B‖∞ max

π

∥∥ψπ ⊗ 1 + 1 ⊗ ψπ − 2ψπ ⊗ ψπ

∥∥
∞

+ t2

q2
+ t2

q3

� 1

2

(
1 + t2

q

)
max

π

∥∥∥ψπ ⊗ ψ⊥
π + ψ⊥

π ⊗ ψπ

∥∥∥
∞

+ t2

q2
+ t2

q3

= 1

2

(
1 + t2

q

)
+ t2

q2
+ t2

q3
. (27)

Therefore, choosing q � 6t2, we have∥∥M
(
νbulk

3 , t
) − M(μH , t )

∥∥
∞ � 5

8
. (28)

By block diagonalization, this immediately implies the opera-
tor inequality

1⊗3 − M
(
νbulk

3 , t
) = 1⊗3 − 1

2

(
P(2)

H ⊗ 1 + 1 ⊗ P(2)
H

)
� 3

8

(
1 − P(3)

H

)
, (29)

and in turn

�
(
Hbulk

3,t

) = �
(
1⊗3 − P(2)

H ⊗ 1 + 1⊗3 − 1 ⊗ P(2)
H

)
� 6

8
.

(30)

Plugging this bound into Eq. (20), we end up with

�(Hn,t ) � 2

(
6

8
− 1

2

)
= 1

2
. (31)

�
We can proceed to prove Corollary 1.
Proof of Corollary 1. Theorem 3 immediately implies the

first item of Corollary 1 using Eq. (6) combined with Lemma
1. To obtain the second design depth for brickwork random
quantum circuits we apply the generalized version [28] of the
detectability lemma [29]:

Lemma 4 (Detectability lemma). Let H = ∑m
i=1 Qi be a

frustration-free Hamiltonian with {Q1, . . . , Qm} a set of or-
thogonal projectors. Assume that each Qi commutes with all
but g of the projectors. Then, for any state |ψ⊥〉 orthogonal to
the ground space of H ,∥∥∥∥∥

m∏
i=1

(1 − Qi )|ψ⊥〉
∥∥∥∥∥

2

2

� 1

�(H )/g2 + 1
. (32)

This can be directly applied to the moment operator
M(νbw

n , t ). We obtain the following bound on the second high-
est eigenvalue of the brickwork architecture. The derivation is
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completely analogous to the one in [30]. In particular, we can
see that the moment operator M(νbw

n ) has precisely the struc-
ture

∏n
i=1(1 − Qi ), where the Qi are the moment operators for

the Haar measure on a local copy of SU(4). As every one of
these projectors commutes with all others except for two, we
have g = 2 and obtain from Lemma 4 the following bound:

g
(
νbw

n , t
) = ∥∥M

(
νbw

n , t
) − M(μH , t )

∥∥
∞

� 1√
�(Hn,t )/4 + 1

� 1 − 1

18
. (33)

Therefore, we can again apply Eq. (6) and Lemma 1, which
completes the proof of Corollary 1. �

We conclude the section by exactly solving the simplest
nontrivial case n = 3 and t = 2 with open boundary condi-
tions as a function of q. Via Knabe bounds this yields strong
bounds for t = 2. More precisely, we prove the following
formula:

Theorem 4. The second highest eigenvalue of the t = 2
moment operator for νbulk

3 is

∥∥M
(
νbulk

3 , 2
) − M(μH , 2)

∥∥
∞ = 1

2
+ q

2(q2 + 1)
. (34)

It follows that �(Hbulk
n=3,t=2) = 1 − q/(q2 + 1), which is in

agreement with the q = 2 gap computed in Ref. [7]. Then, via
Lemma 2, this implies

�(Hn,2) � 1 − 2q

q2 + 1
, (35)

which yields the following corollary for convergence to ap-
proximate 2-designs in short depth:

Corollary 2. Local random quantum circuits on n qudits of
local dimension q are ε-approximate unitary 2-designs if the
circuit depth is

T � n

(
1 − 2q

q2 + 1

)−1

[4n ln(q) + ln(1/ε)]. (36)

III. A SPECTRAL GAP FOR NONLOCAL RANDOM
QUANTUM CIRCUITS

In this section we consider nonlocal random quantum cir-
cuits. Nonlocal is meant in a geometric sense, where the
circuit architecture is defined on a complete graph of the
qudits, as described in Definition 2.

A polynomial spectral gap can be deduced from the 1D
result in Ref. [4] since the nonlocal random quantum circuits
have overlapping support with the 1D circuits. More precisely,
a randomly drawn pair of qudits is nearest neighbor with prob-
ability ∼1/n. This yields a spectral gap of �[n−2poly−1(t )] of
the moment operator for nonlocal circuits.

Here, we prove a recursion relation for the nonlocal circuits
that allows us to prove a scaling of �[n−1 ln−1(n)poly−1(t )].
Our proof does not require an application of the Nachtergaele
method [17]. Moreover, we obtain slightly improved expo-
nents in t for large local dimensions. More precisely, we show
the following result:

Theorem 5 (Spectral gap for nonlocal random quantum
circuit). Let n � max{�2.03 logq(t )�, 6000}, then there is a

U1

U2

U3

U4
U5

FIG. 1. An instance of the auxiliary walk described by νaux
n for

n = 6.

constant c(q) such that∥∥M
(
νnon

n , t
) − M(μH , t )

∥∥
∞

� 1 − c(q)n−1 ln−1(n) ln(t )t−α(q), (37)

with

α(q) := 2.03 ln−1(q) ln

[
1 −

(
1 − 1

2.1q2

) 1
4

]−1

. (38)

This implies the following result about unitary designs.
Corollary 3. Let n � max{�2.03 logq(t )�, 6000}, then

there is a constant C(q) such that (νnon
n )∗T is an ε-approximate

unitary t-design for

T � C(q)n ln(n) ln−1(t )tα(q)[2nt ln(q) + ln(1/ε)], (39)

with α(q) as in Eq. (38).
Most notably, limq→∞ α(q) = 4.06.
Remark 1. The prefactor in Eq. (38) of 2.03 can be pushed

down arbitrarily close to 2 by imposing the condition that n
is larger than some constant. For simplicity we have chosen a
specific example of this tradeoff by imposing that n � 6000.
Moreover, at the expense of having a higher exponent in n,
we could also obtain a prefactor of 2 and hence a limiting
exponent of t4 for large local dimensions.

To prove Theorem 5, we show a recursion relation for the
second highest eigenvalue of the moment operators M(νnon

n , t )
to the second highest eigenvalue of an auxiliary random walk,
which is in a sense antilocal. This technique is reminiscent of
a method used by Maslen in Ref. [31] to compute the spectral
gaps of Kac’s random walk [32] on SO(N ). We then combine
this recursion relation with a bound on the spectral gap of the
auxiliary walk in two different regimes using techniques from
Ref. [4] and the path-coupling method of Bubley and Dyer
[18] on the unitary group [19]. Moreover, the application of
the path coupling technique is slightly simplified as we only
require two steps of the auxiliary walk as opposed to n steps.
Overall, the structure of the argument resembles the proof in
Ref. [4]: We first solve the auxiliary spectral gap problem
in the regime n � O[ln(t )] for which we obtain the desired
result due to the approximate orthogonality of the permutation
operators and combine this with a general bound independent
of t but exponential in n.

We believe that the auxiliary walk, as depicted in Fig. 1, is
more approachable than regular random quantum circuits and
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it might be a useful tool towards further improvements on the
spectral gap. We start by describing the auxiliary walk:

Definition 3 (Auxiliary walk). In each step of the walk
draw a random qudit i and apply a Haar random unitary from
U (qn−1) to the subsystem consisting of all but the ith qudit.
We denote the corresponding probability measure on U (qn)
by νaux

n .
Moreover, we will use the following notations for the sec-

ond highest eigenvalues:

�n := ∥∥M
(
νnon

n , t
) − M(μH , t )

∥∥
∞, (40)

γn := ∥∥M
(
νaux

n , t
) − M(μH , t )

∥∥
∞. (41)

The key to our approach is the following recursion relation:
Lemma 5 (Recursion relation for nonlocal gap). For all

n > 2 it holds that

�n � γn + �n−1(1 − γn). (42)

The proof of this and the following lemmas are given in
Appendix A. This lemma plays a similar role for the case
of all-to-all interactions as the Nachtergaele lemma plays for
the 1D case. Very similar to the Nachtergaele method, the
recursion relation leads to strong bounds if certain ground
space projectors are approximately orthogonal.

In order to apply this recursion relation we prove two
bounds on γn that we will use in the large-n and small-n
regimes, respectively. The first bound only holds for n large
compared to ln(t ) but the second bound is independent of t
and holds for all n.

Lemma 6 (Gap bound for large n). For n − 2 ln(n) �
2 ln(t ) we have

γn � 1

n
+ 2

nt

qn/2−1
. (43)

Lemma 7 (General gap bound). For all n � 3 we have

γn �
(

1 − 1

q2
+ 2

n

) 1
4

. (44)

The proof of Lemma 7 is based on a bound on the Wasser-
stein distance between the auxiliary random walk and the
Haar measure. We will use the path-coupling method for the
unitary group as developed in [19]. In fact, the application
directly generalizes the application in [4]. Here, we only need
to couple two steps of the random walk which simplifies the
argument.

For probability measures ν1, ν2 we call (X,Y ) a coupling
if X and Y have marginal measures ν1 and ν2. The Lp Wasser-
stein distance with respect to a metric g is

Wg,p(ν1, ν2) := inf{E[g(X,Y )p]1/p :

× (X,Y ) is a coupling for ν1, ν2}. (45)

In particular, we prove the following statement for the metric
gRie induced by the unique left and right invariant Riemman-
nian metric:

Lemma 8. For every integer k � 1 we have

WgRie,2
((

νaux
n

)∗2k
, μH

)
�

(
1 − 1

q2
+ 2

n

)k/2√
2q3/2. (46)

This in turn allows us to establish the general gap bound.
Proof of Lemma 7. The bound on the spectral gap now

follows from the inequality for all probability measures ν:

‖M(ν, t ) − M(μH , t )‖∞ � 2tWgRie,2(ν, μH ). (47)

This is proven in Ref. [4] using the Kantorovich duality for
the Wasserstein distance. Therefore, we have

‖M(νaux, t ) − M(μH , t )‖2k
∞ � 2t

(
1 − 1

q2
+ 2

n

)k/2√
2q3/2.

(48)
The result is given by taking the kth square root and the limit
k → ∞ on both sides of the inequality. �

Finally, we can prove Theorem 5 by evaluating the re-
cursion relation with the bounds in Lemmas 6 and 7. For
a detailed proof, see Appendix A. Roughly, we can use the
strong bound from Lemma 6 to evaluate the recursion relation
from Lemma 5 in n until the threshold n − 2 ln(n) = 2 ln(t )
is surpassed. This yields a polynomial bound in n depending
on the gap 1 − �O[ln(t )]. To evaluate the latter we again employ
Lemma 5 but now we plug in the bound Lemma 7. This
only yields an exponentially small spectral gap but overall we
obtain a t dependence of exp−1[O(ln(t )] = poly−1(t ).

IV. IMPROVED CONSTANTS FROM NUMERICAL
RESULTS

Having bounded the spectral gaps for local random quan-
tum circuits in the case of large local dimension, and further
explicitly computing the gaps for the second moment, we now
turn to a numerical approach. The goal is to provide improved
constants for the RQC design depth for a number of different
random circuit architectures for the first few moments. As
we discussed in the introductory text, unitary designs are
prevalent across essentially all subfields in quantum infor-
mation. Higher moments are vital for concentration bounds
and are intimately related to postequilibration behavior and
complexity growth, but, nevertheless, some applications only
leverage the first few moments. To this end, we give improved
constants for the design depth and note that the constants
given in [4] are large and could exceed what is required for
practical applications.

As we reviewed, the circuit size T required for local ran-
dom quantum circuits to form approximate designs, as in
Definition 1, can be determined from the spectral gap �(Hn,t )
of a frustration-free Hamiltonian. Combining Eq. (12) with
gap amplification in Eq. (6), the depth at which local RQCs
form ε-approximate unitary t-designs is

T � n

�(Hn,t )
(2nt ln q + ln 1/ε). (49)

Furthermore, the gap for local RQCs can be extended to
brickwork RQCs using Lemma 4.

Numerically computing the Hamiltonian gaps for small
system sizes, we can then use the Knabe bounds, reviewed
in Appendix C, to establish design depths for both local
and brickwork RQCs, with open and periodic boundary
conditions. To numerically compute the gaps, we use the
Weingarten formalism to construct the local moment operator
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TABLE I. The depths at which local and brickwork random quantum circuits on n qubits (q = 2) form ε-approximate unitary t-designs,
for the first few moments, with the best constants taken from analytic and numerical determinations of the spectral gaps (or 2-norm bound).
Note that the depth for local RQC is equivalent to the number of gates whereas the depth of brickwork RQC is the number of gates divided
by n.

Circuit architecture 2-designs 4-designs 5-designs

Local RQCs w/ PBC 5n(4n + ln 1/ε) 3.5n(8n + ln 1/ε) 25n(10n + ln 1/ε)
Local RQCs w/ OBC 5n(4n + ln 1/ε) 4.5n(8n + ln 1/ε) 162n(10n + ln 1/ε)
Brickwork RQCs w/ PBC 3.2(2n + ln n + ln 1/ε) 30(8n + ln 1/ε) 200(10n + ln 1/ε)
Brickwork RQCs w/ OBC 6.4(2n + ln n + ln 1/ε) 38(8n + ln 1/ε) 1288(10n + ln 1/ε)

and numerically diagonalize the resulting Hamiltonian. De-
tails on this procedure are provided in Appendix E. We note
that the spectral gaps were investigated numerically using a
different method in Ref. [33], and for all concurrent gaps
computed, the results agree. Moreover, Ref. [10] gave some
exact expressions for the spectral gaps of the second moment.

A. Explicit low design depths

We give explicit expressions for the design depths of lo-
cal and brickwork random circuits with open and periodic
boundary conditions on n qubits (with q = 2), as shown in
Table I. The LRQC results are computed from the spectral
gaps and the 2-design PRQC results are computed from an
exact calculation of the frame potential. Lastly, the design
depths in Table I for local qubits can be contrasted with the
behavior in Corollary 1 at large local dimensions.

For local RQCs, the exact bulk Hamiltonian gap of the
second moment for n = 3 on local qubits is �(Hbulk

n=3,t=2) = 3
5 ,

as computed in Theorem 4 and in agreement with the result in
[7]. For both periodic and open boundary conditions the Kn-
abe bounds (all three lemmas in Appendix C) have the same
threshold for subsystem size n = 3 and give that �(Hn,2) � 1

5 .
The second highest eigenvalue of the second moment operator
is then g(νn, 2) � 1 − 1

5n for both open and periodic local
RQCs.

The 2-design depth for brickwork RQCs above is taken
from Ref. [6]. In that work, an exact expression is given for the
2-norm of the difference in moment operators ‖M(νbw

n , 2) −
M(νH , 2)‖2. Converting their result to the strong definition of
approximate design in Definition 1, and considering both peri-
odic and open boundary conditions yields the above constants.

We neglect reporting the approximate 3-design depths for
different random circuit models because the third-moment
spectral gaps we computed were in exact agreement with the
second-moment gaps of the same q and n. This is not so
implausible as the moment operators decompose into irre-
ducible representations and this implies that the irrep on which
the moment operator realizes its largest eigenvalue is likely
the same for the t = 2 and 3 representations. Surprisingly, the
bounds given by the spectral gaps for the fourth moment are
actually stronger and the 4-design depth determined by the
Knabe bound is shorter.

For the fourth moment, we must rely on numerical deter-
mination of the spectral gaps. Interestingly, the fourth moment
Hamiltonian gap is �(Hbulk

n=3,t=4) = 0.5, up to numerical preci-
sion, whereas the Knabe threshold for n = 3 is 1

2 , and thus we
must proceed to larger subsystems. Increasing the subsystem

size exceeds the Knabe threshold and gives stronger constants.
We employ Theorems 7 and 8 to account for both boundary
conditions, and use the detectability lemma to extend to brick-
work RQCs. For the fifth moment, the n = 4 bulk gap exceeds
the threshold for the stronger finite-size criteria in Theorems 7
and 8, but not for Theorem 6, which gives the above constants.

One point of interest, the smallest second moment gap
�(Hbulk

n=3,t=2), appears to give an asymptotically optimal bound
on the gap. For n = 3, �(Hbulk

n=3,t=2) = 3
5 and Knabe then gives

�(Hn,t=2) � 1
5 . We can compute the gaps �(Hbulk

n,t=2) for in-
creasing n (in fact, Ref. [33] computed up to n = 21), which
decay as we increase n. Fitting the gaps as a function of n sug-
gests that asymptotically �(Hn,t=2) ∼ 1

5 , which is precisely
the lower bound that Knabe gives for the n = 3 gap.

B. Gap scaling for 1D and nonlocal RQCs

We conclude with a brief discussion of the gap scaling of
the Hamiltonian corresponding to 1D RQCs Hn,t = ∑

i Pi,i+1

with either open or periodic boundary conditions, and that of
nonlocal RQCs, where the Hamiltonian is Hnon

n,t = ∑
i< j Pi, j .

Finite-size criteria use gaps of subsystem Hamiltonian with
OBC to prove lower bounds on the gaps for all n; computing
the 1D PBC and nonlocal system gaps cannot establish bounds
for arbitrary system sizes. Nevertheless, we can still compute
the first few nontrivial values to provide evidence for behavior
of the spectral gaps in the different random circuit models.

In Fig. 2 we show the numerically computed spectral gaps
of the second moment t = 2 of both the OBC and PBC 1D
Hamiltonians, as well as the nonlocal case, for increasing
system size. The numerical results, as well as the analytic
expressions derived in [10], indicate a 1/n2 decay of the 1D
OBC and PBC gaps for the second moment. On the other
hand, the nonlocal Hamiltonian gaps increase as we increase
the system size. To compare the local and nonlocal gaps it is
important to point out that the nonlocal Hamiltonian consists
of ∼n2 many summands Pi, j . However, in the corresponding
moment operator the normalizing prefactor is 2/n(n − 1).
Therefore, the increase of the spectral gap in the system size
that is visible does not necessarily carry over to the moment
operators. A polynomial best fit suggests a subquadratic scal-
ing of the nonlocal spectral gaps. If such a scaling exists for
higher moments, then this would have implications for the true
design depth for nonlocal RQCs. Whereas the n dependence
in the design depth for 1D (and higher D) RQCs is tight, the
O[n2 ln(n) poly(t )] design depth we established in Corollary 3
could conceivably be improved for nonlocal random quantum
circuits.
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FIG. 2. Numerically computed Hamiltonian gaps for the second
moment t = 2 of OBC/PBC 1D and nonlocal RQCs, which demon-
strate a 1/n2 decay for the 1D spectral gaps and an n-dependent
growth of the gaps for the nonlocal Hamiltonian.

V. TOWARDS A CONSTANT SPECTRAL GAP

A key conjecture made in Ref. [4] is whether random
quantum circuits in any architecture have a spectral gap that
scales as �[1/poly(n)] independent of t . This would imply
approximate unitary designs in depth O[t poly(n)] and, via the
results of Ref. [12], the Brown-Susskind conjecture [13] that
local random quantum circuits have a quantum complexity
that grows linearly in time for an exponentially long time.

The recursion relation in the proof of Corollary 3, Kn-
abe bounds, and also the third condition in the Nachtergaele
method [4,17] all rely on an overlap of two projectors acting
on different subsets of qudits. The fact that for fixed t , the
overlap becomes small in q suggests to understand the behav-
ior of ‖(P(2)

t ⊗ P(1)
t )(P(1)

t ⊗ P(2)
t ) − P(3)

t ‖∞ as a function of q.
This can be reformulated as a question about angles between
invariant subspaces of subgroups in the unitary group:

max
t

∥∥(
P(2)

t ⊗ P(1)
t

)(
P(1)

t ⊗ P(2)
t

) − P(3)
t

∥∥
∞

� max
(π,Vπ )

cos
{
V SU(q2 )⊗SU(q)

π ,V SU(q)⊗SU(q2 )
π

}
, (50)

where the maximum on the right side is over all irreducible
representations π with representation space Vπ except the
trivial one. All eigenvalues of the above operator as well as
the eigenvalues of M(νbulk

m ) are rational functions in q gen-
eralizing the solution in Theorem 4. This can be seen from
the fact that these eigenvalues are solutions to linear systems
of equations with rational functions in q as coefficients. Un-
fortunately, characterizing the subspaces V SU(q)⊗SU(q2 )

π in a
basis and therefore finding said rational functions seems to
be highly nontrivial. The bound independent of t we obtained
in Lemma 7 from a convergence result is not sufficient as it
converges to 1 for large q.

A possible way to bound the overlap might be via the “di-
mension trick” in harmonic analysis that was communicated
to us by Varjú [34]. By the Peter-Weyl theorem, all irreps of
SU(d ) are contained isometrically in the regular representa-

tion:

L2(SU(d )) ∼=
⊕

π

V ⊕ dim Vπ

π . (51)

It can be shown that random quantum circuits become abso-
lutely continuous eventually, i.e., there is a density function
η ∈ L1(SU(q3)) such that d (νbw,OBC

n )∗k0 = η dμH . We use the
following notation:

Tρ,ν :=
∫

ρ(U ) dν(U ) (52)

for a representation ρ and Tν for the regular representation. If
one could prove that η ∈ L2(SU(q3)), then

Tr
(

T 2k0

νbw,OBC
n

)
=

∑
π

Tr
(
T 2k0

π,ν

)
dim(Vπ )

=
∫

η2(U ) dμH (U ) =: Cq < ∞. (53)

That would imply

‖Tπ,ν‖∞ �
(

Cq

dim Vπ

) 1
2k0

. (54)

For large highest weights, the dimensions of Vπ become arbi-
trarily large. Unfortunately, we do not have any bound on the
L2 norm of η.
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APPENDIX A: PROOFS FOR NONLOCAL RANDOM
QUANTUM CIRCUITS

In this Appendix we prove a number of lemmas and a
theorem stated in Sec. III to establish bounds on the spectral
gaps for nonlocal random quantum circuits.

Lemma (Restatement of Lemma 5: Recursion relation for
nonlocal gap). For all n > 2 it holds that

�n � γn + �n−1(1 − γn). (A1)

Proof. Let S be a subset of qudits. We denote with μS,H the
Haar measure on U (q|S|) acting on the subsystem consisting
of the qudits in S. We further denote

Pi j := M(μi j,H , t ), Qi := M(μ[1,i−1]∪[i+1,n],H , t ). (A2)
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We use repeatedly the characterization

‖M(ν, t ) − M(μH , t )‖∞ = max
ψ∈span{|ψπ 〉,π∈St }⊥

‖ψ‖2=1

〈ψ |M(ν, t )|ψ〉. (A3)

In the following let |ψ〉 denote a state in span{|ψπ 〉, π ∈ St }⊥. We obtain

〈ψ |
∑

1�i< j�n−1

Pi j |ψ〉 = (n − 1)(n − 2)

2
〈ψ |Qn|ψ〉 +

∑
1�i< j�n−1

〈ψ |Pi jQ
⊥
n |ψ〉

� (n − 1)(n − 2)

2

(〈ψ |Qn|ψ〉 + �n−1〈ψ |Q⊥
n |ψ〉). (A4)

Here, we cut out the nth qudit. The same calculation works for every qudit i. Summing over all the resulting inequalities yields

(n − 2)〈ψ |
∑

1�i< j�n

Pi j |ψ〉 � (n − 1)(n − 2)

2

(
(1 − �n−1)

∑
i

〈ψ |Qi|ψ〉 + n�n−1

)

� (n − 1)(n − 2)

2
[(1 − �n−1)nγn + n�n−1]

� n(n − 1)(n − 2)

2
[(1 − �n−1)γn + �n−1]. (A5)

Dividing the inequality by n(n−1)(n−2)
2 yields the result. �

Lemma (Restatement of Lemma 6: Gap bound for large n). For n − 2 ln(n) � 2 ln(t ) we have

γn � 1

n
+ 2

nt

qn/2−1
. (A6)

Proof. We compute

γ 2
n =

∥∥∥∥∥1

n

n∑
i=1

Qi − P(n)
H

∥∥∥∥∥
2

∞

=
∥∥∥∥∥ 1

n2

n∑
i, j=1

QiQj − P(n)
H

∥∥∥∥∥
∞

� 1

n

∥∥∥∥∥1

n

n∑
i=1

Qi − P(n)
H

∥∥∥∥∥
∞

+ 1

n2

∑
i �= j

∥∥QiQj − P(n)
H

∥∥
∞

� 1

n

∥∥∥∥∥1

n

n∑
i=1

Qi − P(n)
H

∥∥∥∥∥
∞

+ ∥∥Q1Qn − P(n)
H

∥∥
∞. (A7)

Using Lemma 3, we start to bound the second term. In the following, Si denotes the frame operator on n − 1 qudits acting on the
subsystem of all qudits except i (analogous to the definition of Qi):

∥∥Q1Qn − P(n)
H

∥∥2

∞ = ∥∥Q1QnQ1 − P(n)
H

∥∥
∞

= ∥∥Q1QnQ1 − Q1P(n)
H Q1

∥∥
∞

�
∥∥Q1SnQ1 − Q1SQ1

∥∥
∞ + 2

t2

qn−1

=
∥∥∥∥∥
∑
π∈St

Q1ψ
⊗n−1
π ⊗ ψ⊥

π Q1

∥∥∥∥∥
∞

+ 2
t2

qn−1

=
∥∥∥∥∥
∑
π∈St

ψπ ⊗ (
P(n−1)

H ψ⊗n−2
π ⊗ ψ⊥

π P(n−1)
H

)∥∥∥∥∥
∞

+ 2
t2

qn−1
. (A8)
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Notice that the argument of ‖ . . . ‖∞ is a sum of positive operators: Indeed, ψ⊗n−2
π ⊗ ψ⊥

π is an orthonormal projector and
therefore

P(n−1)
H ψ⊗n−2

π ⊗ ψ⊥
π P(n−1)

H = P(n−1)
H

(
ψ⊗n−2

π ⊗ ψ⊥
π

)2
P(n−1)

H

= P(n−1)
H ψ⊗n−2

π ⊗ ψ⊥
π

(
P(n−1)

H ψ⊗n−2
π ⊗ ψ⊥

π

)†
.

(A9)

Hence, we have the operator inequality∑
π∈St

ψπ ⊗ (
P(n−1)

H ψ⊗n−2
π ⊗ ψ⊥

π P(n−1)
H

)
� 1 ⊗

∑
π∈St

P(n−1)
H ψ⊗n−2

π ⊗ ψ⊥
π P(n−1)

H . (A10)

In particular, for the largest eigenvalue we have

‖Q1Qn − PH‖2
∞ �

∥∥∥∥∥
∑
π∈St

P(n−1)
H ψ⊗n−2

π ⊗ ψ⊥
π P(n−1)

H

∥∥∥∥∥
∞

+ 2
t2

qn−1

= ∥∥P(n−1)
H

(
S(n−2) ⊗ 1

)
P(n−1)

H − P(n−1)
H S(n−1)P(n−1)

H

∥∥
∞ + 2

t2

qn−1

�
∥∥P(n−1)

H

(
P(n−2)

H ⊗ 1
)
P(n−1)

H − P(n−1)
H P(n−1)

H P(n−1)
H

∥∥
∞ + 4

t2

qn−2

= 4
t2

qn−2
, (A11)

where we have again used Lemma 3 in the second inequality. Combined we have the inequality

γ 2
n � 1

n
γn + 2

t

qn/2−1
. (A12)

If γn < 1/n, we are already done. If γn � 1/n, we obtain

γn � 1

n
+ 2

tn

qn/2−1
, (A13)

which is the claimed bound. �
Lemma (Restatement of Lemma 8). For every integer k � 1 we have

WgRie,2
((

νaux
n

)∗2k
, μH

)
�

(
1 − 1

q2
+ 2

n

)k/2√
2q3/2. (A14)

Proof. The proof is a straightforward generalization of the one in Ref. [[4], Lemma 25]. In the following we show the parts
of the argument that need to be adjusted. We consider two steps of the random walk νaux

n . In order to apply the path-coupling
method, we need to show that

lim sup
ε→0

sup
X,Y

{
WgRie,2

((
νaux

n

)∗2 ∗ δX ,
(
νaux

n

)∗2 ∗ δY
)

gRie(X,Y )
: gRie(X,Y ) � ε

}
�

(
1 − 1

q2
+ 2

n

) 1
2

(A15)

and apply [[4], Lemma 24]. Instead of the Riemannian distance, we consider Frobenius distance and then use that they are the
same up to first order for small points [4].

The second step of the random walk applied to the fixed unitary X on U (qn) yields

X → {
Ũ[1,i−1]∪[i+1,n]U[1, j−1]∪[ j+1,n]X

}
i, j, (A16)

each with probability 1/n2. The same transformation is undergone by Y . We introduce the transformation

X ′ → {
Ũ[1,i−1]∪[i+1,n]V

i, j
[1,i−1]∪[i+1,n]U[1, j−1]∪[ j+1,n]X

}
i, j

, (A17)

where V i, j
[1,i−1]∪[i+1,n] can depend on U[1, j−1]∪[ j+1,n] and V i,i = 1. Y is left invariant under the transformation. X ′,Y ′ is a random

coupling for ((νaux
n )∗2 ∗ δX , (νaux

n )∗2 ∗ δY ). We then bound

E
[‖X ′ − Y ′‖2

2

] = 1

n2

∑
i, j

∥∥Ũ[1,i−1]∪[i+1,n]V
i, j

[1,i−1]∪[i+1,n]U[1, j−1]∪[ j+1,n]X − Ũ[1,i−1]∪[i+1,n]U[1, j−1]∪[ j+1,n]Y
∥∥2

2. (A18)

Without loss of generality it suffices to bound the special case i = 1 and j = n:

E

[
min
V 1,n

[2,n]

∥∥V 1,n
[2,n]U[1,n−1]X − U[1,n−1]Y

∥∥2

2

]
= 2

(
Tr(1) − E

∥∥Tr1
(
U[1,n−1]XY †U †

[1,n−1]

)∥∥
1

)
. (A19)
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With

R := XY † = eiεH = 1 + iε − ε2

2
H2 + O(ε3) (A20)

we obtain as in [4]

∥∥Tr1
(
U[1,n−1]RU †

[1,n−1]

)∥∥
1

= Tr(1) + ε2

2

1

q

[
Tr

(
Tr1

(
U[1,n−1]RU †

[1,n−1]

))2
]

− ε2

2
Tr(H2) + O(ε3). (A21)

This yields

E

[
min
V 1,n

[2,n]

∥∥V 1,n
[2,n]U[1,n−1]X − U[1,n−1]Y

∥∥2

2

]
= ε2

{
Tr(H2) − 1

q
E
[
Tr

(
Tr1

(
U[1,n−1]RU †

[1,n−1]

)2
)]}

+ O(ε3). (A22)

It can be shown that [4]

E Tr
[
Tr1

(
U[1,n−1]RU †

[1,n−1]

)2
]

= E Tr
[
H ⊗ H

(
U †

[1,n−1] ⊗ U †
[1,n−1]

)(
F[2,n],[2,n] ⊗ 11,1

)
U[1,n−1] ⊗ U[1,n−1]

]
. (A23)

Using [[35], Lemma IV.3], we have

U †
[1,n−1] ⊗ U †

[1,n−1]

(
F[2,n],[2,n] ⊗ 11,1

)
U[1,n−1] ⊗ U[1,n−1] = q + qn−1

qn + 1

1

2
(1 + F) + q − qn−1

qn − 1

1

2
(1 − F)

= 1

2

(
q + qn−1

qn + 1
+ q − qn−1

qn − 1

)
1 + 1

2

(
q + qn−1

qn + 1
− q − qn−1

qn − 1

)
F

=
(

q − q−1

qn − q−n

)
1 +

(
q2n−1 − q

q2n − 1

)
F. (A24)

This yields

E
[
Tr

(
Tr1

(
U[1,n−1]RU †

[1,n−1]

)2
)]

� q2n−1 − q

q2n − 1
Tr(H2) �

(
1

q
− q1−2n

)
Tr(H2). (A25)

This implies

E
[‖X ′ − Y ′‖2

2

]
�

[
1 −

(
1

q2
+ q1−2n

)(
1 − 1

n

)]
‖X − Y ‖2

2

�
(

1 − 1

q2
+ 2

n

)
‖X − Y ‖2

2,

(A26)

where we used that ‖X − Y ‖2
2 = ε2Tr(H2) + O(ε3). The result follows as in Ref. [[4], Lemma 25], mutatis mutandis. �

Theorem (Restatement of Theorem 5: Spectral gap for nonlocal random quantum circuit). Let n� max{�2.03 logq(t )�, 6000},
then there is a constant c(q) such that∥∥M

(
νnon

n , t
) − M(μH , t )

∥∥
∞ � 1 − c(q)n−1 ln−1(n) ln(t )t−α(q), (A27)

with

α(q) := 2.03 ln−1(q) ln

[
1 −

(
1 − 1

2.1q2

) 1
4

]−1

. (A28)

Proof. We have

γn � 1

n
+ 2

tn

qn/2−1
(A29)

by Theorem 3 for all n − lnq(n) � 2 lnq(t ). The latter condition is always true if [n � 2.03 logq(t )] ∨ (n � 6000). By induction
we can solve the recursion relation in Lemma 5 and obtain that

�n � 1 − c′

n ln(n)
(A30)

for n − 5 logq(n) � 2 lnq(t ) where c′ can be fixed by the induction beginning. Indeed, assume that Eq. (A30) holds up to some
n � 2 logq(t ) + 4 logq(n + 1) + 4 logq(2) + 1 and n � 10. Then, using Lemma 5, we can compute

�n+1 � γn+1 + �n(1 − γn+1) � 1

n + 1
+ 2

t (n + 1)

q(n+1)/2−1
+

(
1 − c′

n ln(n)

)(
1 − 1

n + 1
− 2

t (n + 1)

q(n+1)/2−1

)
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= 1 − c′
(

1

(n + 1) ln(n)
− 2

t (n + 1)

n ln(n)q(n+1)/2−1

)

� 1 − c′

(n + 1) ln(n + 1)
− c′

(
ln(1 + 1/n)

(n + 1) ln(n) ln(n + 1)
− 2

t (n + 1)

n ln(n)q(n+1)/2−1

)
. (A31)

For the induction to be completed, we only need to show that the third summand is negative. We use that ln(1 + x) > x/2 for
x � 0.1:

ln(1 + 1/n)

(n + 1) ln(n) ln(n + 1)
� 1

2n(n + 1) ln(n)
� 2

t (n + 1)

n ln(n)q(n+1)/2−1
. (A32)

By taking the logarithm it is easy to see that the last inequality is equivalent to n � 2 logq(t ) + 4 logq(n + 1) + 4 logq(2) + 1.
We can easily find c′ from the condition

�n0 = 1 − c′

n0 logq(n0)
⇒ c′ = (1 − �n0 )n0 logq(n0). (A33)

In particular, we choose n0 = max{�2.03 logq(t )�, 6000}. This is to ensure that n � 2 logq(t ) + 4 logq(n + 1) + 4 logq(2) + 1.
For n � 6000 we have 0.01n � 4 logq(n + 1) + 4 logq(2) + 1 which leaves us with 0.99n � 2 logq(t ), or more simply n �
2.03 logq(t ).

In the regime n � O[ln(t )], we can apply Lemma 7. In order to do this, observe that with complete induction it is easy to
show that any function f (n) satisfying the recursion relation

f (n) � a + (1 − a) f (n − 1) ∀ n � n0 (A34)

with a < 1 also satisfies that there is a constant c such that

f (n) � 1 − c(1 − a)n ∀ n � n0. (A35)

Next we choose n � 4q2. Then, we have from Lemma 7

γn �
(

1 − 1

2q2

) 1
4

. (A36)

Combined we have

�n0 � 1 − c(q)

[
1 −

(
1 − 1

2q2

) 1
4

]n0

. (A37)

Plugging this into Eq. (A33) completes the proof. �

APPENDIX B: EXACT SOLUTION FOR THE CASE t = 2 AND n = 3

In this Appendix we derive an exact expression for the simplest nontrivial spectral gap with n = 3 and t = 2. As a corollary,
this establishes convergence of 1D random quantum circuits to approximate 2-designs in short depth.

Theorem (Restatement of Theorem 4). The second highest eigenvalue of the second moment operator for νbulk
3 is

∥∥M
(
νbulk

3 , 2
) − M(μH , 2)

∥∥
∞ = 1

2
+ q

2(q2 + 1)
. (B1)

Proof. As was observed in Ref. [7], we have∥∥M
(
νbulk

3 , 2
) − M(μH , 2)

∥∥
∞ = 1

2

∥∥(
P(1)

H ⊗ P(2)
H − P(3)

H

) + (
P(2)

H ⊗ P(1)
H − P(3)

H

)∥∥
∞. (B2)

Hence, we need to consider

im
(
P(1)

H ⊗ P(2)
H

) = span{vec 1, vec F} ⊗ span{vec 1⊗2, vec F⊗2}
∼= span

{
P(1)

+ , P(1)
−

} ⊗ span
{
P(2)

+ , P(2)
−

}
, (B3)

where

P(m)
± := 1

2 (1⊗m ± F⊗m) (B4)

are the projectors onto the symmetric and antisymmetric subspace, respectively. We can find the orthogonal complement of
span{1⊗3,F⊗3} by imposing the necessary and sufficient conditions

Tr(V 1) = 0 and Tr(V F) = 0 (B5)
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for a general V ∈ span{P(1)
+ , P(1)

− } ⊗ span{P(2)
+ , P(2)

− }. It can be easily checked that the following yields an orthonormal basis for
the orthogonal complement:

A12 :=
(

2

q3(q3 + 1)

) 1
2

[(
(q − 1)(q2 − 1)

(q + 1)(q2 + 1)

) 1
2

P(1)
+ ⊗ P(2)

+ −
(

(q + 1)(q2 + 1)

(q − 1)(q2 − 1)

) 1
2

P(1)
− ⊗ P(2)

−

]
,

B12 :=
(

2

q3(q3 − 1)

) 1
2

[(
(q − 1)(q2 + 1)

(q + 1)(q2 − 1)

) 1
2

P(1)
+ ⊗ P(2)

− −
(

(q + 1)(q2 − 1)

(q − 1)(q2 + 1)

) 1
2

P(1)
− ⊗ P(2)

+

]
. (B6)

Analogously, we find an orthonormal basis {A21, B21} for span{P(2)
+ , P(2)

− } ⊗ span{P(1)
+ , P(1)

− }. In particular, we have

Tr[A12B12] = Tr[B21A21] = 0. (B7)

Moreover, using the general characterizations

P(m+n)
+ = P(m)

+ ⊗ P(n)
+ + P(m)

− ⊗ P(n)
− , P(m+n)

− = P(m)
+ ⊗ P(n)

− + P(m)
− ⊗ P(n)

+ (B8)

repeatedly, we also find that

Tr[B12A21] = Tr[A12B21] = 0. (B9)

Again using Eq. (B8), we can compute

Tr[A12A21] = 2

q3(q3 + 1)

(
(q − 1)(q2 − 1)

(q + 1)(q2 + 1)
Tr

[
P(1)

+
]3 − 2 Tr

[
P(1)

−
]2

Tr
[
P(1)

+
] + (q + 1)(q2 + 1)

(q − 1)(q2 − 1)
Tr

[
P(1)

−
]2

Tr
[
P(1)

+
])

. (B10)

Inserting Tr[P(1)
+ ] = q(q + 1)/2 and Tr[P(1)

− ] = q(q − 1)/2 gives us

Tr[A12A21] = q

q2 + 1
. (B11)

Proceeding similarly for the overlap of the B operators, we find

Tr[B12B21] = − q

q2 + 1
. (B12)

We can now use these overlaps to compute the eigenvalues of the rank-4 matrix(
P(1)

H ⊗ P(2)
H − P(3)

H

) + (
P(2)

H ⊗ P(1)
H − P(3)

H

) = [vecA12(vecA12)† + vecB12(vecB12)†] + [vecA21(vecA21)† + vecB21(vecB21)†],

(B13)

by applying this operator to a general state

|φ〉 = a12vecA12 + b12vecB12 + a21vecA21 + b21vecB21.

(B14)

From a comparison of the coefficients for the eigenvalue equa-
tion[(

P(1)
H ⊗ P(2)

H − P(3)
H

) + (
P(2)

H ⊗ P(1)
H − P(3)

H

)]|φ〉 = λ|φ〉
(B15)

we obtain the following system of equations:

a12 + Tr[A12A21]a21 = λa12, (B16)

a21 + Tr[A12A21]a12 = λa21, (B17)

b12 + Tr[B12B21]b21 = λb12, (B18)

b21 + Tr[B21B12]b12 = λb21. (B19)

Combining Eqs. (B16) and (B17), we obtain

a21

a12
= a12

a21
= (λ − 1)

Tr[A12A21]
. (B20)

As λ and Tr[A12A21] are real, this implies

(λ − 1)

Tr[A12A21]
= ±1. (B21)

The same calculation can be done for Eqs. (B18) and (B19).
Finally, this leaves us with the following four eigenvalues:

λa,± = 1 ± Tr[A12A21], λb,± = 1 ± Tr[B12B21]. (B22)

Combined with Eqs. (B11) and (B12), this completes the
proof of Theorem 4. �

We have seen in the proof of Corollary 1 that the eigen-
values of the moment operator become 1, 1

2 , and 0 for large
q. This is consistent with Eq. (B22). An obvious question
is whether this calculation can be generalized for higher t .
Already for t = 3 this gets complicated by the fact that the
projectors onto irreducible representations do not in general
span the full group algebra of St . In fact, they span the center
of this algebra, which coincides with the full algebra only for
t = 2.
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APPENDIX C: KNABE BOUNDS ON SPECTRAL GAPS

For one-dimensional translational-invariant frustration-
free Hamiltonians, we can bound the spectral gap of the
system at arbitrary system size using a finite-size criteria,
namely, that the spectral gap of a small subsystem exceeds
a threshold. We refer to these as Knabe bounds.

In the following, let n denote the global system size and
m the local system size. We consider 1D translationally in-
variant Hamiltonians with periodic boundary conditions H p

n =∑n
i=1 Pi,i+1 and open boundary conditions Ho

n = ∑n−1
i=1 Pi,i+1.

The first criterion relates the gap of a finite-size open Hamil-
tonian to that of periodic Hamiltonian:

Theorem 6 (Knabe [15]). Let m � 3 and n > m. For a 1D
frustration-free Hamiltonian with periodic boundary condi-
tions we have that

�
(
H p

n

)
� m − 1

m − 2

(
�

(
Ho

m

) − 1

m − 1

)
. (C1)

This bound on the spectral gap was later improved to show
the following:

Theorem 7 (Gosset-Mozgunov [16]). Let m � 3 and n >

2m. For a 1D frustration-free Hamiltonian with periodic
boundary conditions we have that

�
(
H p

n

)
� 5

6

m2 + m

m2 − 4

(
�

(
Ho

m

) − 6

m(m + 1)

)
. (C2)

The finite-size criteria were generalized to bound the gap
of Hamiltonians with open boundary conditions.

Theorem 8 (Lemm-Mozgunov [36]). Let m � 3 and n �
2m. For a 1D frustration-free Hamiltonian with open bound-
ary conditions we have that

�
(
Ho

n

)
� F (m)

(
min

3�m′�m
�

(
Ho

m′
) − G(m)

m3/2

)
, (C3)

where F (m) and G(m) are known functions of the subsystem
size m, defined explicitly in [36].

In all three bounds, for the case of subsystem size m = 3,
the threshold becomes 1

2 and the bound on the spectral gap is
�(Hn) � 2(�(Ho

3 ) − 1
2 ). In Theorem 8, the two functions of

m are defined in Ref. [36], and asymptote to G(m) ∼ 2
√

6 and
F (m) ∼ 5√

6m
.

APPENDIX D: ORTHOGONAL RANDOM CIRCUITS
AND DESIGNS FOR O(d )

In this Appendix, we briefly generalize some of our results
to prove that random quantum circuits constructed out of 2-
local gates drawn randomly with respect to the Haar measure
on the orthogonal group O(q2) form approximate orthogonal
designs. The quantum information literature on orthogonal
designs and orthogonal RQCs is somewhat sparse. Reference
[37] studied (exact) orthogonal designs in the context of ran-
domized benchmarking and Ref. [38] computed the spreading
of a local operator under evolution by an orthogonal random
quantum circuit.

As the discussion closely follows that of unitary ran-
dom circuits and unitary designs, our exposition will be
succinct. For a probability distribution ν on the orthogo-
nal group O(d ), the t-fold channels are simply �(t )

ν (A) =

∫
O⊗t (A)(OT )⊗t dν(O). Similar to Definition 1, we define an

approximate orthogonal design as follows:
Definition 4 (Approximate orthogonal designs). A proba-

bility distribution ν on O(d ) is an ε-approximate orthogonal
t-design if the t-fold channels obey∥∥�(t )

ν − �(t )
μO

∥∥

 � ε

dt
, (D1)

where μO denotes the Haar measure on the orthogonal group.
Furthermore, we say a probability distribution ν is a (relative)
ε-approximate orthogonal t-design if (1 − ε)�(t )

ν � �(t )
μO

�
(1 + ε)�(t )

ν .
The t th moment operators for a probability distribution ν

on the orthogonal group O(d ), defined as the vectorization of
the t-fold channels

M(ν, t ) := vec
(
�(t )

ν

) =
∫

O⊗2t dν(O), (D2)

have a second highest eigenvalue given as the operator norm
of the difference in moment operators

gO(ν, t ) := ∥∥M(ν, t ) − M(μO, t )
∥∥

∞ (D3)

and a spectral gap given as 1 − gO(ν, t ). Due to the left and
right invariance of the Haar measure, it follows that the or-
thogonal moment operator is a projector, and thus that gO(ν, t )
can be amplified as gO(ν∗k, t ) � gO(ν, t )k . The same relation
of the second highest eigenvalue to the approximate design
condition holds in the orthogonal case, namely, for some
probability distribution ν if gO(ν, t ) � ε/d2t , then ν is an
ε-approximate orthogonal t-design.

Consider local random quantum circuits on a 1D chain
of n qudits with local dimension q, where we apply a 2-site
orthogonal gate drawn from O(q2) to a nearest-neighbor pair
of qudits at each time step. The convergence of orthogonal
RQCs to approximate orthogonal designs again follows from
a bound on the spectral gap of the moment operators.

Theorem 9 (Orthogonal spectral gaps for large q ). Local
orthogonal random quantum circuits on n qudits have a
second highest eigenvalue bounded as

gO(νn, t ) � 1 − 1

3n
(D4)

for local dimensions q � 8t2, and for all n � 4 and t � 1.
As the relation between the spectral gap of the moment

operators and the t-fold channels is the same as in the unitary
case, it is then an immediate corollary that local orthogonal
random quantum circuits form approximate orthogonal de-
signs at large q. Moreover, the detectablity lemma (Lemma 4)
extends the result to brickwork circuits comprised of random
orthogonal gates.

Corollary 4. For any t � 1 and n � 4, and for local dimen-
sion q � 8t2, it holds that

(1) local orthogonal random quantum circuits of depth
3n[2nt ln(q) + ln(1/ε)] are ε-approximate orthogonal t-
designs;

(2) brickwork orthogonal random quantum circuits of
depth 26[2nt ln(q) + ln(1/ε)] are ε-approximate orthogonal
t-designs.

In order to prove Theorem 9, we can express the spectral
gap of the orthogonal moments operators as the gap of a
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frustration-free local Hamiltonian. First, we define a conve-
nient shorthand for the orthogonal Haar projector on m qudits
P(m)

O := M(μO, t ). Now consider the following Hamiltonian
consisting of local nearest-neighbor interaction terms

HO
n,t =

∑
i

Pi,i+1

with Pi,i+1 := 1 − 1[1,i−1] ⊗ P(2)
O ⊗ 1[i+2,n]. (D5)

This 1D translationally invariant Hamiltonian is frustration
free, where the zero-energy ground states are generalizations
of those built from permutations as in the unitary case.

First, let M2t denote the set of all pair partitions on 2t
elements. A pair partition σ ∈ M2t is a partition of the set
{1, . . . , 2t} into pairs, written as {{σ (1), σ (2)}, · · · , {σ (2t −
1), σ (2t )}, where σ (2n − 1) < σ (2n) and σ (1) < σ (3) <

· · · < σ (2t − 1). For example, the set of pair partitions of four
elements M4 contains three elements

{{1, 2}, {3, 4}}, {{1, 4}, {2, 3}}, {{1, 3}, {2, 4}}. (D6)

In general, M2t contains (2t )!/(2t t!) elements. The set of pair
partitions can be simply realized as a subset of the symmetric
group S2t . Moreover, pair partitions are representatives of the
left cosets of the hyperoctahedral group in the symmetric
group.

In the 2t-fold space (Cq)⊗2t , let |�nm〉 be a maximally
entangled state on two tensor factors |�nm〉 = 1√

q

∑
i |inim〉.

Given a pair partition σ ∈ M2k , we construct a state as

|ϕσ 〉 :=
t⊗

j=1

∣∣�σ (2 j−1),σ (2 j)
〉
. (D7)

For any σ ∈ M2t , the action of the projector is PO |ϕσ 〉 = |ϕσ 〉.
It then follows that the ground states of the Hamiltonian
Hn,t are the zero-energy states |ϕσ 〉⊗n for all σ ∈ M2t . The
span{|ϕσ 〉} is the zero-energy eigenspace of the Hamiltonian,
and where dimker Hn,t = (2t )!/(2t t!). This can be seen as a
consequence of Schur-Weyl duality for the orthogonal group,
given by the action of the Brauer algebra which has a basis
formed by pair partitions; see [39] and references therein.

Given two pair partitions σ, τ ∈ M2t , we can define an
inner product between them as follows. First, define a
graph n(σ, τ ) with vertices {1, . . . , 2t} and edges {σ (2 j −
1), σ (2 j)}t

i=1 as well as {τ (2 j − 1), τ (2 j)}t
i=1. Let �(σ, τ ) be

the number of connected components of the graph n(σ, τ ).
This allows us to write the Hilbert-Schmidt inner product be-
tween two states as 〈ϕσ |ϕτ 〉 = d�(σ,τ ). Note that the diagonal
elements with σ = τ will always be dt .

We define the frame operator for the (nonorthonormal)
basis of states {|ϕσ 〉 , σ ∈ M2t },

S′ =
∑

σ∈M2k

ϕσ , (D8)

where ϕσ := |ϕσ 〉〈ϕσ |, and prove the following Lemma:
Lemma 9. For d � t2, the Haar projector PO on the orthog-

onal group O(d ) obeys the following bound:

‖PO − S′‖∞ � 2t2

d
. (D9)

Proof. We start by showing that, similar to the almost or-
thogonality of permutations in the unitary case, the states |ϕσ 〉
are nearly orthogonal at large dimension, by upper bounding
the sum over inner products of the states

∑
σ |〈ϕσ |ϕτ 〉|. First,

we note that the sum can be expressed in terms of the inner
product between pair partitions as

∑
σ∈M2t

|〈ϕσ |ϕτ 〉| = 1

dk

∑
σ∈M2t

d�(σ,τ ), (D10)

where �(σ, τ ) is the number of connected components in the
graph defined by σ and τ (and is equivalently the coset type of
the product permutation). Reference [[40], Eq. (4.5)] gave an
expression for d�(σ,τ ) in terms of the so-called zonal spherical
functions and zonal polynomial (see [[41], Sec. VII] for a
review). Assuming d � t , for two pair partitions σ, τ ∈ M2t

we can write

d�(σ,τ ) = 2t t!

(2t )!

∑
λ�t

f2λZλ(d )ωλ(σ−1τ ) with

Zλ(d ) =
∏

(i, j)∈λ

(d + 2 j − i − 1), (D11)

where we sum over integer partitions λ of t , f2λ is the dimen-
sion of the irrep associated to 2λ, ωλ(σ ) is the zonal spherical
function, expressible as a sum of irreducible characters of
S2t (see [41]), and where the zonal polynomial Zλ(1d ) is a
symmetric polynomial defined above, with the product taken
over the coordinates of the Young diagram of λ. Using an
orthogonality relation between the functions ωλ ([[40], Eq.
(5.4)]), it follows that 2t t!

(2t )!

∑
σ∈M2t

ωλ(σ−1τ ) = δλ,{t}, i.e., sum
is nonzero only for the irrep labeled by {t}. Computing the
sum in Eq. (D10), we find

∑
σ∈M2t

|〈ϕσ |ϕτ 〉| = 1

dt

∑
σ∈M2t

d�(σ,τ ) = 1

dt

t∏
j=1

[d + 2( j − 1)].

(D12)

Taking t2 � d , it then follows that for any fixed-pair partition
τ ∈ M2t , ∑

σ∈M2t

|〈ϕσ |ϕτ 〉| � 1 + 2t2

d
. (D13)

With this bound on the almost orthogonality of the ground
states, the remainder of the proof closely follows [[4], Lemma
17]. Defining the synthesis operator B′ := ∑

σ |σ 〉〈ϕσ | for the
orthonormal basis {|σ 〉} of span{|ϕσ 〉}, where B′†B′ = S′, and
noting that B′†B′ and B′B′† have the same eigenvalues, we can
then bound the operator norm difference of S′ and the Haar
projector as

‖S′ − PO‖∞ =
∥∥∥∥∥B′B′† −

∑
σ

|σ 〉〈σ |
∥∥∥∥∥

∞

= max
σ

∑
τ �=σ

|〈ϕσ |ϕτ 〉| � 2t2

d
. (D14)

�

022417-15



JONAS HAFERKAMP AND NICHOLAS HUNTER-JONES PHYSICAL REVIEW A 104, 022417 (2021)

Using Lemma 9, we can proceed with a bound on the
orthogonal spectral gap at large local dimension, completely
analogous to Theorem 3.

Proof of Theorem 9. Consider the probability distribution
νbulk

3 defined as the application of a single Haar random or-
thogonal gate from O(q2) on a random nearest-neighbor pair
of 3 qudits, i.e., either on qudits 1 and 2 or 2 and 3. We
want to bound the operator norm of the difference of moment

operators

M
(
νbulk

3 , t
) − M(μO, t ) = 1

2

(
P(2)

O ⊗ 1 + 1 ⊗ P(2)
O

) − P(3)
O .

(D15)

Using the operator B′ := ∑
σ |σ 〉〈ϕσ | for the orthonormal ba-

sis {|σ 〉} of span{|ϕσ 〉}, we apply Lemma 9 to show

∥∥∥M
(
νbulk

3 , t
) − M(μO, t )

∥∥∥
∞

� 1

2

∥∥∥∥∑
σ

(
ϕ⊗2

σ ⊗ 1 + 1 ⊗ ϕ⊗2
σ

) − 2ϕ⊗3
σ

∥∥∥∥
∞

+ 2t2

q2
+ 2t2

q3

� 1

2
‖B′†B′‖∞ max

σ

∥∥ϕσ ⊗ 1 + 1 ⊗ ϕσ − 2ϕσ ⊗ ϕσ

∥∥
∞ + 2t2

q2
+ 2t2

q3

� 1

2

(
1 + 2t2

q

)
+ 2t2

q2
+ 2t2

q3
. (D16)

Taking q � 8t2, we then find that for any t � 1

∥∥∥M
(
νbulk

3 , t
) − M(μO, t )

∥∥∥
∞

� 2

3
. (D17)

We can reexpress the bound on the norm of the difference
in moment operators for orthogonal RQCs as a bound on the
spectral gap of the frustration-free Hamiltonian

�
(
HO,bulk

3,t

)
� 2

3
. (D18)

Using the Knabe bound in Lemma 2 for subsystem size m =
3, we conclude that

�
(
HO

n,t

)
� 2

(
2

3
− 1

2

)
= 1

3
. (D19)

As gO(νn, t ) = 1 − �(HO
n,t )/n, the claim then follows. �

As we discussed, [4] proved a lower bound on the spectral
gap using the path-coupling method, specifically a version
for random walks on the unitary group [19]. We conclude
by noting that path coupling in the orthogonal case should
also give an exponentially small (albeit t-independent) lower
bound on the spectral gap of �(HO

n,t ), which, combined with
the Nachtergaele method, then would prove that local orthog-
onal random quantum circuits form approximate orthogonal
t-designs in O[poly(t )n2] depth. We leave this investigation to
future work.

Numerical gaps for orthogonal RQCs

By explicitly constructing the orthogonal moment operator
PO in the Weingarten formalism, as described in Appendix
E, we can then numerically determine the spectral gaps for
orthogonal RQCs. Applying Knabe bounds for both periodic
and open boundary conditions, and using the detectability
lemma to extend to brickwork circuits, we find convergence

to ε-approximate orthogonal designs in the following circuit
depths:

Circuit architecture 2-designs 3-designs
Local ORQCs 7n(4n + ln 1/ε) 8n(6n + ln 1/ε)

w/ PBC
Local ORQCs 9n(4n + ln 1/ε) 9n(6n + ln 1/ε)

w/ OBC
Brickwork ORQCs 55(4n + ln 1/ε) 66(6n + ln 1/ε)

w/ PBC
Brickwork ORQCs 73(4n + ln 1/ε) 73(6n + ln 1/ε)

w/ OBC

As the set of pair partitions M2t grows substantially faster
than permutations, numerical determination of the spectral
gaps for higher moments quickly became computationally
intractable. We were able to compute gaps for the fourth
moment, but none that exceeded the Knabe threshold, and
thus we just report design depths for the second and third
moments. We further note that, unlike in the unitary case,
the smallest nontrivial second moment gap �(HO,bulk

n=3,t=2) did
not give optimal design depths for all n, and lower bounds on
�(HO

n,t=2) improved as we increased the subsystem size.
We also computed the spectral gaps for the simplest non-

trivial moment operator, with n = 3 and t = 2, for varying
local dimensions (q = 2 up to q = 6). In analogy to Theorem
4, we subsequently conjecture the following:

Conjecture 1 (Exact orthogonal gaps for n = 3 and t = 2, 3).
The spectral gaps for the bulk orthogonal Hamiltonian, where
HO,bulk

n,t = ∑n−1
i=1 PO

i,i+1, for n = 3 and t = 2 and 3 are given by

�
(
HO,bulk

n=3,t=2,3

) = 1 − q(q + 2)

(q + 1)(q2 + 2)
. (D20)

Combined with the Knabe bound, this would imply a sim-
ilar result as in Corollary 2, efficient orthogonal 2-designs on
n qudits.

APPENDIX E: DETAILS ON NUMERICS

In this Appendix, we summarize some details on how
numerics for evaluating the spectral gaps were preformed. To
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compute the gaps we first construct the local moment operator
P(2)

H in the Weingarten formalism [39,42]. We can write the
moment operator on n qudits as

P(n)
H =

∫
U ⊗t ⊗ U

⊗t
dμH (U )

=
∑

π,σ∈St

Wg(π−1σ, qn) |ϕπ 〉〈ϕσ |⊗n , (E1)

where again |ϕπ 〉 := (1 ⊗ r(π )) |�〉, r(π ) is the standard rep-
resentation of the permutation, and |�〉 is the maximally
entangled state on (Cq)⊗t ⊗ (Cq)⊗t . The unitary Weingarten
function Wg(π, d ) is a function of permutations π ∈ St and
admits an expansion in terms of characters of the symmetric
group [39] as follows:

Wg(π, d ) = 1

t!

∑
λ�t

�(λ)�d

fλ χλ(π )

cλ(d )
, where

cλ(d ) :=
∏

(i, j)∈λ

(d + j − 1) (E2)

and where we sum over integer partitions of t , restricting
to partitions of length �(λ) � d , fλ is the dimension of the
irreducible representation labeled by λ, and χλ(π ) is the irre-
ducible character of λ on the permutation π ∈ St . Lastly, cλ(d )
is a polynomial (related to the Schur polynomial) where the
product above is taken over coordinates of the Young diagram
corresponding to λ.

Using the above formulation, we can numerically con-
struct the moment operators P(2)

H by computing the unitary
Weingarten functions, from which we can then construct the
Hamiltonian Hn,t . Doing so, we can numerically compute

the first few eigenvalues of the resulting sparse matrix using
power methods. Specifically, the Lanczos algorithm effi-
ciently finds the eigenvalues of interest and allows us to
determine the spectral gap of the Hamiltonian.

Numerics for the orthogonal gaps can also be done using
the Weingarten formalism for the orthogonal group [39,40].
The orthogonal moment operator on n qudits can be written
as

P(n)
O =

∫
O⊗2t dμH (O) =

∑
σ,τ∈M2t

WgO(σ−1τ, qn) |ϕσ 〉〈ϕτ |⊗n ,

(E3)

where we sum over pair partitions and |ϕσ 〉 are the states
defined in the previous Appendix as representations of pair
partitions acting on maximally entangled states in the 2t-fold
space. In the equation above, WgO(σ, d ) is the orthogonal
Weingarten function on a pair partition σ ∈ M2t . Like in the
unitary case, the orthogonal Weingarten function admits an
expansion in terms of characters [40] as

WgO(σ, d ) = 2t t!

(2t )!

∑
λ�t

�(λ)�d

f2λ ωλ(σ )

Zλ(d )
, (E4)

where again we sum over integer partitions of t , f2λ is the
dimension of the 2λ irrep of S2t , ωλ(σ ) is the zonal spheri-
cal function, and Zλ(d ) is polynomial in d , both defined in
Appendix D.

Again, we can numerically construct the local orthogonal
moment operators P(2)

O by computing the orthogonal Wein-
garten functions, and then the bulk Hamiltonian. Using sparse
matrix methods to find the first few eigenvalues gives the
desired numerical values of the spectral gaps.
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