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Linear semi-infinite programming approach for entanglement quantification
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We explore the dual problem of the convex roof construction by identifying it as a linear semi-infinite
programming (LSIP) problem. Using the LSIP theory, we show the absence of a duality gap between primal
and dual problems, even if the entanglement quantifier is not continuous, and prove that the set of optimal
solutions is nonempty and bounded. In addition, we implement a central cutting-plane algorithm for LSIP to
quantify entanglement between three qubits. The algorithm has global convergence property and gives lower
bounds on the entanglement measure for nonoptimal feasible points. As an application, we use the algorithm
for calculating the convex roof of the three-tangle and π -tangle measures for families of states with low and
high ranks. Since the π -tangle measure quantifies the entanglement of W states, we apply the values of the two
quantifiers to distinguish between the two different types of genuine three-qubit entanglement.
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I. INTRODUCTION

Quantum entanglement is a special type of correlation of
quantum systems with two or more parts, which admit global
states that cannot be written as a product of the states of
the parts. The interest in this phenomenon has origin in its
importance in fundamental questions of quantum mechanics,
including the Einstein-Podolski-Rosen paradox [1] and nonlo-
cality [2,3], in its relationship with other physical phenomena
such as super-radiance [4,5] and superconductivity [6,7], and
in technological applications in the fields of quantum comput-
ing, quantum information [8,9], and quantum metrology [10].
As a consequence, the production, manipulation, and quan-
tification of entanglement are permanent topics of scientific
interest. In particular, the quantification of entanglement can
be accomplished using several different types of entanglement
measures that are generally much simpler to define for pure
states than for mixed states. Fortunately, the construction of a
measure for mixed states can be done through the convex roof
of an entanglement monotone [11]. However, the calculation
of a convex roof is computationally expensive for high-rank
states, except for a few cases whose analytical solution is
known [12,13].

Most numerical algorithms for the convex roof calculations
work to find the optimal pure state decomposition of the input
state [14–18]. Although this approach can be very efficient
for low-rank states, the parameter space of the optimization
problem grows quickly with rank and has a maximal number
of parameters of ∼2n3 [19], where n is the dimension of the
system. Also, these methods usually lack global convergence,
which means that they can guarantee only upper bounds on the
optimal value. Another method obtains a sequence of lower
bounds by solving semidefinite programming problems, but
only for measures that are polynomials of expectation values
of observables for pure states [20]. A promising approach,
with fewer optimization parameters, consists of solving the
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dual problem of the convex roof optimization task [21].
Following this idea, a minimax algorithm that provides a
verifiable globally optimal solution or a lower bound on the
convex roof measure was proposed for the dual problem [19].

The concept of genuine multipartite entanglement, which
applies to systems with three or more parts, is a type of entan-
glement that cannot be described as a correlation in a bipartite
partition only [8,22]. It is present in many quantum algorithms
[23,24], cryptographic protocols [25–27], and quantum phe-
nomena [28–30]. As a resource, it is essential to be able to
quantify it by quantifiers like the three-tangle [31], the gener-
alization of the three-tangle by means of hyperdeterminants
[32], the π -tangle [33], and others [34]. Analytical formu-
las for these measures are known only for special families
of states, which means that a numerical approach is usually
required.

Here, we explore the dual problem of the convex roof op-
timization procedure and show that it is a linear semi-infinite
programming (LSIP). We also prove some properties of the
optimization problem using the LSIP theory and describe the
characteristics of a central cutting-plane algorithm (CCPA)
adapted to solve the dual problem. In addition, to show how
this method performs in practice, we implement the algorithm
in the MATLAB language and calculate the multipartite en-
tanglement quantifiers for two families of three-qubit states.
The selected measures are the three-tangle and the π -tangle,
both entanglement monotones that quantify genuine tripartite
entanglement. We choose a mixture of Greenberger-Horne-
Zeilinger (GHZ) and W states as one of the families, and the
generalized Werner states, a class of states with full rank, as
the other one. Finally, we numerically calculate the quanti-
fiers and compare them with analytical values available in the
literature.

II. BASIC CONCEPTS

A. Three-tangle

Concurrence is an entanglement measure for the state ρ

of two qubits defined as C(ρ) ≡ max{0, λ1 − λ2 − λ3 − λ4},

2469-9926/2021/104(2)/022413(7) 022413-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2724-5852
https://orcid.org/0000-0002-3192-392X
https://orcid.org/0000-0003-1733-6937
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.022413&domain=pdf&date_stamp=2021-08-16
https://doi.org/10.1103/PhysRevA.104.022413


CARRIJO, CARDOSO, AND AVELAR PHYSICAL REVIEW A 104, 022413 (2021)

where λ1, . . . , λ4 are the eigenvalues of the matrix
√√

ρρ̃
√

ρ

in decreasing order and ρ̃ ≡ (σy ⊗ σy)ρ∗(σy ⊗ σy), with σy

as a Pauli spin matrix [35]. To make the notation more
economical, we symbolize a pure state of set of density
matrices � as [ψ] ≡ |ψ〉〈ψ |, where |ψ〉 is a normalized
vector of the Hilbert space H of the system. Then, for a
state |ψ〉 of three qubits with partition A(BC), the con-

currence is defined as CA(BC)([ψ]) ≡
√

2[1 − Tr(ρ2
A)], where

ρA ≡ TrBC ([ψ]). For pure states, the three-tangle τ is then
defined as τ ([ψ]) = C2

A(BC)([ψ]) − C2(ρAB) − C2(ρAC ), where
ρAB ≡ TrC ([ψ]) and ρAC ≡ TrB([ψ]) [31]. It is a measure of
genuine three-qubit entanglement and it is defined, for mixed
states, as the convex roof in relation to the set of pure states E :

τ (ρ) ≡ inf
{pk ,|ψk〉}

∑
k

pkτ ([ψk]), (1)

such that
∑

k pk[ψk] = ρ, where
∑

k pk = 1, pk � 0, [ψk] ∈
E , and the infimum is taken over all possible pure state de-
compositions of ρ.

The three-tangle has analytical expressions for some fami-
lies of states. For example, the families ρp ≡ p[GHZ] + (1 −
p)[W] [12,13] and ρ ′

p ≡ p[GHZ] + (1 − p)1/8 [36], where

|GHZ〉 ≡ (|000〉 + |111〉)/
√

2 and |W 〉 ≡ (|001〉 + |010〉 +
|100〉)/

√
3 (namely GHZ and W states, respectively). Formu-

las are available in Appendix B.
For future reference, we introduce the definitions of three

classes of three-qubit mixed states: B, W, and GHZ [37]. The
class B of biseparable states is the set of density matrices
that can be expressed as a convex sum of tensor products of
qubit states with two-qubit states. To define the W class, we
need the concept of W-type states, which are those that can
be written as λ0|000〉 + λ1|100〉 + λ2|101〉 + λ3|110〉, where
λ0 � 0 and λk > 0 for k > 0 [38]. So, the class W is the set
of states that are a convex sum of W-type states or biseparable
states. Finally, the class GHZ is the set of all mixed three-qubit
states.

B. π-tangle

An important quantifier of genuine three-qubit entangle-
ment for pure states is called π -tangle, or three-π [33].
It is based on negativity [39], an entanglement monotone
given by NAB(ρ) ≡ ‖ρTA‖1 − 1, where ‖. ‖1 is the trace norm,
ρTA is the partial transpose of ρ in relation to the sub-
system A, and the multiplicative constant “1/2” has been
removed. Let [ψ] ∈ E be a state of a three-qubit system ABC
and πA([ψ]) ≡ N 2

A(BC)([ψ]) − N 2
AB(ρAB) − N 2

AC (ρAC ), where
NA(BC)([ψ]) = ‖[ψ]TA‖1 − 1. Functions πB and πC are de-
fined analogously. The π -tangle quantifier is then defined as
π ([ψ]) ≡ [πA([ψ]) + πB([ψ]) + πC ([ψ])]/3.

As proved in Ref. [33], the π -tangle is an entanglement
monotone and vanishes for product state vectors, qualifying
it as a measure of entanglement [40]. Also, it is an upper
bound on the three-tangle: π ([ψ]) � τ ([ψ]), implying that
it is strictly positive for the states of the GHZ\W class [38],
which is the GHZ class with the exception of the states of the
W class [37]. Moreover, it is also strictly positive for states of
the W class with the form |ψ〉 = α|100〉 + β|010〉 + γ |001〉
and, according to numerical calculations [33], this is valid for

other pure states of the W\B class, which is the W class with
the exception of the states of the B class. For mixed states,
the convex roof of the π -tangle was calculated only for the
mixture ρp of W and GHZ states [41].

C. Convex roof duality

Before talking about the dual problem of the convex roof
procedure, let us introduce some notation and definitions. Let
R(E ) be the set of all functions f : E → R that have finite
support. This is a kind of “generalized sequence” space, with
only finite “sequences” of real numbers indexed by the set E .
Also, the set R(E ) is a vector subspace of the space of real
functions with E as domain. Defining E as a non-negative
continuous entanglement monotone for pure states, its convex
roof E∪ is given by the optimization problem P:

min
f ∈R(E )

∑
[ψ]∈E

f ([ψ])E ([ψ]),

subject to
∑

[ψ]∈E
f ([ψ])[ψ] = ρ, f � 0. (2)

Equation (2) means that the optimization goal of problem P,
called the primal problem, is to minimize the first sum, satisfy-
ing the conditions imposed by the equality and the inequality
presented. Associated with P, there is the dual problem, which
provides a lower bound to the optimal value of P. A dual
problem can be obtained in several ways from the primal one,
but the most typical is obtained through the construction of the
Lagrangian of P and its subsequent minimization, resulting in
the dual D [21,42]:

sup
X∈H

− Tr(ρX ),

subject to E ([ψ]) + Tr([ψ]X ) � 0, ∀[ψ] ∈ E, (3)

with H as the space of n-dimensional Hermitian matrices. As
D has linear objective function, a finite number of variables
(setting a base in H , we have n2 real variables) and an infinite
number of linear inequalities, the problem is a LSIP [43].

III. THE LSIP APPROACH

A. Properties of P and D

We are going to reformulate the problem D according to the
eigendecomposition of ρ = ∑r

k=1 λk[φk], where r is the rank
of ρ. If |φ1〉, . . . , |φr〉 are orthonormal eigenvectors of ρ, then
any other pure state decomposition ρ = ∑

l pl [ψl ] satisfies
|ψl〉 ∈ Hρ ≡ span{|φ1〉, . . . , |φr〉},∀l , where span(S) is the
linear span of the set S. Defining Eρ ≡ {[ψ] ∈ E : |ψ〉 ∈ Hρ}
and Hρ as the set of Hermitian operators on Hρ , the reformu-
lation of D is then given by Dρ :

− inf
X∈Hρ

Tr(ρX ),

subject to E ([ψ]) + Tr([ψ]X ) � 0, ∀[ψ] ∈ Eρ. (4)

In Appendix A, we proved some theoretical properties of
problems P and Dρ in order to allow us to solve problem P by
solving problem Dρ using the algorithm described in the next
section. These properties are as follows:
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(1) There is no duality gap between P and Dρ , even for a
discontinuous E .

(2) There exists an optimal solution X ∗
ρ of Dρ .

(3) The set of all optimal solutions F ∗
ρ of Dρ is bounded.

By “no duality gap,” we mean that the optimal values v(P)
and v(Dρ ) of problems P and Dρ , respectively, are equal. So,
we can focus on the solution of Dρ instead of P. To verify if a
solution of problem Dρ is optimal, we can use one of several
known optimality conditions, many of which are described by
Theorem 7.1 of Ref. [44]. These conditions are applied on
X and, if they are satisfied, then Tr(ρX ) = v(Dρ ). A common
one is the Karush-Kuhn-Tucker sufficient condition, described
by the relation ρ ∈ A(X ), where A(X ) ≡ cone(Eρ (X )) =
{∑n

k=1 αk[ψk] : [ψk] ∈ Eρ (X ), αk � 0, n ∈ N} and Eρ (X ) ≡
{[ψ] ∈ Eρ : E ([ψ]) + Tr([ψ]X ) = 0}. Since Tr(ρ) = 1, this
condition can be reformulated as ρ ∈ conv(Eρ (X )), where
conv(Eρ (X )) is the convex hull of Eρ (X ), which is the global
optimality condition described in Ref. [19,45].

The linear semi-infinite system of Dρ is defined as a set
of inequalities given by σρ ≡ {E ([ψ]) + Tr([ψ]X ) � 0, ψ ∈
Eρ}, where the set of solutions of σρ is the feasible set Fρ .
By Eq. (4), any valid solution of Dρ must be a feasible point,
which is a point that belongs to Fρ . There is a relationship
between feasible and optimal points of Dρ and the so-called
entanglement witnesses [21]. An entanglement witness Y is a
Hermitian operator that is not positive semidefinite and sat-
isfies Tr(ρsepY ) � 0 for any separable state ρsep [46]. For the
definition of an optimal witness, we use an arbitrary bounded
set C and define the set M ≡ cl(W ∩ C), where cl(W ∩ C) is
the closure of W ∩ C and W is the set of all entanglement
witnesses. Then, an entanglement witness Y ∗ is ρ optimal
if Tr(ρY ∗) = minY ∈M Tr(ρY ) [21,47]. If E ([ψ]) = 0 for any
separable state |ψ〉, it can be verified that any optimal solution
X ∗

ρ �= 0 of problem Dρ is a ρ-optimal entanglement witness
(the set C can be any bounded set such that F ∗

ρ ⊆ C). In addi-
tion, any feasible X such that Tr(ρX ) < 0 is an entanglement
witness.

B. Central cutting-plane algorithm

To numerically solve a LSIP problem, several methods
are available, mostly classified into five categories: discretiza-
tion methods, local reduction methods, exchange methods,
simplex-like methods, and descent methods, ordered in de-
creasing order of efficiency according to Ref. [44]. Besides
these approaches, other deterministic types of algorithms and
uncertain LSIP methods are discussed in a recent review of the
field [48]. Because of its efficiency, we choose the CCPA [49]
to tackle problem Dρ , which is classified as a discretization
method. For the sake of simplicity, we work with the first
version of the algorithm, while subsequent improvements are
found in Part IV of Ref. [44] and in Ref. [50]. The CCPA
has the advantage of having the property of global conver-
gence, unlike the reduction procedure and almost all methods
based on the primal problem P, such as the usual algorithms
implemented for calculating the convex roof [14–18]. Also,
it generates a sequence of feasible points that converges to
an optimal value or to a limit point of an optimal value,
implying that a convergent sequence of lower bounds is
generated.

In order to successfully employ the CCPA, some conditions
need to be satisfied by Dρ . According to Ref. [49], we need to
restrict the feasible set Fρ to the set F ′

ρ ≡ Fρ ∩ C, where C ⊂
Hρ is a compact convex set. Since F ∗

ρ is bounded, there exists
δ > 0 such that F ∗

ρ ⊆ Bδ , where Bδ ≡ {X ∈ Hρ : ‖X‖ � δ},
with ‖. ‖ as the operator norm, is a compact convex set. As a
consequence, choosing an orthonormal basis {Z1, . . . , Zr2} for
Hρ , we have the following proposition, whose proof is given
in Appendix C:

Corollary 1. Let {Z1, . . . , Zr2} be an orthonormal basis of
Hρ , r = rank(ρ) and λ1 � · · · � λr the eigenvalues of ρ. If
X ∈ F ∗

ρ , then x′
m ≡ |Tr(ZmX )| � r(r − 1)λr/λ1, for all m ∈

{1, . . . , r2}.
Other nontrivial conditions are the existence of a nonopti-

mal Slater point X and the continuity of E . A Slater point X
is a point that satisfies E ([ψ]) + Tr([ψ]X ) > 0,∀[ψ] ∈ Eρ .
Any positive definite matrix X ∈ Hρ satisfies this condition,
since E is non-negative. Also, if X is optimal, there exists
α > 0 such that αX is nonoptimal. So, there exists a nonopti-
mal Slater point for problem Dρ .

To make the optimization problem easier to solve, we use
the result of Corollary 1 and replace the problem Dρ by the
problem Dc:

− inf
x∈Rr2

〈c, x〉,

subject to Ẽ (ψ ) + 〈ψ, x〉 � 0, ∀ψ ∈ Ẽc,

|xm| � r(r − 1)
λr

λ1
, 1 � m � r2, (5)

where X = ∑
k xkZk , ρ = ∑

k ckZk , ψ ≡ (ψ1, . . . , ψr2 ), x ≡
(x1, . . . , xr2 ), c ≡ (c1, . . . , cr2 ), Ẽc ≡ {ψ ∈ Rr2

:
∑

k ψkZk ∈
Eρ}, and Ẽ (ψ ) ≡ E ([ψ]). To simplify the discussion of the
CCPA, we omit the deletion rules in the pseudocode present
in Ref. [49], as they are not necessary for the convergence of
the algorithm. The pseudocode of the CCPA in Ref. [49], for a
tolerance ε > 0, can be found described in Appendix D. The
algorithm always terminates and, dropping the tolerance re-
quirement, it generates a sequence of feasible points {w(k)}∞k=0
that has limit points which are optimal, meaning that the
CCPA has global convergence [49].

IV. NUMERICAL CALCULATIONS FOR π-TANGLE
AND THREE-TANGLE

We implement the CCPA in MATLAB for numerical calcu-
lations and use it to calculate the π -tangle and the three-tangle
for two families of states: ρp and ρ ′

p. We also compare
the numerical calculations with the analytical formulas avail-
able in the literature and explicitly described in Appendix B.
The results for the states ρp expressed in Fig. 1 show good
agreement with the analytical curves. With a tolerance ε =
10−3, we achieve these results in a few minutes using a
common notebook. For the states ρ ′

p, setting ε = 10−5, the
numerical three-tangle is slightly lower than the exact nonzero
values, according to Fig. 2. This agrees with the fact that the
CCPA gives a lower bound on the convex roof when it finds a
feasible suboptimal solution. As the CCPA has global conver-
gence, one can generate a larger sequence of feasible points
that gives values closer to the exact one. For ρ ′

p, sequences of
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FIG. 1. Three-tangle and π -tangle calculated for states ρp. Sym-
bols (boxes and circles) and continuous lines represent numerical and
analytical values, respectively.

no more than 12 feasible solutions were generated for each
value of p and each calculation took a few hours. Since ρ ′

p
is a rank-8 family of states, this higher computational cost
is justified as ρp has only rank 2. The calculation time for
each state was similar for both measures. So, from the results
presented and the analysis of the algorithm, the calculation
of convex roof measures, whose restriction for pure states is
of similar complexity to those described here and for systems
with more dimensions or subsystems, will only consume sig-
nificantly more time for states of rank greater than 8.

The three-tangle and π -tangle measures can be used to dis-
criminate among the classes B, W\B, and GHZ\W [33]. For
the family of states ρp, the analytical results in Refs. [12,13],
and described in Appendix B, show that ρp belongs to the
W\B class for p � 0.627 and to the GHZ\W class for higher
values of p. As shown by Fig. 1, the positive values of the
three-tangle indicate the GHZ\W class, whereas the positive
values of the π -tangle in the region where the three-tangle is
zero show that the state belongs to the W\B class. The graph
around the class transition point, calculated with a tolerance
ε = 10−5 and depicted in Fig. 3, shows a good agreement
between the analytical and numerical results. In the case of
the family ρ ′

p, it belongs to the B class for p � pB ≡ 3/7 ≈
0.429, to the W\B class for 3/7 < p � pW ≈ 0.696, and to
the GHZ\W class for p > pW [51,52]. The plot in Fig. 4
shows that the class transition in pB occurs between p = 0.43

FIG. 2. Three-tangle and π -tangle calculated for states ρ ′
p. Sym-

bols (boxes and circles) and the continuous line represent numerical
and analytical values, respectively.

FIG. 3. Three-tangle calculated for states ρp. Symbols (circles)
and the continuous line represent numerical and analytical values,
respectively.

and p = 0.44, which is only slightly higher than pB, which is
expected since the algorithm gives a close lower bound to the
optimal value. In addition, the numerical values in the graph
show the transition between classes W\B and GHZ\W.

V. CONCLUSION

We explored the theory of LSIP to derive properties of the
dual problem of the convex roof procedure that gives entan-
glement monotones for mixed states from pure state measures.
We showed that the absence of the duality gap between primal
and dual problems occurs in very general conditions. In addi-
tion, we proved that the set of optimal points is nonempty and
bounded and we derived bounds on the coefficients of optimal
solutions. For numerical calculations, we wrote the dual prob-
lem in a suitable LSIP form and adapted a CCPA designed
for this type of optimization. To check the performance of the
algorithm, we calculated two measures of genuine three-qubit
entanglement, three-tangle and π -tangle, for the mixture of
GHZ and W states and for the generalized Werner states, a
full rank family of states. We compared the numerical results
with the available analytical values and verified that the CCPA
results are very close the exact ones for the lower rank family
of states, while providing lower bounds for the high-rank
ones. As the algorithm gives lower bounds on the amount
of entanglement for suboptimal feasible points and global
convergence, the results are in agreement with the expected

FIG. 4. Three-tangle and π -tangle calculated for states ρ ′
p. Sym-

bols (boxes and circles) and the continuous line represent numerical
and analytical values, respectively.
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behavior. Furthermore, we used the difference between the
two measures to distinguish GHZ\W and W classes, in agree-
ment with the entanglement classification of these states in the
literature.

We believe that our work gives a good alternative to the
convex roof calculation of mixed-state entanglement, espe-
cially when close lower bounds are required. The CCPA
has very general applicability, working with discontinuous
measures and multipartite states with any finite rank. For
future works, we expect to apply other LSIP algorithms to the
convex roof problem, with the necessary modifications and
improvements.
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APPENDIX A: THEORETICAL PROPERTIES
OF PROBLEMS P AND Dρ

In this section, we prove the three theoretical properties of
problems P and Dρ listed in Sec. III A.

Proof of properties 1, 2 and 3. The first-moment cone of the
linear semi-infinite system σρ is given by Mc ≡ cone(Eρ ) [44],
which is the set of all conical combinations of elements of Eρ .
As cone(Eρ ) is the cone of positive semidefinite matrices of
Hρ , we have that int(Mc) �= ∅. As ρ is a full rank matrix of Hρ ,
then ρ ∈ int(Mc). By Theorem 8.1 of Ref. [44], we conclude
that there exists an optimal solution X ∗

ρ of Dρ and that the set
of all optimal solutions F ∗

ρ is bounded. Furthermore, by the
same theorem, we could conclude the absence of the duality
gap without making the continuity hypothesis on E . �

APPENDIX B: THREE-TANGLE AND π-TANGLE
FOR FAMILIES OF STATES

Here, we show the analytical expressions for the three-
tangle and π -tangle for the families of states ρp and ρ ′

p
available in the literature. First, we show the formulas for
the three-tangle quantifier applied to the mixture of GHZ
and W states: ρp. Setting s ≡ 8

√
6/9, p0 ≡ s2/3/(1 + s2/3),

and p1 ≡ 1/2 + 1/(2
√

1 + s2), the three-tangle of ρp is given
by [12,13]

τ (ρp) =
{ 0 for p � p0,

τ3(p, 0) for p0 < p � p1,
τ conv

3 (p, p1) for p > p1,
(B1)

where τ3(p, 0) ≡ |p2 − 16
√

p(1 − p)3/3
√

6| and τ conv
3 (p, p1)

≡ [p − p1 + (1 − p)(p2
1 − s

√
p1(1 − p1)3)]/(1 − p1).

The family of states ρ ′
p, as the parameter p ranges from

0 to 1, goes through all three-qubit entanglement classes:
S, B\S, W\B, and GHZ\W [52], where S and B are the
classes of separable and biseparable states, respectively. The

value pW of p that separates the classes W and GHZ\W is
pW ≈ 0.6955427. The three-tangle of ρ ′

p is then given by [36]

τ (ρ ′
p) =

{ 0 for p � pW ,
p−pW

1−pW
for pW < p � 1.

(B2)

The last available analytical result is the π -tangle of the
states ρp, which is given by [41]

π (ρp) =

⎧⎪⎨
⎪⎩

π (1)(ρp) for 0 � p � p0,

π (2)(ρp) for p0 < p � p1,

π (3)(ρp) for p1 < p � 1,

(B3)

where π (1)(ρp) ≡ {4(
√

5 − 1)(p0 − p) + p[5p2
0 − 4p0 + 8 −

18(
∑4

i=1 |λi(p0)| − 1)
2
]}/9p0, π (2)(ρp) ≡ [5p2 − 4p + 8 −

18(
∑4

i=1 |λi(p)| − 1)
2
]/9, and π (3)(ρp) ≡ {p − p1 + (1 −

p)[5p2
1 − 4p1 + 8 − 18(

∑4
i=1 |λi(p1)| − 1)

2
]/9}/(1 − p1).

For a fixed value of p, each λi(p), for i ∈ {1, . . . , 4}, is a
solution of the following equation:

λ4 − λ3 +
(

5

36
p2 − p

9
+ 2

9

)
λ2 +

[
[p(1 − p)]3/2

3
√

6

− 7

27
p3 + 7

18
p2 − p

6
+ 1

27

]
λ +

[
− p[p(1 − p)]3/2

6
√

6

− 41

648
p4 + 149

648
p3 − 13

54
p2 + 7

81
p − 1

81

]
= 0.

APPENDIX C: BOUNDING THE FEASIBLE SET

The proof of Corollary 1, stated in Sec. III B, is given after
Lemma 1.

Lemma 1. If 0 � E ([ψ]) � 1,∀[ψ] ∈ Eρ, and δ ≡ (r −
1)λr/λ1, where r = rank(ρ), λ1 and λr are the lowest and
highest eigenvalues of ρ, respectively, then F ∗

ρ ⊆ Bδ .
Proof. Let x1 � · · · � xr be the eigenvalues of X ∈ Hρ .

By the constraint E ([ψ]) + Tr([ψ]X ) � 0,∀[ψ] ∈ Eρ , of the
problem Dρ and the min-max theorem, we have that x1 �
−1 is a necessary condition for the feasibility of X . Let
{|x1〉, . . . |xr〉} be an orthonormal basis with eigenvectors of X
and ρ = ∑

k,l λ′
k,l |xk〉〈xl |. As x1 � −1, 0 � E∪(ρ) � 1, and

by the fact that there is no duality gap between Dρ and P, if
X ∈ F ∗

ρ then

Tr(ρX ) =
∑

k

λ′
k,kxk � 0 ⇒ xr � (r − 1)

λr

λ1
. (C1)

Equation (C1) implies that ‖X‖ = sup{‖X |ψ〉‖2 : ‖|ψ〉‖2 =
1} = max{|x1|, |xr |} � (r − 1)λr/λ1. Thus, we conclude that
F ∗

ρ ⊆ Bδ for δ ≡ (r − 1)λr/λ1. �
Now, the proof of Corollary 1:
Proof. Let {|x1〉, . . . |xr〉} be an orthonormal basis with

eigenvectors of X and X = ∑
k xk[xk]. By Lemma 1,

|Tr(ZmX )| � ∑
k |xk||Tr(Zm[xk])| � ∑

k |xk| � r(r − 1)
λr/λ1. �

APPENDIX D: THE PSEUDOCODE OF THE CENTRAL
CUTTING-PLANE ALGORITHM (CCPA)

The original pseudocode of the CCPA is found in Ref. [49].
Our description of it, step by step, with the necessary

022413-5
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modifications, including the addition of a tolerance ε > 0, and
without the deletion rules is given below.

Step 0: Let Ē be strictly greater than −v(Dc). Let SD0
c be

the program

max
(y,x)∈Rr2+1

y,

subject to 〈c, x〉 + y‖c‖2 � Ē ,

|xm| � r(r − 1)
λr

λ1
, 1 � m � r2. (D1)

Choose w(0) ∈ Rr2
such that |w(0)| � r(r − 1)λr/λ1, 1 �

m � r2. Let k = 1.
Step 1: Let (x(k), y(k) ) ∈ Rr2+1 be a solution of SDk−1

c . If
|y| < ε, stop. Otherwise, go to step 2.

Step 2: (i) If v(Dk
aux) � 0, where Dk

aux : infψ∈Ẽc
Ẽ (ψ ) +

〈ψ, x(k)〉, add the constraint 〈c, x〉 + y‖c‖2 � 〈c, x(k)〉 to pro-
gram SDk−1

c . Set w(k) = x(k).
(ii) Otherwise, add the constraint 〈ψ (k), x〉 − y‖ψ (k)‖2 �

−Ẽ (ψ (k) ) to program SDk−1
c . Set w(k) = w(k−1).

In either case, call the resulting program SDk
c . Set k = k + 1

and return to step 1.

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[2] J. S. Bell, Physics 1, 195 (1964).
[3] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S.

Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C.
Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham,
D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R.
Hanson, Nature (London) 526, 682 (2015).

[4] N. Lambert, C. Emary, and T. Brandes, Phys. Rev. Lett. 92,
073602 (2004).

[5] K. C. Tan, S. Choi, H. Kwon, and H. Jeong, Phys. Rev. A 97,
052304 (2018).

[6] V. Vedral, New J. Phys. 6, 102 (2004).
[7] L. Prochaska, X. Li, D. C. MacFarland, A. M. Andrews, M.

Bonta, E. F. Bianco, S. Yazdi, W. Schrenk, H. Detz, A. Limbeck,
Q. Si, E. Ringe, G. Strasser, J. Kono, and S. Paschen, Science
367, 285 (2020).

[8] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).

[9] L. Gyongyosi and S. Imre, Comp. Sci. Rev. 31, 51
(2019).

[10] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P.
Treutlein, Rev. Mod. Phys. 90, 035005 (2018).

[11] G. Vidal, J. Mod. Opt. 47, 355 (2000).
[12] R. Lohmayer, A. Osterloh, J. Siewert, and A. Uhlmann, Phys.

Rev. Lett. 97, 260502 (2006).
[13] C. Eltschka, A. Osterloh, J. Siewert, and A. Uhlmann, New J.

Phys. 10, 043014 (2008).
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