
PHYSICAL REVIEW A 104, 022408 (2021)

Phase-space methods for representing, manipulating, and correcting
Gottesman-Kitaev-Preskill qubits
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The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit into a bosonic mode is a promising bosonic code for
quantum computation due to its tolerance for noise and all-Gaussian gate set. We present a toolkit for phase-space
description and manipulation of GKP encodings that includes Wigner functions for ideal and approximate GKP
states, for various types of mixed GKP states, and for GKP-encoded operators. One advantage of a phase-
space approach is that Gaussian unitaries, required for computation with GKP codes, correspond to simple
transformations on the arguments of Wigner functions. We use this fact and our toolkit to describe GKP error
correction, including magic-state preparation, entirely in phase space using operations on Wigner functions.
While our focus here is on the square-lattice GKP code, we provide a general framework for GKP codes defined
on any lattice.
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I. INTRODUCTION

In recent decades, there has been an effort to adapt the scal-
able features of continuous-variable (CV) quantum systems
into a viable platform for fault-tolerant quantum computation.
In 2001, Gottesman, Kitaev, and Preskill (GKP) proposed a
novel means of encoding a qubit within a quantum oscilla-
tor [1]. One key feature of such an encoding is protection
from small phase-space displacements, which is desirable for
reliable quantum computing (QC). Crucially, using a qubit
encoding makes CV systems compatible with quantum error
correction [2,3], which is the process of using redundantly en-
coded quantum information to identify errors and implement
appropriately targeted recovery operations to resolve them.

GKP proposed syndrome-extraction and recovery tech-
niques that restore a corrupted encoded qubit state, with some
potential to incur a qubit-level error in the process. However,
provided that the resulting error rate is sufficiently low, these
qubit-level errors can be managed by concatenating with a
qubit-level error-correcting code within a larger fault-tolerant
architecture [4–6]. Concatenation also enables the use of
topological error-correcting schemes [7–10] and noise-biased
codes [11].

GKP codes are among a larger set of discrete encodings
into bosonic modes, known as bosonic codes [12–19]. Useful
bosonic codes protect against some form of error, which may
include phase-space displacements [1] and/or other types of
errors such as loss or dephasing [13]. Interestingly, codes
designed for one type of error may also perform well against
other types. As a key example, the GKP encoding turns out
to afford the best protection against pure loss when com-
pared to other bosonic codes [20], outperforming other codes
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specifically designed for this type of noise. This motivates
further work using the GKP encoding in particular.

A practical drawback in using the GKP encoding is that
the highly nonclassical code states are difficult to produce
experimentally. Recent breakthrough experiments have risen
to the challenge and produced GKP states in two physi-
cal architectures: the mechanical oscillations of a trapped
ion [21] and a microwave cavity in superconducting circuits
[22]. Numerous proposals also exist to generate optical GKP
states [23–32], although they have not yet been demonstrated
experimentally. Optical implementations have the advantage
of room-temperature operation and can be miniaturized,
for increased stability, using integrated photonic platforms
[33]. Furthermore, recent results have shown the potential
of using optical GKP states directly in measurement-based
schemes [7,34,35] and with highly scalable CV cluster states
[4,5,36–39].

Another distinct advantage of the GKP encoding over other
bosonic codes is that the entire Clifford group of encoded-
qubit operations can be implemented using Gaussian unitaries
[1]. This means the most common operations in QC [40] can
be performed easily and reliably. This property makes the
GKP encoding dovetail seamlessly with CV measurement-
based quantum computing schemes [4,41] since all Gaussian
operations can be implemented using just homodyne detection
on a CV cluster state [36,42].

There are a variety of methods for modeling GKP code-
words [1,9,41,43]. Phase-space techniques, however, have the
versatility to model both pure and mixed states and to treat
them on equal footing [44]. The action of Gaussian unitaries
(required for GKP Clifford QC) is represented simply in
phase space by linear transformations on the arguments of
the input Wigner function [45,46]. In this way, computational
operations on pure or mixed state are simple transforma-
tions on quasiprobability distributions. Additionally, many
of the bosonic noise channels expected in a laboratory have
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well-known effects on phase space [13,42,47]. Such an ap-
proach also provides the ability to visualize the features and
properties of codewords, operations, measurements, and en-
vironmental noise channels. This helps one develop intuition
for these concepts and for how they relate to each other.

Although universal QC is not possible with Gaussian
resources and measurements alone [48], supplementing Gaus-
sian elements with a source of just a single type of non-
Gaussian state, measurement, or operation enables universal
QC [49]. In fact, the non-Gaussian features of GKP-encoded
states themselves can be used as the non-Gaussian resource
required to achieve universal QC [50,51]. This means that,
at a conceptual level, one can model the unitary part of
universal GKP computation in terms of linear (symplec-
tic) transformations acting on GKP and Gaussian Wigner
functions. Simulation of full universality (including mea-
surements), however, will not generally be efficient unless
restricted to Clifford operations [52].

The phase-space picture is particularly useful for the GKP
encoding, and this work provides the tools and concepts to
use it effectively. Some of these properties have been reported
previously (e.g., [43]), and we extend this to a full suite of
such tools, along with additional properties and relations that
make them easy to use.

We begin in Sec. II by defining and giving the key prop-
erties of the quasiperiodic functions that will be employed
extensively throughout this work. In Sec. III, we introduce
the GKP encoding and give wave-function representations
for ideal and approximate GKP codewords using these tools.
In Secs. IV and V, we construct phase-space descriptions of
pure and mixed GKP states (both ideal and approximate), as
well as a basis of GKP-encoded Pauli operators that transform
amongst themselves under the Gaussian unitaries that imple-
ment the Clifford group. Then, in Sec. VI we consider GKP
error correction in phase space. And in Sec. VII, we illustrate
this result using the example of heterodyne detection on a
GKP Bell pair to produce GKP-encoded magic states [50].
Finally, we conclude with a discussion in Sec. VIII.

Summary of key results

(i) In Sec. II C we define multidimensional Jacobi θ func-
tions on a lattice and their asymptotic limits as X functions,
which represent quasiperiodic Dirac combs. These functions
can be used to describe various GKP codes including square
lattice and hexagonal lattice.

(ii) We outline the periodic features of GKP codewords
(both wave functions and in phase space) in terms of
quasiperiodic functions. We consider ideal and approximate
codewords within this framework in Secs. III A and III C,
respectively.

(iii) We construct a phase-space representation of GKP
codewords in Sec. IV A that is preserved Gaussian blurring,
such that it can generally describe both pure and mixed states
under additive Gaussian noise both prior to and after GKP-
qubit Clifford operations as shown in Sec. IV B.

(iv) In Sec. V B, we provide sufficient conditions for
phase-space descriptions of finite-energy approximate GKP
codewords, both pure and impure. These conditions enable
the direct construction of physical GKP codewords in phase

space, including circumstances where the states have experi-
enced additive Gaussian noise. This allows theorists to work
directly in phase space, bypassing the wave function or den-
sity operator entirely, with a unified representation of both
pure and mixed approximations of both pure or mixed GKP-
encoded states, with a guarantee that the constructed Wigner
function represents a physical approximate GKP state of a
given quality.

(v) We analyze these phase-space representations in the
limit of high-quality GKP states. In this limit, they simplify
to a form similar to perfect codewords transformed under
an additive Gaussian noise channel, as shown in Sec. V D.
We also provide approximate normalization factors for the
associated pure states in these circumstances in both Sec. V B
and the Appendices B and D.

(vi) In Sec. VI B, we derive the map for GKP error correc-
tion directly in phase space, which is given by two successive
convolutions with the Wigner functions for the GKP ancilla
states used in the process. Each convolution periodically
“rakes” the input Wigner function in the quadrature to be
corrected and simultaneously replicates it in the other quadra-
ture (to induce quasiperiodicity). We illustrate and visualize
this procedure in Sec. VII by using GKP error correction to
generate encoded magic states from the vacuum [50].

II. PERIODIC AND QUASIPERIODIC FUNCTIONS

A. Jacobi and Siegel θ functions

A class of elliptic functions, Jacobi θ functions and their
multivariate form, Siegel θ functions [53–55] (henceforth re-
ferred to collectively as θ functions), exhibit periodic structure
that makes them useful for modeling GKP codewords in phase
spase. As we extensively employ Jacobi and Siegel θ func-
tions throughout this work, we provide a brief review of their
forms and properties, and we show their connections to Dirac
combs.

A univariate Jacobi θ function of the third kind is defined
as [54]

θ

[
v1

v2

]
(z, τ ) :=

∑
n∈Z

e2π i[ 1
2 (n+v1 )2τ+(n+v1 )(z+v2 )], (2.1)

where z, τ ∈ C with Im(τ ) > 0, and the parameters v1, v2 ∈
Q are known as the characteristics of the θ function. An
alternate, recursive form is found by factoring out terms in-
dependent of the sum

θ

[
v1

v2

]
(z, τ ) = e2π i[ 1

2 τv2
1+v1(z+v2 )]θ (z + v1τ + v2, τ ). (2.2)

Multivariate θ functions, known as Siegel (or Riemann) θ

functions, are defined analogously to (2.1) [55]:

θ

[
v1

v2

]
(z, τ ) :=

∑
n∈Zd

e2π i[ 1
2 (n+v1 )Tτ(n+v1 )+(n+v1 )T(z+v2 )]. (2.3)

Here, z ∈ Cd is a d-dimensional vector of complex argu-
ments, and τ = τT is now a d-dimensional, complex, square
matrix in the Siegel upper-half space, i.e., Im(τ) > 0, where
this notation indicates that τ is a positive-definite matrix. The
rational characteristics are analogously extended to column
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vectors v1, v2 ∈ Qd . An expanded multivariate form can be
written as

θ

[
v1

v2

]
(z, τ ) = e2π i[ 1

2 vT
1 τv1+vT

1 (z+v2 )]θ (z + τv1 + v2, τ ). (2.4)

B. T -periodic univariate θ functions

We define a convenient variation of Jacobi θ functions
[Eq. (2.1)]

θT

[
v1

v2

]
(z, τ ) := 1√|T |θ

[
v1

v2

](
z

T
,

τ

T 2

)
(2.5)

for real, nonzero period T ∈ R �=0. Including the factor 1/
√|T |

preserves the L2 norm of the function for all T and simpli-
fies many of the relations that follow. This form is useful
for describing Gaussian pulse trains of period T (and thus
features of the GKP encoding), and we refer to it henceforth
as a θ function in this work. We refer to the case of [0, 0]T

characteristics as a canonical θ function, and for notational
convenience denote it simply as

θT (z, τ ) := θT

[
0

0

]
(z, τ ). (2.6)

θ functions [both Eq. (2.1) and our new definition Eq. (2.5);
we focus on the latter] exhibit several useful properties. The
expanded form of this function is given as

θT

[
v1

v2

]
(z, τ )

= e2π i( 1
2 v2

1
τ

T 2 +v1
z
T +v1v2 )

θT

[
z +

(
v1

τ

T 2
+ v2

)
T, τ

]
. (2.7)

Here, the characteristics for our T -periodic function θT de-
scribe two distinct transformations: the first characteristic
gives is a shift by the quasiperiod v1

τ
T and introduces an

exponential factor, and the second characteristic gives a shift
by a factor proportional to the period v2T . Canonical θ func-
tions [Eq. (2.6)] are integer periodic in z and quasiperiodic
for integer displacements of τ . These relations, referred to as
quasiperiodicity, are described by the formula

θT

[
z +

(
m1

τ

T 2
+ m2

)
T, τ

]
= e−2π i( 1

2 m2
1

τ

T 2 +m1
z
T )

θT (z, τ )

(2.8)

for integer characteristics m1, m2 ∈ Z. Together, these rela-
tions reveal that for fixed τ , θ functions are invariant under
integer-valued characteristics

θT

[
m1

m2

]
(z, τ ) = θT (z, τ ). (2.9)

Integer increments m1, m2 on the characteristics give the fol-
lowing identity for our T -periodic functions

θT

[
v1 + m1

v2 + m2

]
(z, τ ) = e2π iv1m2θT

[
v1

v2

]
(z, τ ). (2.10)

FIG. 1. Half-period (auxiliary) X functions [Eqs. (2.14)] and θ

functions [Eqs. (2.5)]. Lines capped with circles indicate δ functions.
The first characteristic j introduces phases (alternating positivity and
negativity), and the the second characteristic k shifts by half a period.

A useful feature of half-period characteristics is that they
yield identities that relate θ functions of double and half
frequency; for binary j, k ∈ {0, 1}, these are given as [56]

θT

[
j/2

0

]
(z, τ ) = 1√

2

(
θ2T (z, τ ) + (−1) jθ2T

[
0

1/2

]
(z, τ )

)
,

(2.11a)

θT

[
0

k/2

]
(z, τ ) = 1√

2

(
θT/2(z, τ ) + (−1)kθT/2

[
1/2

0

]
(z, τ )

)
.

(2.11b)

For j, k = {0, 0}, we recover the canonical θ function (2.6).
The collection of θ functions associated with the remaining
three pairs {0, 1}, {1, 0}, and {1, 1} are sometimes referred to
as auxiliary functions [57]. These are shown in the right-hand
column of Fig. 1.

1. Connection to Gaussian pulse trains

A normalized, univariate Gaussian distribution on x ∈ R
with variance σ 2 and mean x0 is given by

Gσ 2 (x − x0) := 1√
2πσ 2

e− (x−x0 )2

2σ2 . (2.12)

A pulse train consists of a sum of identical such Gaussians
whose means are centered at integer multiples of the period
T . Pulse trains are a special case of θ functions for real
argument x and purely imaginary quasiperiod τ = 2π iσ 2. The
θ -function characteristics in Eq. (2.5) allow us to describe the
more general case of a pulse train of period T that is translated
and phased:

∑
n∈Z

e−2π inv1 Gσ 2 [x + (n + v2)T ] = 1√|T |θT

[
v1

v2

]
(x, 2π iσ 2).

(2.13)
The first characteristic v1 describes periodic phasing along
the pulse train (with fractional first characteristics applying
sequential roots of unity), and the second characteristic de-
scribes shifts by units of the period T . These features are
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useful for representing the GKP code, where logical states
are encoded, for both wave functions and Wigner functions,
in amplitudes and phases of alternating peaks of a Gaus-
sian pulse train (up to a large envelope). In Eq. (2.13),
this corresponds to half-integer characteristics, i.e., with
{v1, v2} = {m1

2 , m2
2 } for integers m1, m2 ∈ Z. With this fact and

Eqs. (2.11), we can also compose and decompose Gaussian
pulse trains of different periods, which is useful for describing
GKP states.

2. Connection to Dirac combs

The Dirac δ function can be described as the weak limit
(i.e., as a distribution) of a normalized Gaussian, Eq. (2.12), as
the variance tends to zero. We take an analogous weak limit of
a Gaussian pulse train, through its description as a θ function
in Eq. (2.13), to define a variation of a Dirac comb of period
T with characteristics v1, v2 analogous to Eq. (2.7)1:

XT

[
v1

v2

]
(x) := lim

σ 2→0+
θT

[
v1

v2

]
(x, 2π iσ 2) (2.14)

= e2π iv1( x
T +v2 )

√
|T |

∞∑
n=−∞

δ[x + (n + v2)T ] .

(2.15)

The “shah function” XT (x) is a Dirac comb of period T mul-
tiplied by an additional scaling factor of

√|T |. This definition
is convenient because, under the Fourier transform F ,

F[ f ](y) := 1√
2π

∫
dx e−ixy f (x), (2.16)

a X function with period T transforms to another X function
with period 2π

T :

F[XT ](y) = F−1[XT ](y) = X 2π
T

(y). (2.17)

(Without the
√|T | prefactor, there would be additional scaling

factors that would complicate this and other relations.) Just
as above, we have defined a canonical X function with sup-
pressed characteristics in our notation:

XT (x) := XT

[
0

0

]
(x). (2.18)

Since X functions [Eq. (2.14)] are (weak) limits of θ

functions, they also have the alternate form

XT

[
v1

v2

]
(x) = e2π iv1( x

T +v2 )XT (x + v2T ), (2.19)

showing that a nonzero v1 introduces a phase and v2 a shift.
Moreover, integer increments of the characteristics give an
analogous identity

XT

[
v1 + m1

v2 + m2

]
(x) = e2π iv1m2XT

[
v1

v2

]
(x). (2.20)

1Note that the quasiperiod v1τ vanishes in the limit τ → i0+ func-
tion such that the function becomes simply periodic.

The X functions inherit integer-characteristic invariance
[Eq. (2.9)] and the relations between auxiliary functions
[Eq. (2.11)]

XT

[
j/2

0

]
(x) = 1√

2

(
X2T (x) + (−1) jX2T

[
0

1/2

]
(x)

)
,

(2.21a)

XT

[
0

k/2

]
(x) = 1√

2

(
XT/2(x) + (−1)kXT/2

[
1/2

0

]
(x)

)
,

(2.21b)

for binary j, k ∈ {0, 1}. These are shown in the left-hand col-
umn of Fig. 1.

To summarize, our definition of a X function [Eq. (2.14)]
differs from a typical Dirac comb in two distinct ways. First,
we define X function as weak limits of real-valued θ func-
tions, from which they inherit characteristics, Eq. (2.19).
Second, we scale the Dirac comb by a factor

√|T | to ensure
the Fourier relations in Eq. (2.17) (as well as others) remain
as clean as possible.

C. Multivariate θ functions on a lattice

We generalize the θ functions defined above to the multi-
variate case, where the period is generalized to a lattice. We
define a scaled multivariate θ function as

θA

[
v1

v2

]
(z, τ ) := 1√|det A|θ

[
v1

v2

]
(A−1z, A−1τA−T), (2.22)

where A ∈ GLd (R) is a linear transformation from the integer
lattice Zd to the new lattice, i.e., the columns of A are the
desired lattice vectors. Again, we include a normalizing factor,
this time 1/

√|det A|, to preserve the L2 norm and simplify
important relations. For the real, normalized, d-dimensional,
multivariate Gaussian with covariance matrix � and mean
x0 ∈ Rd ,

G�(x − x0) := 1√
det(2π�)

e− 1
2 (x−x0 )T�−1(x−x0 ), (2.23)

we may write the corresponding θ function associated with
sums of this Gaussian over the lattice A with analogous con-
straints x ∈ Rd and Re(τ) = 0:∑

n∈Zd

e−2π ivT
1 nG�[x + A(n + v2)]

= 1√|det A|θA

[
v1

v2

]
(x, 2π i�). (2.24)

This function can be expressed in terms of the general charac-
teristic vectors v1, v2 as

θA

[
v1

v2

]
(z, τ ) = e2π i[ 1

2 vT
1 A−1τA−Tv1+vT

1 (A−1z+v2 )]

× θA

[
v1

v2

]
[z + A(A−1τA−Tv1 + v2), τ].

(2.25)
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In this form, the integers added to the characteristics give an
analogous identity

θA

[
v1 + m1

v2 + m2

]
(z, τ ) = e2π ivT

1 m2θA

[
v1

v2

]
(z, τ ). (2.26)

Taking the (weak) limit of infinitesimal, purely imaginary τ

forms a d-dimensional Dirac comb, which we define as the
multivariate X function

XA

[
v1

v2

]
(x) := lim

�→0+
θA

[
v1

v2

]
(x, 2π i�) (2.27a)

=
√

| det A|
∑
n∈Zd

e−2π ivT
1 nδ[x + A(n + v2)]

(2.27b)

= 1√|det A|X
[

v1

v2

]
(A−1x), (2.27c)

where 0+ indicates an infinitesimal positive-definite matrix.
Lastly, we can also express the periodicity of the multivariate
X functions in terms of the characteristics

XA

[
v1

v2

]
(x) = e2π i[vT

1 (A−1x+v2 )]XA(x + Av2), (2.28)

with integer increments on each characteristic having an anal-
ogous property

XA

[
v1 + m1

v2 + m2

]
(x) = e2π ivT

1 m2XA

[
v1

v2

]
(x). (2.29)

D. Blurring and deblurring

The convolution of two functions f (x) and g(x) in Rn is
given by

[ f ∗ g](x) :=
∫

dnx′ f (x − x′)g(x′). (2.30)

This describes a “blurring” of f (x) by g(x), or vice versa since
convolutions are symmetric. We consider the case when g(x)
is a normalized, d-dimensional Gaussian distribution G�(x)
with � ∈ Rd×d . Using Fourier representations of the convolu-
tion and its inverse, deconvolution, we define the action of a
blurring and a deblurring operator D� and D−1

� on f (x):

D� f (x) := F−1
[
F[ f ] · F[G�]

]
(x), (2.31a)

D−1
� f (x) := F−1

[ F[ f ]

F[G�]

]
(x), (2.31b)

where the Fourier transform F is defined in (2.16). These
operators describe generalized forward and backward Weier-
strass transforms [58]. The blurring and deblurring operators
are equivalently described by the convenient Gaussian form
[59]

D� = e
1
2 ∇T�∇, (2.32a)

D−1
� = e− 1

2 ∇T�∇, (2.32b)

where ∇ := [∂1, . . . , ∂d ]T. In this form, blurring and deblur-
ring can be applied directly to a function.

(a) (b)

FIG. 2. Transformation between a two-dimensional (a) X func-
tion and (b) θ function by blurring and deblurring. A blurring
operator D� transforms a X function [Eq. (2.27)] into a θ func-
tion [Eq. (2.22)], with purely imaginary parameter τ = 2π i� [see
Eq. (2.33)]. Deblurring with the same � undoes this operation and

transforms back. Shown is � = 1
2 RT

π/3

[(0.2)2 0
0 (0.4)2

]
Rπ/3, where

Rπ/3 is a rotation matrix [Eq. (3.17)]. The lattice A = [a1 a2] for
lattice vectors a1 = (2

√
3)−1/2[2, 0]T and a2 = (2

√
3)−1/2[−1,

√
3]T

corresponds to a triangular lattice. Characteristic v1 = [ 1
2 , 0]T gives

rise to the phasing along a1 (alternating positivity and negativity) and
characteristic v2 = [0, 1

2 ]T gives the half-lattice-period shift along a2

(from the origin). In both, red indicates positive and cyan negative,
the color scales are arbitrary, tick marks are at integers, and in (a) the
dots indicate two-dimensional δ functions.

Blurring and deblurring transform back and forth between
X functions and θ functions, without disturbing the lattice A
or characteristics, via the general relations

D�θA

[
v1

v2

]
(x, 2π i�′) = θA

[
v1

v2

]
(x, 2π i(�′ + �)), (2.33a)

D−1
� θA

[
v1

v2

]
(x, 2π i�′) = θA

[
v1

v2

]
(x, 2π i(�′ − �)). (2.33b)

The connection to X functions arises from the special case
of deblurring where �′ = �, illustrated in Fig. 2. Note that
deblurring may take a θ function out of the Siegel upper-
half space, i.e., after deblurring, it may no longer hold that
Im(τ) > 0. This behavior is not unusual for highly local-
ized phase-space distributions, for example, the P distribution
[60,61] of a squeezed state (which is found by deconvolving
a squeezed Gaussian with a Gaussian of vacuum variance) is
highly singular [62]. GKP states are more localized (periodi-
cally) than the vacuum state in all quadratures, which means
their P distributions are even more singular than a squeezed
vacuum state. We focus on Wigner functions in this work,
which are always well behaved, at worst, being as singular as
a δ function. Still, the fact that deblurring can lead to a τ that
leaves the Siegel upper-half space is important to remember.

III. GKP ENCODING

In 2001, Gottesman, Kitaev, and Preskill developed the
GKP encoding of a logical, two-dimensional qubit into the
continuous-variable Hilbert space of a bosonic mode [1]. The
GKP encoding, described in detail below, is founded on trans-
lational invariance of the code words. The periodic structure
of θ functions introduced in Sec. II make these functions
powerful mathematical tools for describing many aspects of
the GKP encoding.
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(a) (b)

FIG. 3. Position wave functions for the square-lattice GKP states
|0L〉 (solid) and |1L〉 (dashed). Ideal GKP states [Eq. (3.10)] are
shown in (a) and approximate GKP states [Eq. (3.34)] are shown
in (b). Lines capped in circles are δ functions.

A major advantage of the GKP code over alternative
bosonic codes is that the full set of encoded Pauli and Clif-
ford operations are implemented via quadrature displacements
and Gaussian unitaries, respectively. Additionally, universal-
ity and fault tolerance require no further resources beyond
the Gaussian Cliffords and a single type of encoded state
[50,51]. In the next subsection, we briefly review the square-
lattice GKP encoding and show how univariate θ functions
[Eq. (2.5)] and their limit as X functions [Eq. (2.14)] describe
pure ideal and approximate GKP states and their transforma-
tions under GKP Pauli and Clifford operations. This serves
as a more recognizable introduction to the main focus of
this work: using multivariate θ functions and X functions
to simplify phase-space representations of the GKP encoding.
Importantly, although throughout this work we are using the
square-lattice GKP code, one may easily convert to other
lattices such as the hexagonal code [1,47,63] using the appro-
priate transformation A.

A. GKP states and encoded Clifford operators

A GKP qubit is encoded into a bosonic mode, whose
position- and momentum-quadrature operators are defined in
terms of bosonic creation and annihilation operators

q̂ := 1√
2

(â + â†), p̂ := −i√
2

(â − â†), (3.1)

which satisfy the canonical commutation relation [q̂, p̂] = i,
with h̄ = 1. (With these conventions, the measured vacuum
variance in both quadratures is 1

2 .) Respective eigenstates of
the position and momentum operators |s〉q and |t〉p, satisfying

q̂|s〉q = s|s〉q, p̂|t〉p = t |t〉p, (3.2)

constitute two useful bases, indicated by subscripts q and
p, respectively. An arbitrary pure state |ψ〉 is represented in
either basis using the position and momentum wave functions,
respectively,

ψ (s) := q〈s|ψ〉, ψ̃ (t ) := p〈t |ψ〉, (3.3)

as

|ψ〉 =
∫

ds ψ (s)|s〉q =
∫

dt ψ̃ (t )|t〉p. (3.4)

The canonical quadrature operators are generators of displace-
ments through the position- and momentum-shift operators

X̂ (h) := e−ihp̂, Ẑ (h) := eihq̂, (3.5)

TABLE I. Position and momentum wave functions for
ideal GKP Pauli eigenstates. Our choice of definition for
X functions, Eq. (2.14), makes these forms simple while
ensuring they all have the same Hilbert-space norm.

ψ (s) ψ̃ (t )

|0L〉 X2
√

π (s) X√
π (t )

|1L〉 X2
√

π

[
0

1/2

]
(s) X√

π

[
1/2

0

]
(t )

|+L〉 X√
π (s) X2

√
π (t )

|−L〉 X√
π

[
1/2

0

]
(s) X2

√
π

[
0

1/2

]
(t )

respectively, for h ∈ R. General translations in phase space
are described by

V̂ (h) = V̂ (hq, hp) := e−ihq p̂+ihpq̂, (3.6)

where h = [hq, hp]T is the displacement vector in phase space.
The shift operator in Eq. (3.6) is related to the standard
displacement operator D̂(α) := eαâ†−α∗â (with α ∈ C) via the
relation V̂ (h) = D̂( hq+ihp√

2
).

The ideal computational-basis states for the square-lattice
GKP encoding are defined

| jL〉 := (2
√

π )1/2
∞∑

n=−∞
|(2n + j)

√
π〉q (3.7)

= (
√

π )1/2
∞∑

n=−∞
ei jπn|n√

π〉p (3.8)

with j ∈ {0, 1} indicating the logical-qubit state. Throughout,
we use the subscript L to label logical states and operators
for the square-lattice GKP code. The states in Eq. (3.7) are
represented in the position and momentum bases as

| jL〉 =
∫

ds ψ j,L (s)|s〉q =
∫

dt ψ̃ j,L (s)|t〉p, (3.9a)

where the position and momentum GKP wave functions are,
respectively,

ψ j,L(s) := q〈s|ψ〉= X2
√

π

[
0
j/2

]
(s), (3.10a)

ψ̃ j,L (t ) := p〈t |ψ〉= X√
π

[
j/2

0

]
(t ), (3.10b)

and the X functions are defined in Eq. (2.14). The position
wave functions are shown in Fig. 3(a). For reference, Table I
provides the wave functions for the other Pauli-basis states2

|±L〉 := 1√
2

(|0L〉 ± |1L〉). (3.11)

2The wave functions for the GKP Pauli-Y eigenstates |±iL〉 :=
1√
2
(|0L〉 ± i |1L〉) can be represented as single X functions (with

characteristics) in the 1√
2
(q + p) basis. In the q or p basis, they

require two X functions.
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The different periods for the position and momentum wave
functions in Eq. (3.10) (and those in Table I) are a conse-
quence of the fact that the position and momentum bases are
related by a Fourier transform. The square-lattice GKP wave
functions, described by X functions of periods 2

√
π and

√
π ,

halve or double, respectively, under the action of a Fourier
transform, Eq. (2.17). This halving or doubling forms a new
symmetric or antisymmetric superposition of X functions,
described by the half-period transformations in Eq. (2.21). A
consequence is that both the position and momentum wave
functions for an arbitrary pure GKP state

|ψL〉 = c0 |0L〉 + c1 |1L〉 (3.12)

(|c0|2 + |c1|2 = 1) have two key properties: they only have
support on multiples of

√
π , and they are 2

√
π periodic.

GKP logical Pauli operators for the square-lattice encod-
ing X̂L and ẐL are position and momentum displacements
[Eq. (3.5)] of magnitude

√
π ,3

X̂L := X̂ (
√

π ) = e−i
√

π p̂, (3.13a)

ẐL := Ẑ (
√

π ) = ei
√

π q̂. (3.13b)

The GKP stabilizers are position and momentum shifts by
2
√

π ,

ŜX := (X̂L )2 = X̂ (2
√

π ), (3.14a)

ŜZ := (ẐL )2 = Ẑ (2
√

π ), (3.14b)

and satisfy [(ŜX )m, (ŜZ )n] = 0 for any integers m, n. GKP
Hadamard ĤL and phase ŜL gates, which together generate
the single-qubit Clifford group, are realized by the Fourier
transform operator F̂ and unit-shear operator P̂, respectively:

ĤL := F̂ = ei π
4 (q̂2+p̂2 ), (3.15a)

ŜL := P̂ = ei 1
2 q̂2

. (3.15b)

The full set of encoded single-qubit Pauli and Clifford oper-
ators {X̂L, ẐL, ĤL, ŜL} are generated by linear and quadratic
combinations of q̂ and p̂. Importantly, when operators from
this set are applied to GKP states, they generate half-period
transformations of the X functions that comprise the square-
lattice GKP wave functions; see Table I.

B. Embedded-error operator

Ideal GKP states are unphysical since their wave functions
are not L2 normalizable. We consider here physical, normal-
ized approximations to GKP states |ψ̄L〉, that result from the
application of the nonunitary embedded-error operator [1,64]

ξ̂ (�) := exp

(
−1

2
x̂T�−1x̂

)
(3.16)

to ideal GKP states. The real, symmetric, positive-definite,
matrix �, which encodes the details of the (coherent) errors
applied to the ideal state, is diagonalizable via a rotation

3We focus on the square-lattice GKP encoding, for which an en-
coded Hadamard operator ĤL is a realized via Fourier transform F̂ .
For other GKP lattices, see Refs. [1,47].

matrix Rϕ ∈ SO(2):

Rϕ :=
[

cos ϕ − sin ϕ

sin ϕ cos ϕ

]
, (3.17)

giving

� = RT
ϕ�0Rϕ, (3.18)

where the elements of the diagonal matrix �0 describe en-
velopes in the two principal quadratures determined by ϕ and
ϕ + π

2 . Without lack of generality, we parametrize �0 using
the standard notation [1]

�0 =
[

1
κ2 0

0 1
2

]
, (3.19)

which, for Rϕ = I, produces envelopes in the q̂ and p̂ quadra-
tures. As a consequence of Eq. (3.18), ξ̂ (�) can also be
written as

ξ̂ (�) = R̂†(ϕ) exp

(
−1

2
x̂T�−1

0 x̂
)

R̂(ϕ), (3.20)

where R̂(ϕ) = eiϕn̂ is the phase delay (rotation) operator. For
symmetric error parameters (2 = κ2 = β), �0 = β−1I, the
embedded-error operator is the damping operator [37,64]

N̂ (β ) := e−βn̂ = e− β

2 (q̂2+p̂2 ) = ξ̂ (β−1I). (3.21)

A useful, single-parameter measure for the quality of an ap-
proximate GKP state is the squeezing [64], given by

(squeezing in dB) = −10 log(β ). (3.22)

The connection between this notion of squeezing and that in
squeezed vacuum states is given in Ref. [37].

In the limit of small errors �−1
0 � I (i.e., 2, κ2 � 1), the

embedded-error operator in Eq. (3.20) can be written as

ξ̂ (�) = R̂†(ϕ)e− 1
2 (κ2 q̂2+2 p̂2 )R̂(ϕ) (3.23a)

≈ R̂†(ϕ)e− 1
2 2 p̂2

e− 1
2 κ2 q̂2

R̂(ϕ) (3.23b)

≈ R̂†(ϕ)e− 1
2 κ2 q̂2

e− 1
2 2 p̂2

R̂(ϕ), (3.23c)

and the exponential operators approximately commute
[64,65].4 Each of the exponential operators above has a partic-
ular effect on the wave functions of the input state. In position
space, e− 1

2 κ2 q̂2
applies a Gaussian envelope of variance 1/κ2

to the position wave function

e− 1
2 κ2 q̂2 |ψ〉 ∝

∫
ds Gκ−2 (s)ψ (s)|s〉q, (3.24)

noting that the wave function is not square normalized. In
momentum space, it convolves the momentum wave function
with a Gaussian of variance κ2:

e− 1
2 κ2 q̂2 |ψ〉 ∝

∫
dt

[∫
ds Gκ2 (s)ψ̃ (t − s)

]
|t〉p (3.25)

=
∫

dt [ψ ∗ Gκ2 ](t )|t〉p, (3.26)

4Note that this embedded-error operator is the same as that result-
ing from sequential single-bit teleportation through squeezed states
in a canonical continuous-variable cluster-state setting [4,37,66].
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where the term in the last line in square brackets is the new
momentum wave function (up to normalization). This rela-
tion can be shown by inserting a complete set of momentum
eigenstates in Eq. (3.24) and using the convolution theorem
F[ f · g] = F[ f ] ∗ F[g]. Another way to see this connection
is by noting that the q̂ → i∂p when acting on momentum

wave functions, so e− 1
2 κ2 q̂2 → e

1
2 κ2∂2

p = Dκ2 , which is the one-
dimensional version of the blurring operator from Eqs. (2.32).
The operator e− 1

2 2 p̂2
works conversely, applying a Gaussian

envelope of variance 1/2 on the momentum wave function
and convolving the position wave function with a Gaussian of
variance 2.

Applying the two exponential operators consecutively in
a specified order gives both an envelope and a convolution
on the position or momentum wave function. For example,
e− 1

2 κ2 p̂2
e− 1

2 2 q̂2 |ψ〉 gives the (unnormalized) position wave
function

ψout(s) =
∫

dt G2 (t )Gκ−2 (s − t )ψ (s − t ) (3.27)

= [(Gκ−2ψ ) ∗ G2 ](s). (3.28)

Applying the operators in the other order, e− 1
2 κ2 q̂2

e− 1
2 2 p̂2 |ψ〉,

gives

ψout(s) = Gκ−2 (s)
∫

dt G2 (t )ψ (s − t ) (3.29)

= Gκ−2 (s)[ψ ∗ G2 ](s). (3.30)

In the low-noise limit, these operations approximately com-
mute (see Appendix C), and the action on position wave
function ψ (s) is described by successive applications in either
order:

[(Gκ−2ψ ) ∗ G2 ](s) ≈ Gκ−2 (s)[ψ ∗ G2 ](s). (3.31)

The action of the embedded error on momentum wave func-
tions is identical with the roles of κ2 and 2 reversed.

C. Pure, approximate GKP states

Pure, approximate GKP states are generated by applying
the embedded-error operator (3.20) to an arbitrary ideal GKP
state (3.12):

|ψ̄L〉 := 1√
N

ξ̂ (�) |ψL〉 . (3.32)

The normalization N := 〈ψL| [ξ̂ (�)]2 |ψL〉 is a function of
the state itself due to the fact that the approximate GKP basis
states are not perfectly orthogonal.5 The embedded error in
approximate GKP states spoils their periodicity to a degree
determined by the eigenvalues of �0 (κ−2 and −2 in the
original setting [1]). Note that, since the states are still pure,
this error is distinct from that introduced by external deco-

5The fact that physical codewords may not be orthogonal is com-
mon to other bosonic codes, notably cat codes [14], although such
codes can be made orthogonal [17].

herence.6 In the limit of low embedded error, 2, κ2 � 1,
the approximate GKP states are nearly periodic and approxi-
mately obey the discrete translational symmetries of the GKP
code. (For a detailed study of the case without this approxima-
tion, see Ref. [43].) This periodicity is the basis for the faithful
encoding and decoding of digital quantum information. When
the embedded error is low enough, approximate GKP states
allow for error correction and can be used fault tolerantly [4].

θ-function representations of high-quality GKP-state wave
functions

We consider the action of an embedded-error operator, in
diagonal form as in the original GKP setting, �0 in Eq. (3.19),
on a state whose wave function is X function of period T .
This replaces each spike in the X function with a Gaussian
of variance 2 and introduces a broad Gaussian envelope of
variance κ−2; see Fig. 3(b). These operations are described by
convolution with a sharp Gaussian followed by multiplication
by a broad Gaussian. In the high-quality limit, 2, κ2 �
1, these operations can be performed in either order [see
Eqs. (3.31)].

Normalized position wave functions for approximate GKP
states | j̄L〉 = N−1/2ξ̂ (κ,) | jL〉 for j ∈ {0, 1} in the high-
quality limit—that is, using Eq. (3.23)—are derived in Ap-
pendix B. The computational-basis position wave functions
are [1,43]

ψ̄ j,L(s) ≈ 1√
N

Gκ−2 (s)[G2 ∗ ψ j,L](s) (3.33)

=
√

4π

√


κ
Gκ−2 (s)θ2

√
π

[
0
j/2

]
(s, 2π i2), (3.34)

where the ideal wave functions ψ j,L(s) are given in Eq. (3.10),
and we have used the normalization

N ≈ 1

4π

κ


. (3.35)

These states are approximately square normalized,∫
ds |ψ̄ j,L(s)|2 ≈ 1.7 For momentum wave functions ψ̃ j,L (t ),

the roles of  and κ in Eq. (3.34) are swapped: −2 is
the envelope variance and κ2 is the spike variance. The
wave functions in both bases have narrow spikes and broad
envelopes, with the result being that homodyne measurements
of both position and momentum yield outcomes that are
tightly clustered about multiples of

√
π (with the frequency

of even or odd multiples depending on the encoded state).
Similar expressions can be found for wave functions of the
other GKP Pauli eigenstates in Table I, each of which is
described by a single θ function. In the limit of vanishing
error, the normalized computational-basis states (3.34)

6Using a subsystem decomposition [41,67,68], one can restore the
interpretation of embedded error as decoherence arising from entan-
glement between two virtual subsystems.

7Small deviations from 1 arise in the derivation of the normaliza-
tion, which assumes that neighboring spikes have vanishing overlap,
as is the case for small 2.
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approach

lim
2,κ2→0

ψ̄ j,L (s) ∼
√

2κ X2
√

π

[
0
j/2

]
(s). (3.36)

These are indeed the ideal GKP wave functions in Eq. (3.10)
with an additional “normalization constant” that serves to
connect representations of asymptotic physical GKP states to
their ideal counterparts.

IV. PHASE-SPACE REPRESENTATIONS
OF THE GKP ENCODING

Wigner functions are phase-space representations of
quantum-mechanical states and operators. For any operator
Ô, the associated Wigner function WÔ is given by the Wigner-
Weyl transform:

WÔ(q, p) = 1

π

∫
dy q〈q + y|Ô|q − y〉qe2ipy. (4.1)

(The q as subscript merely indicates the position basis.) The
Wigner function for a normalized state ρ̂ satisfying ρ̂† = ρ̂,
and Tr[ρ̂] = 1 is itself normalized,∫

dq d pWρ̂ (q, p) = 1 , (4.2)

and bounded,

|Wρ̂ (q, p)| � 1

π
. (4.3)

Additionally, Wρ̂ (q, p) is real valued (as is the Wigner func-
tion for any Hermitian operator), although it is not strictly
non-negative. For this reason, Wigner functions of states are
called quasiprobability distributions, whose marginal distri-
butions over q or p (or any other axis in phase space) describe
bona fide probability distributions for quadrature measure-
ments (homodyne detection) along that axis. Henceforth, we
will occasionally use a vector x = [q1, . . . , qN , p1, . . . , pN ]T

as the argument of an N-mode Wigner function (in most cases
here, N = 1). This means that Wigner functions may appear
as W (q1, . . . , qN , p1, . . . , pN ) or as W (x).

A useful feature of Wigner functions is their sim-
ple transformations under Gaussian unitaries. The Heisen-
berg action of an N-mode Gaussian unitary opera-
tor ÛG on a (2N × 1) vector of quadrature operators
x̂ := [q̂1, . . . q̂N , p̂1, . . . , p̂N ]T corresponds to an affine sym-
plectic transformation [45,46,69]:

x̂ �→ Û †
G x̂ ÛG = SÛ x̂ + c, (4.4)

where SÛ ∈ R2N×2N is a symplectic matrix associated with
ÛG, and c ∈ R2N is a displacement term. The matrix SÛ allows
us to describe a Schrödinger-type transformation of operator
Ô (with the understanding that we will later be considering
transformations on quantum states),

Ô �→ ÛGÔÛ †
G, (4.5)

in terms of simple, phase-space transformations on the argu-
ments of its Wigner function

WÛGÔÛ †
G
(x) = WÔ

[
S−1

Û
(x − c)

]
. (4.6)

Consider, in particular, an operator ÔX whose Wigner
function is a two-dimensional X function

WÔX
(x) = XA

[
v1

v2

]
(x) = 1√| det A| X

[
v1

v2

]
(A−1x). (4.7)

Such an operator could represent a GKP state or operator
(for a square lattice or some other lattice configuration). From
Eq. (4.6), it follows that the Gaussian unitary transformation
ÛGÔXÛ †

G proceeds in phase space by replacing x �→ S−1
Û

(x −
c) in the Wigner function (4.7):

WÛGÔXÛ †
G
(x) = 1√| det A|X

[
v1

v2

]
[A−1S−1

Û
(x − c)] (4.8)

= 1√| det A|X
[

v1

v2

]
[(SÛ A)−1(x − c)] (4.9)

= XSÛ A

[
v1

v2 − (SÛ A)−1c

]
(x) (4.10)

= XA

[
S̄−Tv1

S̄v2 − A−1c

]
(x), (4.11)

where S̄ := A−1SÛ A. Equation (4.11) is useful for describing
transformations on GKP-encoded states and operators since
the Clifford group can be realized with Gaussian operations
[1]. On a single mode, the full set of single-qubit square-lattice
GKP Clifford operations can be generated by the Fourier
transform and unit-shear operations [Eq. (3.15)], whose sym-
plectic matrices are given by

SF̂ =
[

0 −1

1 0

]
, (4.12)

SP̂ =
[

1 0

1 1

]
. (4.13)

Moreover, displacement terms of the form c = SAm, where
m ∈ Z2, give integer displacements on the characteris-
tics, which lead to transformations of the form given in
Eq. (2.29). Other GKP codes, such as the hexagonal-GKP
code [17,47,50], also have Cliffords generated entirely by
Gaussian operations.

A. Ideal GKP-encoded operators and states

Any operator on a qubit ÂL can be written in a basis of
Hermitian Pauli operators σ̂μ:

ÂL = 1
2 (r0σ̂0 + r1σ̂1 + r2σ̂2 + r3σ̂3), (4.14)

where the coefficients rμ for μ ∈ {0, 1, 2, 3} comprise the
four-component Bloch vector

r := [r0, r1, r2, r3]T, (4.15)

and σ̂0 = Î . For a normalized state within the qubit subspace
ρ̂L, r0 = 1, and the state is determined by the standard three-
component Bloch vector �r := [r1, r2, r3]T.

We now focus on the GKP encoding. In this case, the qubit
is encoded in a two-dimensional subspace of the much larger
CV Hilbert space. Within this two-dimensional subspace, the
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GKP Pauli operators are

σ̂ L
μ :=

∑
j,k

σ
μ

jk | jL〉〈kL| , (4.16)

where j, k ∈ {0, 1} label computational-basis states, and σ
μ

jk
are matrix elements of the Pauli matrices

σ0 =
[

1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, (4.17)

σ2 =
[

0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
, (4.18)

with σ0 being the two-dimensional identity matrix. For a dis-
crete encoding in a mode, there is an important distinction to
be made here. The GKP Pauli operators (4.16) have support
only within the two-dimensional GKP subspace, while the
Gaussian operators X̂L and ẐL in Eq. (3.13), as well as other
operators, such as those in Eq. (3.15), act both inside and
outside of the GKP subspace. In other words, not only do
those operators generate the specified logical transformations
within the GKP subspace, they also generate nontrivial trans-
formations outside the subspace.8

Since the Wigner transform (4.1) is linear, we can use the
decomposition in Eq. (4.14) and associated Bloch 4-vector
r to write the Wigner function for any operator in the GKP
subspace as

WÂL
(x) = 1

2

3∑
μ=0

rμW L
μ (x), (4.19)

where we use the shorthand

W L
μ (x) := W L

σ̂ L
μ

(x). (4.20)

The components of the Bloch 4-vector are found by taking the
trace of the operator ÂL with the GKP Pauli operators9

rμ = Tr
[
ÂLσ̂ L

μ

] =
∫∫

d2x WÂL
(x)W L

μ (x), (4.21)

which is performed in phase space by taking the total integral
of the product of the Wigner functions.

Thus, the Wigner function for any single-mode GKP
state or operator can be written as a linear combination of
the Wigner functions for the four GKP Pauli operators in
Eq. (4.16). These Wigner functions are expressed as two-
dimensional X functions [Eq. (2.27)]10:

W L
μ (x) :∝ ei

√
π�T

μ�−1x X√
πI

(
x + �μ

√
π

2

)
(4.22a)

= X√
πI

[
��μ/2
�μ/2

]
(x), (4.22b)

8Using the modular subsystem decomposition [41], this difference
manifests solely as different actions on the gauge subsystem, with
identical action on the logical one. This difference vanishes entirely
when the states acted upon are ideal GKP states.

9This procedure can also be used to find the projection of some
general CV operator into the GKP subspace, although this is not our
focus here.

10Note that the additional term in the phase is omitted, as �T
μ��μ =

0, ∀ �μ.

with A = √
πI describing a rectangular lattice of period

√
π ,

and :∝ indicating definition up to an overall constant. Here, �
is the two-dimensional symplectic form [66]

� :=
[

0 1

−1 0

]
, (4.23)

and each of the four Pauli operators is characterized by a two-
dimensional vector �μ:

�0 :=
[

0

0

]
, �1 :=

[
1

0

]
, �2 :=

[
1

1

]
, �3 :=

[
0

1

]
.

(4.24)

The Wigner functions for the GKP Pauli operators (4.22b)
are shown in Fig. 4(b). Each is characterized by four two-
dimensional δ functions within a unit cell of size 2

√
π ×

2
√

π . The pattern for each Wigner function then repeats in
all other unit cells and tiles the entirety of phase space.

Note that each Pauli Wigner function occupies its own,
unique set of points in phase space. These sets of points
(and the alternating signs) are compactly described by the
half-period characteristics of the X function in Eq. (4.22b).
The second characteristic shifts the points by

√
π

2 in both q
and p according to the vectors in Eq. (4.24), while the first
characteristic determines their phase (sign). The action of the
square-lattice Clifford operators can be compactly expressed
in the form of Eq. (4.11) as unit symplectic matrices (i.e.,
symplectic with binary elements) and displacement terms of
the form c = m

√
π, m ∈ Z2, as these displacements corre-

spond with the GKP qubit operations X̂L and ẐL. Thus, perfect
codewords under Clifford computation evolve as

WÛGÂLÛ †
G
(x) = 1

2

3∑
μ=0

rμX√
πI

[
�S�μ/2

S�μ/2 − m

]
(x) (4.25)

= 1

2

3∑
μ=0

rμeiπ (S�μ )T�mX√
πI

[
�S�μ/2

S�μ/2

]
(x),

(4.26)

where ÛG and S are the Gaussian unitaries and symplectic
matrices associated with the square-lattice Clifford operators.
Simply, increments along the lattice transform the encoded
Pauli operators as per Eq. (2.29) and can induce a phasing
of −1 on the encoded operators depending on m and the first
characteristic. This corresponds to rotations on the encoded
Bloch sphere. Two important features to consider in the con-
text of GKP Clifford computation are the transformed vector
S�μ (where S is a unit symplectic matrix) and its symplectic
inner product with the displacement term m. These operations
concisely describe how each GKP-encoded Pauli operator
transforms under general GKP logical operations within the
Clifford group.
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(a) (b)single unit cell

FIG. 4. Wigner functions for the ideal square-lattice GKP encoding. These Wigner functions are periodic in phase space, and thus can be
faithfully represented in a single unit cell of area 4π . (a) Wigner function for a |+T 〉 GKP state, which has r = [1, 1√

3
, 1√

3
, 1√

3
]T. (b) Wigner

functions of the GKP Pauli operators (including identity) [Eqs. (4.22)] in the single unit cell shown in (a). Dots represent δ functions, with
different styles giving relative weightings: red dot = 1

2 , blue dot = − 1
2 , open red dot = 1

2
√

3
, open blue dot = − 1

2
√

3
. For visual clarity, each

unit cell is depicted with an additional
√

π

4 in each positive and negative direction for q and p.

B. Ideal GKP states: Pure and mixed

An ideal square-lattice GKP state, parametrized by Bloch
4-vector r = [r0, �r ]T, is given by

ρ̂L = 1

2

(
r0σ̂

L
0 +

3∑
μ=1

rμσ̂ L
μ

)
, (4.27)

where σ̂ L
i are GKP Pauli operators [Eq. (4.16)] and r0 = 1

for a normalized state. The associated Wigner function is thus
represented just as in Eq. (4.19):

Wr(x) := Wρ̂L (x) = 1

2

(
r0W

L
0 (x) +

3∑
μ=1

rμW L
μ (x)

)
, (4.28)

with the usual constraints for quantum states: the Bloch 3-
vector for pure states satisfies |�r|2 = 1, while for mixed states
it satisfies |�r|2 < 1.

Owing to the periodicity of X functions, Wigner functions
for ideal GKP states appear simply as a convex sum of the
four phased lattices in the unit cell shown in Fig. 4, each of
which itself contains four points. GKP Pauli eigenstates are
particularly simple: each is characterized by a single nonzero
element in �r taking a value ±1, giving Wigner functions that
are a sum of the four positive points corresponding to the
GKP identity operator and the four points (two positive, two
negative), associated with the given GKP Pauli operator. The
discrete translational invariance of the GKP Pauli-operator
Wigner functions allows us to visualize any ideal state within a
single unit cell; an example is shown in Fig. 4(a). Importantly,
both pure and mixed ideal GKP states (described below)
can be represented by GKP Wigner functions in a single
unit cell.

Mixtures of ideal GKP states

We consider a random displacement channel

ED =
∫

d2y p(y)V̂ (y) � V̂ †(y), (4.29)

where V̂ (y) is the shift operator in Eq. (3.6). For a physical
channel, p(y) is a two-dimensional probability distribution
satisfying

∫
d2y p(y) = 1. In phase space, a displacement

generates a shift in the argument of the Wigner function as
in Eq. (4.6), giving a general relation for the displacement
channel acting on operator Ô, namely,

WED (Ô)(x) =
∫

d2y p(y)WV̂ (y)ÔV̂ †(y)(x) (4.30)

=
∫

d2y p(y)WÔ(x − y) (4.31)

= [p ∗ WÔ](x) , (4.32)

where the convolution ∗ is defined in Eq. (2.30). For a Gaus-
sian probability distribution p(y) = G�(y) from Eq. (2.23),
ED is a Gaussian displacement channel. The associated Gaus-
sian convolution in phase space, Eq. (4.32), generates the
same transformation as the blurring operation defined in
Eq. (2.31). When this channel acts on an operator ÔX whose
Wigner function is a two-dimensional X function [Eq. (4.7)],
the resulting Wigner function is

WED (ÔX )(x) = θA

[
v1

v2

]
(x, 2π i�). (4.33)

The blurring operation broadens each δ function into a Gaus-
sian parametrized by �, producing a Siegel θ function [see
Eq. (2.33)]. From Eq. (4.33), we find that a Gaussian random
displacement channel on an ideal square-lattice GKP state
ED(ρ̂L ) gives the Wigner function

W̃r(x) =
3∑

μ=0

rμθ√
πI

[
��μ/2

�μ/2

]
(x, 2π i�), (4.34)

where the tilde indicates an approximate version of Wr. This
blurred ideal GKP Wigner function retains its periodicity and
thus is still unphysical. However, the periodic marginal dis-
tributions (within a unit cell) have been smeared out and are
no longer pointlike. Finally, we remark that ρ̂L may be mixed
before the Gaussian displacement channel is applied. Thus,

022408-11



MENSEN, BARAGIOLA, AND MENICUCCI PHYSICAL REVIEW A 104, 022408 (2021)

in general, there are two potential types of mixing involved:
logical GKP level and CV level.

V. APPROXIMATE GKP STATES IN PHASE SPACE:
EFFECTS OF AN ENVELOPE

GKP states can be approximated in many ways, some
of which are laid out, analyzed, and compared in Matsuura
et al. [43]. A feature of useful approximations is that in some
parameter limit, the spikes of the Wigner function approach
Dirac δ functions, thus periodically localizing the Wigner
support near appropriate multiples of

√
π

2 ; this is the case
for the Gaussian mixtures of ideal states in Eq. (4.34) for
lim�→0 G�(y). An important additional requirement for phys-
ical approximations is that they are normalizable: this requires
an envelope function, which ensures that the spike amplitudes
get smaller with distance from the origin. We call states with
both of these properties approximate GKP states.

We focus on several useful approximate GKP states
and their phase-space representations, with attention to the
high-quality limit where such states are useful for quantum
computing and error correction. We first consider phase-space
descriptions of the approximate GKP states considered in
Sec. III B, those generated by acting the embedded-error oper-
ator on ideal GKP states. A Wigner-function approach allows
us to represent not only pure states of this type but also
mixed states, which arise when the embedded-error operator
is applied to mixed ideal states. A feature of these states is
that the spike and envelope covariances saturate a minimum
uncertainty relation: for fixed spikes, smaller envelopes than
the minimum are unphysical. As such, we refer to this type
of state as a minimum-envelope approximate GKP state. (We
cannot generically call these states “pure approximate GKP
states” because the encoded logical information may still be
mixed.) In the section below, we derive the conditions for
physical envelopes from the embedded-error operator in the
limit of low noise.

A. Embedded-error operator

In Sec. III B, we introduced the embedded-error operator
ξ̂ (�) and examined the approximate GKP states that result
when applying it to a pure ideal GKP state. In phase space, the
effects of this operator are twofold: It broadens the spikes of a
GKP Wigner function and also applies the minimum envelope
commensurate with those spikes. A phase-space treatment
allows us to widen its application significantly: ξ̂ (�) can
also be applied to mixed ideal GKP states to produce mixed,
approximate GKP states, again with a minimum envelope
that normalizes the state. These are examples of minimum-
envelope approximate GKP states. Generally, the (Hermitian,
nonunitary) embedded-error operator ξ̂ (�) can be applied to
any CV operator Ô via

ˆ̄O := ξ̂ (�)Ôξ̂ (�). (5.1)

This nonunitary transformation can be performed directly in
phase space, where the composition of two operators ÂB̂ is

described by the Moyal product [70,71] (or star product)
between their respective Wigner functions [found individually
using Eq. (4.1)]:

WÂB̂(q, p) = [WÂ � WB̂](q, p)

:= 2

π

∫
dq′dq′′d p′d p′′WÂ(q + q′, p + p′) (5.2)

× WB̂(q + q′′, p + p′′)e2i(q′ p′′−p′q′′ ). (5.3)

Since the Moyal product is associative [70,71], the Wigner
function for the operator in Eq. (5.1) can be written as

W ˆ̄O(x) = Wξ̂ (�)Ôξ̂ (�)(x) (5.4)

= Wξ̂ (�0 )R̂ÔR̂† ξ̂ (�0 )(Rϕx) (5.5)

= [
Wξ̂ (�0 ) � WR̂ÔR̂† � Wξ̂ (�0 )

]
(Rϕx), (5.6)

where the subscript operators R̂ are shorthand for R̂(ϕ), and
the noise matrix � is diagonalized by Rϕ [Eq. (3.18)].

Low-noise limit

In the limit of low noise � � I (all eigenvalues �1), the
embedded-error operator factorizes into approximately com-
muting exponential operators [see Eq. (3.23b)]. Its Wigner
function factorizes accordingly with respect to the Moyal
product [70,71]:

Wξ̂ (�0 )(x) ≈ [
W

e− 2
2 p̂2 � W

e− κ2
2 q̂2

]
(x) (5.7a)

≈ [
W

e− κ2
2 q̂2 � W

e− 2
2 p̂2

]
(x). (5.7b)

In this limit, the exponential operators can be applied succes-
sively in either order by substituting either of the forms above
into Eq. (5.6).

On wave functions, each exponential operator applies
an envelope or a convolution (depending on the basis)
[Eq. (3.34)]. In phase space, however, the enveloping and
convolution operations are not independent of one another.
For example, a physical transformation that applies an en-
velope in one quadrature is always accompanied by blurring
of the conjugate quadrature, necessary in order to ensure the
state remains physical. The converse is not true, however:
blurring alone is a physical operation, and as such, it does not
necessitate a conjugate envelope. Such envelope-free blurring
does not preserve purity, and an example is blurring from a
Gaussian random displacement channel [Eq. (4.33)].

The resulting Moyal products can be evaluated simply
using a result derived in Appendix E and summarized here.
Specifically, the Moyal products for an arbitrary operator di-
agonal in q̂ or in p̂, χ (q̂) and ϕ( p̂), respectively, acting on
some operator Ô can be expressed as a simple convolution
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[Eqs. (E21) and (E26), respectively]:

Wχ (q̂)Ôχ∗(q̂)(q, p) = [Wχ (q̂) � WÔ � Wχ∗(q̂)](q, p)

=
∫

dw W|χ〉〈χ |(q,w)WÔ(q, p − w),

(5.8a)

Wϕ( p̂)Ôϕ∗( p̂)(q, p) = [Wϕ( p̂) � WÔ � Wϕ∗( p̂)](q, p)

=
∫

dw W|ϕ〉〈ϕ|(w, p)WÔ(q + w, p).

(5.8b)

Note the appearance of W|χ〉〈χ |(q, p) and W|ϕ〉〈ϕ|(q, p), which
are Wigner functions for the (potentially unnormalized or
even unnormalizable) states

|χ〉 =
∫

ds χ (s)|s〉q =
√

2πχ (q̂)|0〉p, (5.9a)

|ϕ〉 =
∫

dt ϕ(t )|t〉p =
√

2πϕ( p̂)|0〉q, (5.9b)

generated by acting the diagonal operators χ (q̂) and ϕ( p̂) on
an unbiased state in the conjugate basis. Note that |ϕ〉 is a
state whose momentum wave function is ϕ(t ). The relations
in Eqs. (5.8) have an operational interpretation in a telepor-
tation setting: they describe the Kraus map that arises for an
operator Ô (typically taken to be a state ρ̂) undergoing single-
mode teleportation with ancilla state |χ〉 or F̂ |ϕ〉, respectively
[37].

For use with GKP encodings, we consider the embedded-
error operator acting on operators ÔX, whose Wigner
functions are two-dimensional X functions [Eq. (4.7)]. This
includes but is not limited to ideal square-lattice GKP states.
Using the decomposition of the embedded-error operator
(5.7), and the Moyal product relation (5.8), we show in
Appendix E1 that the Wigner function for the noisy op-
erator ˆ̄OX = ξ̂ (�)ÔXξ̂ (�) is given in the low-noise limit
by

W ˆ̄OX
(x) =

[
Wξ̂ (�0 ) � XSRA

[
v1

v2

]
� Wξ̂ (�0 )

]
(Rϕx) (5.10)

≈ π

κ
G 1

2 �0
(Rϕx)

[
XSRA

[
v1

v2

]
∗ G 1

2 ��−1
0 �T

]
(Rϕx)

(5.11)

= π

κ
G�env (x)θA

[
v1

v2

]
(x, 2π i�spike). (5.12)

The factor π/(κ ) arises from the exponential operators in
Eq. (3.23) (see Appendix E1), and plays no physical role
for approximate GKP states whose Wigner functions must
be normalized after application of the noise operator anyway.
Equation (5.12) describes a broad two-dimensional Gaussian

envelope that damps a set of Gaussian spikes, with respective
covariance matrices given by11

�env = 1

2
�, (5.13a)

�spike = 1

2
�T�−1� = 1

2

�

det �
. (5.13b)

The last equality holds because the 2 × 2 noise matrix is
symmetric � = �T. The covariance matrices for the spike
and envelope are thus directly proportional to each other:

�env = �spike

det(2�spike)
←→ �spike = �env

det(2�env)
. (5.14)

This critical relationship is the minimum-envelope condition.
As shown below in Sec. V C, in the context of approximate
GKP states with a fixed �spike, smaller envelopes than allowed
by Eq. (5.14) are unphysical, and larger envelopes correspond
to mixtures over minimum envelopes: such states are physical
but can never be pure.

B. Minimum-envelope approximate GKP states

Minimum-envelope approximate GKP states ˆ̄ρL are those
generated by applying the embedded-error operator to an ideal
GKP state ρ̂L [Eq. (4.27)]:

ˆ̄ρL = 1

N ξ̂ (�)ρ̂L ξ̂ (�), (5.15)

with normalization N = Tr{ρ̂L[ξ̂ (�)]2} required because the
embedded-error operator is not unitary. If the ideal GKP state
is a pure state ρ̂L = |ψL〉〈ψL|, then the approximate GKP state
is also a pure state ˆ̄ρL = |ψ̄L〉〈ψ̄L| (as established above in
the context of wave functions). The Wigner function for the
approximate GKP state in Eq. (5.15) is

W̄r(x) := W ˆ̄ρL
(x) = 1

N
[
Wξ̂ (�) � W L

r � Wξ̂ (�)

]
(x) (5.16)

= 1

N

3∑
μ=0

rμ

[
Wξ̂ (�) � W L

μ � Wξ̂ (�)

]
(x), (5.17)

where r is the Bloch 4-vector parametrizing the qubit
state, W L

r (x) is the ideal-GKP Wigner function [Eq. (4.28)],
Wξ̂ (�)(x) is the Wigner function for the embedded-error op-
erator, and the normalization factor N is inherited from
Eq. (5.15). The second line is written in terms of the
embedded-error operator acting directly on the Wigner func-
tions for the GKP Paulis [Eq. (4.22b)], which gives rise to
“noise-broadened” GKP Pauli Wigner functions.

The limit of low embedded error � � I is examined in
general in Sec. V A. From Eq. (5.12), the Wigner function can

11The parameters κ2 and 2 are variances of Gaussian terms in the
approximate GKP wave functions. The elements of the covariance
matrices here correspond to measured quadrature variances [propor-
tional the square modulus of the wave functions (2.3)], which is the
origin of the 1

2 factor.
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(d)

(a) (b)

(c)

-0.1

0

0.1

0.2

0.3

FIG. 5. Wigner functions for minimum-envelope approximate
GKP states (5.18). Panel (a) shows the approximate Pauli eigenstate
|0̄L〉 with Bloch 3-vector r = [1, 0, 0]T, and (b) shows the approxi-
mate T -type magic state |+T̄L〉 with r = [ 1√

3
, 1√

3
, 1√

3
]T. Both states

have spike covariance matrix �spike = 1
2

[
(0.2)2 0

0 (0.2)2

]
and associ-

ated minimum envelope given by Eq. (5.14). Panels (c), (d) show the
same logical states, respectively, but with skewed spike covariance

matrix �spike = 1
2 RT

π/3

[
(0.2)2 0

0 (0.4)2

]
Rπ/3 and associated envelope,

where Rπ/3 is a rotation matrix [Eq. (3.17)]. Ovals are 2-σ contours
for the Gaussian envelopes, and ticks indicate integer multiples of√

π .

be written

W̄r(x) ≈ 1

N G�env (x)
3∑

μ=0

rμθ√
πI

[
��μ/2

�μ/2

]
(x, 2π i�spike),

(5.18)

with each term in the sum resulting from the embedded-error
operator acting on the GKP Pauli operators. The features of
approximate GKP states in phase space are similar to those for
wave functions [Eq. (3.34)]: the lattice of points (a X func-
tion) is convolved with and enveloped by Gaussian functions.
The Gaussian envelopes damp distant regions of quasiprob-
ability and, along with the Gaussian convolutions, ensure
that the Wigner function and its marginals are normalizable.
For these minimum-uncertainty states, the spike and envelope
covariance matrices are related by the minimum-envelope
condition in Eq. (5.14). Examples are shown in Fig. 5.

The normalization factor in Eq. (5.18) is given by a sum of
four integrals, one for each of the noise-broadened GKP Pauli
operators including the GKP identity operator

N =
∫

d2x G�env (x)
3∑

μ=0

rμθ√
πI

[
��μ/2
�μ/2

]
(x, 2π i�spike).

(5.19)

The Wigner functions for ideal GKP Pauli operators: (μ =
1, 2, 3) [Eq. (4.22b)] are traceless (their integral over phase
space is zero). This fact is visually evident in Fig. 4: each
has two positive and two negative spikes within a unit cell.

In Eq. (5.19), the envelope arising from the embedded-error
operator disturbs this property. However, when the noise is
low enough, the associated integrals rapidly approach zero
(see Fig. 9 in Appendix D). In this limit, the envelope can
be ignored and the integrals performed, with each becoming a
θ function evaluated at the origin (referred to as a θ constant
[53]). The nonidentity terms vanish, and the normalization is

N ≈ θ√
πI

[
0

0

]
(0, 2π i�env) ≈ 1√

π
2, κ2 � 1. (5.20)

Further details of the calculation are given in Appendix D, and
a complementary description can be found in Matsuura et al.
[43].

C. Envelope condition for physical states

The minimum-envelope condition given in Eq. (5.14)
suggests that some enveloped θ functions correspond to ap-
proximate GKP states, pure or mixed, but when the envelopes
are too small, the Wigner functions no longer represent
physical states. Here, we make this statement concrete and
emphasize that with it one can construct physical descriptions
of GKP-encoded information directly in phase space.

We begin by generalizing the minimum-envelope GKP
Wigner function in Eq. (5.18). By first displacing the Wigner
function of an ideal GKP state by x′, applying the embedded-
error operator, and then displacing back, we produce a GKP
Wigner function with the spikes in the appropriate places and
the same spike covariance �spike, but with a shifted envelope:

W̄r(x) = 1

N G�env (x − x′)
3∑

μ=0

rμθ√
π

[
��μ/2

�μ/2

]
(x, 2π i�spike).

(5.21)

This state is also a minimum-envelope state [�env satisfies
Eq. (5.14)], meaning that if the original ideal GKP state were
pure, this state will also be pure. Taking mixtures of these dis-
placements (prior to applying the embedded-error operator)
with positive distribution h(x) � 0 produces a GKP state with
Wigner function

W̄r(x) = 1

N g(x)
3∑

μ=0

rμθ√
π

[
��μ/2

�μ/2

]
(x, 2π i�spike) (5.22)

with the same, fixed spike covariance �spike, and with the en-
velope g(x) given by a convolution of h(x) with the minimum
envelope G�env (x):

g(x) = [h ∗ G�env ](x) =
∫

d2x′ h(x′)G�env (x − x′). (5.23)

Inverting this relation using a deconvolution gives a sufficient
condition for physically allowed envelopes when the spike
covariance �spike is fixed. In terms of the deblurring operator
(2.32), this physical-envelope condition is

D−1
�env

g(x) � 0. (5.24)

In short, admissible envelopes for physical GKP Wigner
functions are positive semidefinite under the action of the
deblurring operator associated with the minimum envelope.
Minimum-envelope states have singular distributions h(x) =
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FIG. 6. Envelope effects for approximate GKP states. In the first row, we plot Wigner functions of the form in Eq. (5.22) for fixed spike

covariance �spike = 1
2 RT

π/3

[
(0.2)2 0

0 (0.4)2

]
Rπ/3 [Rπ/3 is a rotation matrix, Eq. (3.17)], all of which encode a logical |0L〉. The solid ovals are

2-σ error ellipses for the Gaussian envelopes, red is positive, blue is negative, and the color scale is normalized for each plot separately.
(a) A minimum-envelope state, Eq. (5.18), with �env given by Eq. (5.14). (b) A larger-than-minimum envelope, which indicates mixing over
minimum envelopes, and (c) an envelope that is too small, meaning that this Wigner function does not represent a physical quantum state.
In the second row, we plot Wigner functions for a logical |+H〉 state with Bloch 3-vector r = [ 1√

2
, 0, 1√

2
]T with fixed spike covariance

�spike = 1
2

[
(0.25)2 0

0 (0.25)2

]
whose envelopes are related to a triangle, indicated in blue. (d) A “spotlight” envelope arises from a convolution of

the minimum envelope with a δ function at each point using Eq. (5.23). (e) A convolution of the minimum envelope with the enclosed triangular
region. The minimum envelope is shown on the plot for reference. (f) A hard-boundary exclusion envelope determined by the triangle. In this
case, the minimum envelope is incompatible with this Wigner function [deconvolving with the minimum envelope violates Eq. (5.24)], and
such a Wigner function does not represent a physical state. This is apparent visually in the fact that the triangle contains features sharper that
those of the minimum envelope, so the minimum envelope cannot “fit into” the triangle.

δ(x − x′) that saturate Eq. (5.24) and can describe pure states.
Other physical envelopes describe mixed states.

A key benefit of the physical envelope condition in Eq.
(5.24) is that representations of GKP-encoded information can
be constructed directly in phase space. One begins by laying
out a periodic array of Gaussian spikes, described by four
two-dimensional θ functions of covariance matrix �spike (cor-
responding to noise-broadened Pauli Wigner functions) and
a Bloch vector r determined by the state. Then, an envelope
is applied, and the physical-envelope condition in Eq. (5.24)
determines whether this envelope (a) is physically valid, (b)
corresponds to a minimum-envelope state, or (c) corresponds
to a mixture (either discrete or continuous) over minimum
envelopes. Examples of these scenarios are given in Fig. 6.

Our discussion here has focused on varying the envelope
for a fixed spike covariance �spike in order to introduce the
concept of mixing over minimum envelopes. For these states,
the minimum-envelope condition (5.14) implies that larger
spikes have smaller minimum envelopes. This is contrary to

the case of a minimum-uncertainty approximate GKP state fed
through a displacement channel, Eq. (4.29). In this case, the
spike size is increased by the channel, but so is the envelope.
This is another way to see that such a state must be a mixed
state (since its envelope is no longer minimal).

D. Connection between low amounts of coherent
and incoherent noise

A Gaussian mixture of ideal GKP states, Eq. (4.34) arises
from a convolution of X functions that yields θ functions,
which remain unnormalizable and are thus unphysical. To
map these states to normalizable, approximate GKP states,
Eq. (5.18), one applies an appropriate envelope at least as
large as that specified by the minimum-envelope condition in
Eq. (5.20).

How is this performed in the other direction, i.e., what
is the map that takes approximate GKP states and produces
blurred ideal GKP states? The answer, given by Noh and
Chamberland [9], is to take the approximate GKP state ˆ̄ρL
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and apply random multiples of 2
√

π shifts in position and
momentum, via powers of the primitive stabilizers ŜX and ŜZ

in Eq. (3.14):

ˆ̄ρ ′
L =

∑
n∈Z2

[ŜZ ]n2 [ŜX ]n1 ˆ̄ρL[ŜX ]n1 [ŜZ ]n2 . (5.25)

In phase space, the shifts are translations of the argument of
the approximate GKP Wigner function

W ˆ̄ρ ′ (x) =
∑
n∈Z2

W ˆ̄ρL
(x + 2n

√
π ) (5.26)

∝
∑
n∈Z2

G�env (x + 2n
√

π )

×
3∑

μ=0

rμθ√
πI

[
��μ/2

�μ/2

]
(x, 2π i�spike), (5.27)

where we used the quasiperiodicity of the θ function
[Eq. (2.26)] to eliminate the n dependence. This is unsur-
prising since the stabilizers are designed to act trivially on
properly periodic codewords. The pulse train of Gaussian
envelopes can also be written as a θ function,∑

n∈Z2

G�env (x + 2n
√

π ) ∝ θ2
√

πI(x, 2π i�env) (5.28)

with spike covariance �env. In the high-quality limit, the
eigenvalues of �env are much larger than the square of the
period 2

√
π , and θ2

√
πI(x, 2π i�env) ≈ 1. Equation (5.27) then

becomes

W ˆ̄ρ ′ (x) ≈
3∑

μ=0

rμθ√
πI

[
��μ/2

�μ/2

]
(x, 2π i�spike), (5.29)

which is the Wigner function for Gaussian mixture of ideal
GKP states [Eq. (4.34)]. This shows the connection between
coherent and incoherent noise in the high-quality GKP-state
limit.

VI. GKP ERROR CORRECTION IN PHASE SPACE

GKP error correction is a procedure designed to detect and
correct CV-level errors on GKP-encoded quantum informa-
tion. GKP error correction proceeds in two steps. First, the
state to be corrected ρ̂in is coupled to an ancilla mode prepared
in a GKP state |0L〉, which is then measured in the position
basis, yielding a measurement outcome mq. Then, this process
is repeated using another GKP ancilla, which is measured
in momentum without outcome mp. We refer to this part of
the procedure as syndrome extraction as it involves acquiring
the measurement-outcome syndrome {mq, mp}. In the second
part of the procedure, the syndrome is used in a decoder to
determine the likelihood of a logical error having occurred. As
determined by the decoder, a recovery operation consisting of
shifts in phase space is applied.

This entire procedure projects the noisy input state ρ̂in into
the GKP code space, with CV-level noise being projected into
potential qubit-level errors. When nonideal GKP ancillae are
used, the input state is projected into a subspace commen-
surate with the quality of these ancillae [37]. That is, the
error-correction procedure cannot reduce the CV-level noise
on the input state to below that of the ancillae.

A. Kraus operator for GKP error correction

The simplest decoder for the square GKP code takes each
measurement outcome and divides it into two pieces: the near-
est integer multiple of

√
π and a remainder. For example, the

first half of GKP syndrome extraction gives outcome mq ∈ R
that splits as

mq = �mq�√
π + {mq}√π , (6.1)

where the nearest integer and remainder of real number r (with
respect to some α > 0) are given by the functions

�r�α := α
⌊ r

α
+ 1

2

⌋
, (6.2)

{r}α := r − �r�α , (6.3)

and �·� is the floor function. Note that �r�α is an integer
multiple of α, and {r}α ∈ [−α

2 , α
2 ). Then, a recovery is given

by a shift in position by the remainder X̂rec := X̂ (−{mq}√π ).
An analogous procedure applies for the other half of GKP er-
ror correction: the outcome mp is divided as mp = �mp�√

π +
{mp}√π , and a momentum shift Ẑrec := Ẑ (−{mp}√π ) is ap-
plied.

The circuit for GKP error correction using this decoder is

(out) Zrec Xrec • (in)

• p〈mq| • |0L〉
• p〈mp| • |0L〉

(6.4)

which is read in a right-to-left fashion. We represent a pro-
jective measurement of observable B̂ with outcome m using
the bra B〈m|. In the circuit, a two-mode position-controlled
momentum-shift gate is

•
ĈZ := eiq̂⊗q̂ =

•
(6.5)

and a two-mode position-controlled position-shift gate is

F † • F
Ĉ

(2,1)
X := e−ip̂⊗q̂ =

•
=

•
(6.6)

where the second wire is the control and the first wire is
the target, indicated by the superscripts on Ĉ(2,1)

X . We also
note that e−i p̂⊗q̂ = F̂ †

1 ĈZ F̂1, where F̂1 is the Fourier transform
operator, Eq. (3.15), on the first mode.

The Kraus operator for GKP error correction K̂EC(mq, mp)
describes the map from the input state to the output state
through the error-correction procedure

ρ̂out = 1

Pr(mq, mp)
K̂EC(mq, mp)ρ̂inK̂†

EC(mq, mp). (6.7)

The output state is normalized by the probability to obtain the
outcomes

Pr(mq, mp) = Tr[K̂†
EC(mq, mp)K̂EC(mq, mp)ρ̂in]. (6.8)
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Since the two pieces of syndrome extraction and subsequent
correction occur independently, we express the Kraus operator
as

K̂EC(mq, mp) = K̂p(mp)K̂q(mq). (6.9)

Note that a benefit of the right-to-left circuit convention we
employ is that we can read off unitaries and Kraus operator
(as below) from the circuit in the same order that they appear
in equations.

To allow for both ideal and approximate GKP states,
we consider the Kraus operator for each of the two halves
of GKP syndrome extraction (one for position and one for
momentum) using arbitrary ancillae, both in the pure state
|χ〉 = ∫

ds χ (s) |s〉q = ∫
dt χ̃ (t ) |t〉p. The circuit for the first

syndrome extraction is

(out) • (in)

p mq| • |χ
(6.10)

and the second is nearly identical, with the measurement
replaced by p〈mp| and the Fourier transforms in Eq. (6.11) in-
cluded. The Kraus operators for syndrome extraction (before
the corrective shift) are

K̂q,syn(mq) := p〈mq|ĈZ |χ〉 = χ̃ (mq − q̂), (6.11)

K̂p,syn(mp) := p〈mp|F̂ †
1 ĈZ F̂1 |χ〉 = χ̃ (mp − p̂). (6.12)

For GKP error correction, we use pure, approximate GKP
states |0̄L〉 [Eq. (3.32)] with symmetric noise � ∝ I as an-
cillae. Such states have the property that F̂ |0̄L〉 = F̂ † |0̄L〉 =
|+̄L〉, where the noise in |+̄L〉, �spike and �env, is the same as
for |0̄L〉. Ideal GKP states have this property trivially. These
GKP ancillae, |0̄L〉 = ∫

ds ψ̄0(s)|s〉q, with position wave func-
tion ψ̄0(s) that represents either ideal GKP states [Eq. (3.10)]
or approximate GKP states [Eq. (3.34)], yield Kraus operators

K̂q(mq) = X̂ ({mq}√π )ψ̄+(mq − q̂), (6.13a)

K̂p(mp) = Ẑ ({mp}√π )ψ̄+(mp − p̂), (6.13b)

where ψ̄+(s) is the position wave function for |+̄L〉 since
˜̄ψ0(s) = ψ̄+(s) for these states. Note that we have dropped

the L subscript on wave functions for brevity. Together, these
operators give the Kraus operator for GKP error correction
using the simple decoder in Eq. (6.7).

We can transform the Kraus operators into a useful form by
extracting the outcome-dependent shifts in Eqs. (6.13), e.g.,
ψ̄+(mq − q̂) = X̂ †(mq)ψ̄+(q̂)X̂ (mq), where we also use the
fact that ψ̄+(x) = ψ̄+(−x). Performing the analogous trans-
formation on ψ̄+(mp − p̂), we get

K̂q(mq) = X̂ (−�mq�√
π )ψ̄+(q̂)X̂ (mq), (6.14a)

K̂p(mp) = Ẑ (−�mp�√
π )ψ̄+( p̂)Ẑ (mp). (6.14b)

Each describes a shift (position or momentum) by the respec-
tive measurement outcome on the input state, followed by
application of ψ̄+(q̂) or ψ̄+( p̂), and then finally by another
shift by an integer multiple of

√
π . When combined together,

the full Kraus operator is

K̂EC(mq, mp) = eiφX̂ (−�mq�√
π )Ẑ (−�mp�√

π )

× ψ̄+( p̂)ψ̄+(q̂)X̂ (mq)Ẑ (mp), (6.15)

with phase φ = −{mq}√π�mp�√
π . The important term in this

expression is ψ̄+( p̂)ψ̄+(q̂), which becomes the projector onto
the square-lattice GKP subspace when the ancillae are ideal
GKP states [37,50], as we show in Sec. VIB2.

B. GKP error correction in phase space

GKP error correction can be described directly in phase
space using the Moyal product, Eq. (5.2),

K̂EC(mq, mp)ρ̂inK̂†
EC(mq, mp)

→ [
WK̂EC

� Wρ̂in � WK̂†
EC

]
(q, p), (6.16)

where WK̂EC
(q, p) is the Wigner function for the GKP error-

correction Kraus operator. Since K̂EC(mq, mp) is the product
of two operators, Eq. (6.9), we can also separate its Wigner
function using the Moyal product:

WK̂EC
(q, p) = [

WK̂p
� WK̂q

]
(q, p), (6.17)

where WK̂q
(q, p) and WK̂p

(q, p) are the Wigner functions for
the two halves of GKP error correction. This allows us to
apply each half of GKP error correction separately in phase
space.

To isolate the key features of GKP error correction, we con-
sider the specific case of outcomes {mq, mp} = {0, 0}, noting
that the shifts associated with other outcomes in the general
expression in Eq. (6.15) can be applied in phase space using
Eq. (4.6). In this case, K̂EC(0, 0) = ψ̄+( p̂)ψ̄+(q̂), with each
half of GKP error correction given by a Kraus operator di-
agonal in either q̂ or p̂. Then, we make use of Eqs. (5.8),
which show that Moyal products with such diagonal operators
describe phase-space convolutions. Each half of GKP error
correction gives a map in phase space:

Wψ̄+(q̂)ρ̂ψ̄∗+(q̂)(q, p) =
∫

dw W+(q,w)Wρ̂ (q, p − w),

(6.18a)

Wψ̄+( p̂)ρ̂ψ̄∗+( p̂)(q, p) =
∫

dw W0(w, p)Wρ̂ (q + w, p),

(6.18b)

where W+(q, p) is the Wigner function for GKP state |+̄L〉,
and W0(q, p) is the Wigner function for GKP state |0̄L〉. This
Wigner function is described either by a two-dimensional
X function for an ideal GKP ancilla (4.28) or by a two-
dimensional θ function with a Gaussian envelope for an
approximate GKP ancilla (5.18). The phase-space map for the
error-correction circuit in Eq. (6.4) with {mq, mp} = {0, 0} is
found by applying Eq. (6.18a) followed by Eq. (6.18b):

Wψ̄+( p̂)ψ̄+(q̂)ρ̂inψ̄+(q̂)ψ̄+( p̂)(q, p)

∝
∫∫

dw′dw′′ W0(w′, p)W+(q + w′,w′′)

× Wρ̂in (q + w′, p − w′′). (6.19)
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Noting that the Wigner functions for the symmetric |0L〉 and
|+L〉 states considered here are related by swapping their
arguments W0(q, p) = W+(p, q), we can interpret the two con-
volutions together as a map that performs the same operation
in position as in momentum, which periodically filters support
in a one quadrature while replicating periodic features of the
ancilla in the conjugate quadrature. We discuss this process
more thoroughly in the following section.

The phase-space error-correction formula in Eq. (6.19) can
be used for other measurement outcomes by simply using
ρ̂in → X̂ (mq)Ẑ (mp)ρ̂inẐ†(mp)X̂ †(mq) and then applying the
corrections (displacements) specified in Eq. (6.15) to get the
final output state. Note that if one were to perform the two
halves of error correction in the other order, i.e., p correction
before q correction, then the phase-space map is different.
A more general form of Eq. (6.19) that allows for arbitrary
pure (and different) ancillae is given in Eq. (E28). Finally, we
note that for mixed states (ancillae and/or the input state), the
linearity of Wigner functions enables us to consider syndrome
extraction as a weighted sum of error-corrected pure states.

1. Phase-space effects of GKP error correction

The effects of GKP error correction can be understood
by inspecting each half of GKP error correction separately.
Consider the first half, described by Eq. (6.18a), that corrects
CV errors in position. The input state Wρ̂in (q, p) experiences
a convolution in momentum with W+(q, p), weighted by the
pointwise product in position. We refer to this phase-space
operation as “raking” in a single quadrature since the periodic
spikes of the GKP ancilla act to clear away any parts of
Wρ̂in (q, p) that do not align with the

√
π -periodic GKP grid

in position. (The other half of GKP error correction performs
raking in momentum.) Second, the momentum convolution
periodically replicates features of Wρ̂in (q, p) along the p di-
rection in phase space (up to the envelope associated with the
ancilla state). This feature arises from the convolution of a
function f (x) with a univariate X function,[

f ∗ XT

[
v1

v2

]]
(x) =

√
|T |

∑
n∈Z

e−2π iv1n f (x + nT + v2T ),

(6.20)

that periodically replicates the function f over the comb while
respecting the characteristics of the X function that give half-
period displacements and periodic negativity.

For high-quality approximate GKP states, raking from
Eq. (6.18a) multiplies the Gaussian spikes of the input state
by the Gaussian spikes of the ancilla. A product of Gaussians
yields another Gaussian

G�1 (x)G�2 (x) ∝ G�12 (x), (6.21)

with the key feature that the precision (inverse covariance
matrix) is additive:

�−1
12 = �−1

1 + �−1
2 . (6.22)

This means that the precision of the output Wigner function’s
spikes is bounded from below by the precision of the ancilla
spikes, regardless of whether the spikes have the same mean.
Since the precision of a Gaussian can only increase under
multiplication with another Gaussian, the quality of the ancilla

(d)

(a) (b)

(c)

momentum
 rake

momentum
 rake

position
 rake

position
 rake

FIG. 7. Applying GKP error correction, step by step, to an input
vacuum state for syndrome {mq, mp} = {0, 0}. (a) Vacuum state.
(b) Momentum-raked vacuum. (c) Position-raked vacuum. (d) Vac-
uum raked in both quadratures gives a GKP H -type magic state [50].
As discussed in Sec. VI, when high-quality GKP ancilla states are
used for error correction, the two raking operations approximately
commute, and we plot (d) under this assumption.

states (�spike) sets the lower bound for the quality of the output
state after error correction.

In summary, each half of GKP error correction rakes an
input Wigner function, which periodically damps support in
each quadrature and replicates in the other, with the noise in
the GKP ancillae determining the strength of the effect. When
performed consecutively, the two halves produce a projection
into an approximate GKP subspace defined by the ancillae
[37]. This projection can be applied to any state (not just
noisy GKP states), as illustrated in Fig. 7, where an input
vacuum state is consecutively raked in both quadratures for
syndrome {0, 0}. Additionally, this projection applies even
for {mq, mp} �= {0, 0} since the error-correction procedure (in-
cluding the corrective shifts) realigns the spikes with the
phase-space grid that defines square-lattice GKP encodings.
Although the quality of a damaged GKP state is restored
to that of the GKP ancillae and the state is realigned with
the proper grid, in general there may still be qubit-level er-
rors incurred during this process. In a fault-tolerant setting,
these errors are dealt with by concatenation [9–11,35]. An
equivalent perspective on using GKP error correction for error
mitigation and for GKP magic-state preparation was given by
Fabre et al. [44] using a modular decomposition of the phase
plane.

2. Error correction with ideal GKP ancillae

For ideal GKP ancillae in the GKP error-correction circuit
[Eq. (6.4)], analysis of an error-corrected state is simpler
due to the properties of X functions under integration. In
this setting, error syndromes arise only from the input state.
Just as above, we focus on {mq, mp} = {0, 0}, noting that
outcome-dependent shifts can be applied first to the input state
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and then after the error-correction projection as described by
Eq. (6.15). In this case, the Kraus operator for ideal GKP
ancillae is

K̂EC(0, 0) = ψ+( p̂)ψ+(q̂) = ψ+(q̂)ψ+( p̂) = �̂L, (6.23)

where �̂L is the projector onto the square-lattice GKP sub-
space [37,50]

�̂L := |0L〉〈0L| + |1L〉〈1L| . (6.24)

Thus, the error-correction map, Eq. (6.7),

K̂EC(0, 0)ρ̂inK̂†
EC(0, 0) ∝ �̂Lρ̂in�̂L (6.25)

simply projects the input state into the ideal GKP subspace. In
phase space, the convolutions in Eq. (6.19) can be evaluated
using the Wigner functions for the ideal GKP ancillae (3.10),
giving the error-corrected Wigner function in terms of two-
dimensional X functions

WK̂ECρ̂inK̂†
EC

(x)

∝ X√
π

2 I(x)
∑

m∈Z2

e−2π i( 1√
π

xT�m)Wρ̂in (x + m
√

π ).

(6.26)

Other measurement outcomes are found by using a modified
input state that has been displaced by X̂ (mq)Ẑ (mp), as is evi-
dent in Eq. (6.15). This X function restricts the support of the
distribution to multiples of

√
π

2 in both q and p. In the extreme
limit of perfect ancillae, the only nonzero quasiprobability
that can exist in the output is in some way associated with
the encoding. In fact, one can consider the identity

X√
π

2 I(x) = 1

2

3∑
μ=0

X√
πI

[
0

�μ/2

]
(x). (6.27)

Simply, the only nonzero coordinates in the output distribution
are exclusively within the set of encoded coordinates, with
distinct subsets of nonzero coordinates for each component of
the encoded Bloch 4-vector. We can expand in this basis and
use the properties of each X function

WK̂ECρ̂inK̂†
EC

(x) ∝ 1

2

3∑
μ=0

X√
πI

[
0

�μ/2

]
(x)

×
∑

m∈Z2

e−2π i( 1√
π

xT�m)Wρ̂in (x + m
√

π )

(6.28)

= 1

2

3∑
μ=0

∑
n,m∈Z2

δ

(
x + n

√
π + �μ

√
π

2

)

×e2π i[( 1
2 �μ )T�m]

×Wρ̂in

(
−n

√
π − �μ

√
π

2
+ m

√
π

)
,

(6.29)

which with the new index j := n − m has the form

= 1

2

3∑
μ=0

∑
j,n∈Z2

δ

(
x + n

√
π + �μ

√
π

2

)
e−2π i( 1

2 (��μ )Tn)

×e2π i( 1
2 (��μ )Tj)Wρ̂in

(
− j

√
π − �μ

√
π

2

)
(6.30)

= 1

2

3∑
μ=0

W L
μ (x)

∑
j∈Z2

e2π i( 1
2 (��μ )Tj)Wρ̂in

(
− j

√
π − �μ

√
π

2

)
︸ ︷︷ ︸

rμ

.

(6.31)

Notice that this is just an expansion in GKP Pauli Wigner
functions W L

μ , so the remaining sum must represent the Bloch-
vector coefficients rμ of the output state, as indicated. To make
the connection to what we know already about Bloch-vector
components, we rewrite the sum as an integral and obtain

rμ =
∫

d2xX√
πI

[
��μ/2

�μ/2

]
(x)Wρ̂in (x) (6.32)

=
∫

d2x W L
μ (x)Wρ̂in (x) (6.33)

= Tr
[
σ̂ L

μρ̂in
]
. (6.34)

One might wonder where the projection onto the GKP sub-
space �̂L has gone. In fact, it gets absorbed into the GKP Pauli
operators when tracing the error-corrected state �̂Lρ̂in�̂L with
the GKP Pauli operators [50]

rμ = Tr
[
σ̂ L

μ�̂Lρ̂in�̂L
] = Tr

[
σ̂ L

μρ̂in
]

(6.35)

since �̂Lσ̂ L
μ�̂L = σ̂ L

μ , which justifies the final form of
Eq. (6.26):

WK̂ECρ̂inK̂†
EC

(x) = 1

2

3∑
μ=0

W L
μ (x)

∫
d2x′ W L

μ (x′)Wρ̂in (x′), (6.36)

up to normalization.

VII. TELEPORTATION-BASED GKP ERROR
CORRECTION

A key result in Ref. [50] is that applying GKP error cor-
rection to unencoded states, particularly those that are simple
to prepare, like the vacuum state, probabilistically produces
GKP magic states, which are useful for universal, fault-
tolerant quantum computing. One can use the complementary
phase-space description of the GKP error-correction circuit in
Eq. (6.4), presented in the previous section, to find the same
result.

An alternate method of implementing GKP error correction
involves teleporting the input state through a GKP Bell pair
[37], which can also be interpreted as performing heterodyne
detection on one half of the GKP Bell pair [50]. We review
this protocol in phase space. The teleportation circuit for GKP
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error correction is

q mq|
Wc Wb Wa

ρ̂in

p mp| • |+L

(out) |0L
(7.1)

where the circuit is read right to left, and the homodyne
measurements in bases q and p with outcomes mq and mp

are depicted in using bras. The arrow between modes 1 and
2 indicates the 50:50 beam splitter [37]

j

B̂jk := e−i π
4 (q̂j⊗p̂k−p̂j⊗q̂k) =

k (7.2)

and the GKP Bell pair on modes 2 and 3 is generated by
coupling two |+L〉 GKP states with a Ĉ(1,2)

X gate, Eq. (6.6). The
vertical dashed lines indicate places along the circuit where
we calculate the joint Wigner function below.

This circuit can be analyzed easily in phase space by virtue
of the fact that the measurements and unitaries are all Gaus-
sian. Gaussian unitary action is given by a transformation of
the Wigner function’s arguments [Eq. (4.6)], using a sym-
plectic matrix SÛ associated with the unitary. The symplectic
matrices for the beam splitter in Eq. (7.2) and the Ĉ(1,2)

X gate
are

SB̂ jk
= 1√

2

⎡
⎢⎢⎢⎣

1 −1 0 0

1 1 0 0

0 0 1 −1

0 0 1 1

⎤
⎥⎥⎥⎦, (7.3)

SĈ(1,2)
X

=

⎡
⎢⎢⎢⎣

1 0 0 0

1 1 0 0

0 0 1 −1

0 0 0 1

⎤
⎥⎥⎥⎦. (7.4)

We will proceed step by step through the teleportation circuit
beginning from the three-mode input state

Wa(x) := Wρ̂in (x1)W L
+ (x2)W L

0 (x3), (7.5)

indicated at the top of the circuit [Eq. (7.1)]. The argu-
ments of the Wigner functions, x = [q1, q2, q3, p1, p2, p3]T,
are the phase-space coordinates of the joint system and x j =
[q j, p j]T for each mode j, respectively. Note that since uni-
taries above are two-mode, evolution along the circuit at each
step requires padding the symplectic matrix with a 2 × 2
identity matrix I j for the unaffected mode. First, applying the
Ĉ(2,3)

X gate creates the GKP Bell pair, manifesting as a trans-
formation on the Wigner-function coordinates of the second
and third modes,

Wb(x) = Wa
((

I1 ⊕ S−1
Ĉ(2,3)

X

)
x
)

(7.6)

= Wρ̂in (x1)W L
+ (x2 + p3)W L

0 (x3 − q2), (7.7)

where, in a slight abuse of notation, p3 = [0, p3]T and q2 =
[q2, 0]T.12 Next, the beam splitter B̂12 is applied,

Wc(x) = Wb
((

S−1
B̂12

⊕ I3
)
x
)

(7.8)

= Wρ̂in (x+)W L
+ (x− + p3)W L

0 (x3 − q−), (7.9)

which transforms the phase-space coordinates on the first and
second modes,

x± := 1√
2

[
q2 ± q1

p2 ± p1

]
. (7.10)

Finally, modes 1 and 2 are measured via homodyne detec-
tion, giving outcomes mq and mp. Homodyne measurement
is also a Gaussian operation, and its effect in phase space is
simple. For destructive homodyne measurement, set the argu-
ment of the measured quadrature equal to the measurement
outcome, and then integrate over the conjugate argument.13

Doing this on modes 1 and 2 gives the post-measurement state
on mode 3,

W(out)(x3)

=
∫

d p1dq2Wρ̂in (x′
+)W L

+ (x′
− + p3)W L

0 (x3 − q′
−), (7.11)

where the measurement outcomes have been substituted into
Eq. (7.10),

x′
± = 1√

2

[
q2 ± mq

mp ± p1

]
, (7.12)

and analogously q′
− = 1√

2
[q2 − mq, 0]T. Performing the inte-

gration gives

W(out)(x)

∝ X√
π

2 I(x)
∑
j∈Z2

e2π i( 1√
π

xT�j)Wρ̂in (x +
√

2m + j
√

π ),

(7.13)

where m = [mq, mp]T. This expression is of the same form
as Eq. (6.26). Thus, it can also be rewritten, using the same
techniques used to derive Eq. (6.36), to give the output state
(up to normalization)

W(out)(x) = 1

2

3∑
μ=0

rμW L
μ (x), (7.14)

with GKP Bloch-vector components

rμ =
∫

d2x′ W L
μ (x′)Wρ̂in (x′ +

√
2m). (7.15)

This agrees with the result reported in Eq. (5) of Ref. [50]
for a displacement of

√
2m. The

√
2 comes about due to

12A GKP Bell pair can also be created by sending two GKP
qunaught states, also called sensor states [72], through a beam splitter
[37].

13Alternatively, the Wigner-function maps in Eqs. (6.18) can be
used to describe nondestructive position and momentum homodyne
measurements using as ψ the wave functions for the appropriate
quadrature eigenstates describing the projective measurements.
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the definition of V̂ [Eq. (3.6)] versus the Glauber displace-
ment operator D̂, which appears when deriving this same
result using circuit identities [37]. The GKP Bloch-vector
components, Eq. (7.15) depend on both the input state and
the measurement outcomes, with the result that the Bloch
vector does not, in general, correspond to a GKP Pauli eigen-
state. Consider the case where ρ̂in is the vacuum state. In
this setting, the circuit in Eq. (7.1) has two equivalent in-
terpretations. In one interpretation, it describes teleportation
of the vacuum state through a GKP Bell pair and, in the
other, it describes heterodyne detection on one half of a GKP
Bell pair. For both, the error-corrected state for measurement
outcomes m = {0, 0} is an approximate Hadamard eigenstate
[50], which is a GKP magic state, i.e., a state that can be used
to teleport an encoded non-Clifford gate to achieve universal
quantum computation. The creation of the magic state is vi-
sualized in phase space by raking the vacuum state in both
quadratures, as illustrated in Fig. 7. While other outcomes
m produce other states, almost all of these are outside the
Paulihedron (convex hull of Pauli eigenstates), which means
they can be distilled into higher-quality magic states [73,74].
The only exceptions, which are rare [50], are those outcomes
that give states that are too close to Pauli eigenstates. Magic-
state production through GKP error correction is not limited
to input vacuum states, either. Even some mixed input states
can be used, as was shown for thermal states with low enough
thermal occupancy [50].

VIII. DISCUSSION

We have laid out a broadly applicable description of ideal
and approximate GKP states in phase space using θ functions
and their limiting case, X functions. GKP states in phase
space decompose into a sum of two-dimensional X functions,
each representing an encoded GKP Pauli operator. We have
shown that the set of GKP Pauli Wigner functions are related
to each other via simple half-period transformations on their
characteristics, which can be generated by Gaussian unitary
operations.

The fact that Gaussian operations correspond to simple,
linear transformations on a Wigner function’s arguments al-
lows straightforward modeling of GKP Clifford quantum
computation, as well as lattice transformations between differ-
ent types of GKP encodings, e.g., square lattice to hexagonal
lattice and back again. Furthermore, the remaining operations
required for GKP error correction can also be implemented
using Gaussian operations, singling out the GKP code as
the only known bosonic code to admit a fault-tolerant, all-
Gaussian, universal gate set [50,51].

High-quality approximate GKP states are represented in
phase space as enveloped two-dimensional θ functions. We
derived conditions that relate the covariance matrix for the
spikes to that of the envelope. With this, one can immediately
write a Wigner function for a physical approximate GKP
state simply by specifying the state’s Bloch vector r, which
could represent a pure or mixed logical state, and the spike
covariance matrix, thus circumventing the need to first write
an approximate GKP wave function and then calculate its
Wigner function [1,43,75].

A useful feature of θ functions and X functions is how
they relate simply via Gaussian blurring and deblurring.
Gaussian blurring in phase space corresponds to a purely
positive-imaginary offset to the τ parameter while preserv-
ing the characteristics of the function (which encode the
discrete quantum information). In the context of quasiprob-
ability distributions, this operation also maps between the
Wigner function and other distributions, such as the Husimi
Q function and the Glauber-Sudarshan P function. In this
way, the GKP Wigner functions we have presented may be
extended to the whole spectrum of s-ordered quasiprobability
functions [60,61] through transformations of τ14. Moreover,
as pure loss can be transformed into an effective Gaussian
noise channel through phase-insensitive amplification [47],
we can also consider this process in terms of a valid τ pa-
rameter proportional to the effective additive Gaussian noise.
Lastly, although we have presented, throughout this work,
results for a square-lattice GKP code, we reemphasize that
any of these properties can equally be expressed in the context
of other GKP lattices, including the hexagonal GKP code
[1,47,63].

In general, there are several technicalities in describing
general GKP phase-space distributions, as the effects of
finite squeezing at higher noise levels and how the higher-
dimensional encoded spaces are represented in phase space
is more intricate [43]. By working within a high-squeezing
approximation and restricting to qubits, we may simplify
the phase-space features of generically encoded qubits into
a basis of θ functions in proportion to the encoded Bloch
vector. In this way, we provide a compact representation of
GKP-encoded information, allowing for both pure and mixed
states to be handled with the same mathematical tools. These
tools, furthermore, generate an intuitive, visual representation
of GKP error correction in phase space as “raking” and exem-
plified by a demonstration of magic-state generation from the
vacuum.

Although we have presented results for a GKP ancilla in
the application of GKP error correction, there are many alter-
native choices for “raking” functions. From a resource-based
perspective, the Wigner negativity [75,76] of the ancillary
mode can be effectively transferred into an output mode with
this procedure [51,52] such that, in general, this may have
other applications in quantum information theory. There also
remains the open question for future research in using gen-
eralized forms of these operations for other forms of bosonic
state preparation.
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APPENDIX A: RELATION BETWEEN GAUSSIAN PULSE
TRAINS AND θ FUNCTIONS

We expand a Gaussian pulse train with period T ∈ R+
�=0

as15∑
n∈Z

e−2π inv1 Gσ 2 (x + nT + v2T )

= 1

T

1√−iτ f
e
− iπ

τ f
(zs+v2 )2 ∑

n∈Z
e

2π i[ 1
2 n2 −1

τ f
− n

τ f
(zs+v2 )]

e−2π inv1 ,

(A1)

where we have defined new parameters

zs := x

T
, τ f := 2π iσ 2

T 2
. (A2)

Absorbing the translation v2 into a new argument z′
s := zs +

v2 and reindexing the sum as m = −n, Eq. (A1) can then be
written as a θ function,

1

T

1√−iτ f
e
− iπz′2s

τ f

∑
m∈Z

e
2π i[ 1

2 m2 −1
τ f

+m( z′s
τ f

+v1 )]

= 1

T

1√−iτ f
e
− iπz′2s

τ f θ

[
0

v1

](
z′

s

τ f
,
−1

τ f

)
. (A3)

Using an inverse Jacobi identity [53–55]

θ

[
0

v2

](
z

τ
,

i2

τ

)
= √−iτe

iπz2

τ θ

[
v2

0

]
(z, τ ), (A4)

which describes the how θ functions are modified under the
transformation τ → i2

τ
, gives

1

T

1√−iτ f
e
− iπz′2s

τ f θ

[
0

v1

](
z′

s

τ f
,

1

τ f

)
= 1

T
θ

[
v1

0

]
(z′

s, τ f ). (A5)

Restoring zs from z′
s, we have the result∑

n∈Z
e−2π inv1 Gσ 2 (x + nT + v2T ) = 1

T
θ

[
v1

v2

]
(zs, τ f ). (A6)

Using Eq. (2.5), this θ function can be written as the θT

function in Eq. (2.13).

APPENDIX B: GKP WAVE-FUNCTION NORMALIZATION
FOR LOW-NOISE STATES

In this Appendix we explicitly derive the L2 normalization
for a damped Gaussian pulse train in terms of θ function
of arbitrary characteristics in the limit of low noise. For the
function

f (x) := 1√
N

Gκ−2 (x)
∑
n∈Z

e−2π inv1 G2 [x + (n + v2)T ],

(B1)

15We consider only positive periods here for the sake of brevity.
Negative-period pulse trains are simply reflections of pulse trains
of positive period; however, in θ -function form, the direction of the
second characteristic is also reflected. Although some pulse trains
may be even functions, in some cases, such as for [1/2, 1/2]T char-
acteristics, the pulse train is odd (see Fig. 1).

the square-normalization factor N = ∫
dx | f (x)|2 is

N = 1

2
√

πκ−2

∫
dx G κ−2

2
(x)

∑
n,m∈Z

e2π i(m−n)v1

× G2 [x + (n + v2)T ]G2 [x + (m + v2)T ], (B2)

where we used

[Gκ−2 (x)]2 = 1

2
√

πκ−2
G κ−2

2
(x). (B3)

For small 2 (compared to the period T ), any product of
Gaussians arising from the pulse trains is approximately zero
unless the Gaussians share the same mean, which can be
expressed as16

G2 [x + (n + v2)T ]G2 [x + (m + v2)T ]

∝ δn,m[G2 [x + (n + v2)T ]]2, (B4)

such that

N ≈ 1

2
√

πκ−2

∫
dx G κ−2

2
(x)

∑
n∈Z

[G2 [x + (n + v2)T ]]2

(B5)

= 1

4π

κ



∫
dx G κ−2

2
(x)

∑
n∈Z

G 2
2

[x + (n + v2)T ]. (B6)

In the limit of small spikes 2 → 0, the Gaussian G 2
2

[x +
(n + v2)T ] is a nascent δ function, giving

N ≈ 1

4π

κ



∑
n∈Z

G κ−2
2

[−(n + v2)T ] (B7)

= 1

4πT

κ


θ

[
0

−v2

](
0,

iπκ−2

T 2

)
. (B8)

For small κ , the θ constant is approximately 1 for all charac-
teristics v2, such that

N ≈ 1

4πT

κ


. (B9)

An alternative derivation of the normalization result can
be found be considering Eq. (B7) as a Riemann sum. By
multiplying the periodically sampled Gaussian by the period
T , the sum in the expression gives an approximation of the
area under a normalized Gaussian∑

n∈Z
T G κ−2

2
[−(n + v2)T ] ≈

∫
dx G κ−2

2
(x − v2T ) = 1.

(B10)

This leads to the normalization in Eq. (B9). An illustration
of this procedure is given in Fig. 8. Explicitly including the

16The order of this approximation can be found by asymptotically
expanding the product of neighboring Gaussians in the limit of small
. This product is proportional to −1e− π

2 , which gives an expan-
sion of O(2n−1) in the limit of  → 0+, for any positive integer
n ∈ Z+.
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FIG. 8. Illustration of the Riemann sum concept in Eq. (B10).
For symmetric noise, κ2 = 2 = β, the envelope (dashed line) in
the position wave function of a normalized approximate GKP state
flattens, such that the area under the envelope can be related to a sum
of rectangles, each with width

√
π and height given by the value of

the envelope at the center of every spike in the θ function.

normalization factor, the damped Gaussian pulse train f (x) in
Eq. (B1) can be written as

f (x) =
√

4π |T |
√



κ
Gκ−2 (x)

1

T
θ

[
v1

v2

](
x

T
,

2π i2

T 2

)
(B11)

=
√

4π

√


κ
Gκ−2 (x)θT

[
v1

v2

]
(x, 2π i2), (B12)

where the second line uses the θT -function relation (2.5).

APPENDIX C: RELATIONS BETWEEN ENVELOPED X
FUNCTIONS AND ENVELOPED θ FUNCTIONS

The product of the two normalized Gaussian distributions
Gσ−2 (x) and Gσ 2 (x − μ) is

Gσ−2 (x)Gσ 2 (x − μ) = Gσ 2+σ−2 (μ)G(σ 2+σ−2 )−1 (x − μ′),
(C1)

where Gσ 2+σ−2 (μ) is the normalization factor, and the mean
μ′ is given by

μ′ = (σ 2 + σ−2)−1σ−2μ. (C2)

For σ 2 � 1, the approximations σ 2 + σ−2 ≈ σ−2, (σ 2 +
σ−2)−1 ≈ σ 2, and μ′ ≈ μ give for Eq. (C1) an approximate
product

Gσ−2 (x)Gσ 2 (x − μ) ≈ Gσ−2 (μ)Gσ 2 (x − μ). (C3)

This is an instance of a narrow Gaussian behaving as a nascent
δ function.

For a Gaussian pulse train with means μn = nT for n ∈ Z,
this approximation gives∑

n∈Z
Gσ−2 (x)Gσ 2 (x − nT ) ≈

∑
n∈Z

Gσ−2 (nT )Gσ 2 (x − nT ),

(C4)

which can be expressed in terms of convolutions as

Gσ−2 (x)[XT ∗ Gσ 2 ](x)

≈
∫

dy Gσ−2 (y)XT (y)Gσ 2 (x − y) (C5)

= [(Gσ−2XT ) ∗ Gσ 2 ](x). (C6)

This indicates the approximate result that small spike vari-
ance and large envelope variance σ 2 � σ−2, an enveloped X
function under convolution is approximately an enveloped θ

function.

APPENDIX D: NORMALIZATION OF APPROXIMATE GKP
WIGNER FUNCTIONS

The Wigner function of a high-quality approximate GKP
state is given in Eq. (5.18). In this limit, 2, κ2 � 1,
the Gaussian for each spike G�spike (x) acts as a nascent
δ function, and we may approximate the total integral of
the Wigner function for each noise-broadened GKP Pauli
operator as∫

d2x W L
μ (x)

=
∫

d2x G�env (x)θ√
πI

[
��μ/2

�μ/2

]
(x, 2π i�spike) (D1)

= √
π

∫
d2x G�env (x)

×
∑
n∈Z2

G�spike

(
x + n

√
π + �μ

√
π

2

)
e−iπnT��μ (D2)

≈ √
π

∑
n∈Z2

G�env

(
− n

√
π − �μ

√
π

2

)
e−iπnT��μ . (D3)

Multiplying this by the area (
√

π )2 gives an approximation to
a Riemann sum, similar to Eq. (B10),∫

d2x W L
μ (x)

≈ 1√
π

∑
n∈Z2

πG�env

(
− n

√
π − �μ

√
π

2

)
e−iπnT��μ (D4)

≈ 1√
π

∫
d2x G�env

(
x − �μ

√
π

2

)
ei

√
πxT��μ (D5)

= 1√
π

e− iπ
2 �T

μ�env�μ . (D6)

In the limit of low noise, this factor vanishes for all Pauli
Wigner functions other than the identity, and the normal-
ization factor for any GKP state approaches 1/

√
π . This is

indeed as expected since the Pauli operators are traceless. This
behavior is plotted in Fig. 9 for GKP states with symmetric
noise.

Matsuura et al. [43] considered various types of approx-
imate GKP states outside of the low-noise limit, where the
parameter

γ :=
√

1 − 2κ2 (D7)

determines how close to “low noise” the state is. For 2, κ2 �
1, then γ → 1, which is the low-noise situation we consider
throughout this paper. The normalization for their approxi-
mate GKP Wigner functions is given by a pair of θ constants,
each arising from the total integral of a damped θ function
with periodicity 2

√
π in position and

√
π

2 in momentum. Here,
we connect our formulation to that in Ref. [43]. This proce-
dure gives the normalization for low-noise approximate GKP
Wigner functions as an analytic sum of four θ constants, one
arising from each GKP Pauli operator (including identity).

We begin with a two-dimensional X function with period
γ
√

π and characteristics {v1, v2} damped by an (unnormal-
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FIG. 9. Trace of the Wigner functions (phase-space integral) of
each noise-broadened Pauli operator (including identity) for symmet-
ric noise � = diag(β, β ). For small β, only the trace of the identity
is nonvanishing.

ized) Gaussian

X̃γ
√

πI,ν

[
v1

v2

]
(x) := e− 1

2 xTν−1xXγ
√

πI

[
v1

v2

]
(x), (D8)

where the covariance matrix of the Gaussian is defined to be17

ν :=
[

1
2κ2 − 2

2 0

0 1
22 − κ2

2

]
= �env − �spike. (D9)

Integrating over the phase plane gives a θ constant∫
d2x X̃γ

√
πI,ν

[
v1

v2

]
(x) = π

κ
θ√

π

γ
I

[
v1

v2

](
0, 2π i

γ 2 �env
)
.

(D10)

Applying a blurring operation (Weierstrass transform) with
covariance matrix �spike [Eq. (2.32)] to the damped X func-
tion in Eq. (D8) gives

D�spikeX̃γ
√

πI

[
v1

v2

]
(x)

= π

κ
G�env (x)θ√

π

γ
I

[
v1

v2

](
x, 2π i

γ 2 �spike
)
. (D11)

Note that this expression differs from the low-noise square-
lattice GKP Wigner functions in Eq. (5.18). The Gaussian
envelope is the same, but there are two differences. First, the
period in both quadratures is 1

γ 2

√
π � √

π meaning that the
spikes are slightly off the intended grid. Second, the covari-
ance of each spike is 1

γ 2 �spike � �spike. In the low-noise limit
of γ → 1, the forms agree. However, the blurring operation
does not change the total integral, meaning that the functions
in Eq. (D11) are normalized by the θ constant in Eq. (D10).

This procedure can be performed to identify Wigner func-
tions for each of the GKP Pauli matrices. For low noise,
γ → 1, the expression for a normalized, approximate GKP

17We consider the case of ϕ = 0 since rotations that diagonalize the
covariance matrix preserve the size and shape of error ellipses.

state parametrized by Bloch 4-vector r is

W̃r(x) ≈ 1

N G�env (x)
3∑

μ=0

rμθ√
πI

[
��μ/2

�μ/2

]
(x, 2π i�spike),

(D12)

where the normalization is the sum of four θ constants,

N =
3∑

μ=0

rμθ√
πI

[
��μ/2

�μ/2

]
(0, 2π i�env) ≈ 1√

π
, (D13)

which agrees with our approximation earlier, Eq. (D6).

APPENDIX E: MOYAL PRODUCT FOR UNIVARIATE
WIGNER FUNCTIONS

In this Appendix, we show that Wigner-function transfor-
mations generated by arbitrary operators that are diagonal in
position or momentum are simple convolutions. For arbitrary
operator Ô and diagonal operators

χ (q̂) :=
∫

ds χ (s)|s〉qq〈s|, (E1a)

ϕ( p̂) :=
∫

dt ϕ(t )|t〉pp〈t |, (E1b)

we wish to find the Wigner functions for the transformed
operators

χ (q̂)Ô[χ (q̂)]† → Wχ (q̂)Ôχ∗(q̂)(q, p), (E2)

ϕ( p̂)Ô[ϕ( p̂)]† → Wϕ( p̂)Ôϕ∗( p̂)(q, p), (E3)

noting that [χ (q̂)]† = χ∗(q̂) and [ϕ( p̂)]† = ϕ∗( p̂). We ap-
proach this task using an alternate form of the Moyal product
[70,71] [Eq. (5.2)]

WÂB̂(q, p) = [WÂ � WB̂](q, p) (E4)

= 2π WÂ(q, p)e
i
2

←−∇ T�
−→∇ WB̂(q, p), (E5)

where the Bopp operators
←−∇ and

−→∇ are defined by partial
derivatives of position and momentum acting in the direction
of the arrow [70]

←−∇ :=
[←−

∂q

←−
∂p

]
,

−→∇ :=
[−→

∂q

−→
∂p

]
. (E6)

The Wigner functions for the operators in Eqs. (E1) are
functions of only q or p, respectively,

Wχ (q̂)(q, p) = 1

2π
χ (q), (E7)

Wϕ( p̂)(q, p) = 1

2π
ϕ(p). (E8)

Such univariate functions are useful when calculating Moyal
products using the Bopp-operator form of the Moyal product
(E5). We begin by considering Eq. (E2) and separating the
Moyal products

Wχ (q̂)Ôχ∗(q̂)(q, p) = [Wχ (q̂) � WÔ � Wχ∗(q̂)](q, p). (E9)
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Using Eq. (E5), performing the first Moyal product gives

Wχ (q̂)Ô(q, p) := [Wχ (q̂) � WÔ](q, p) (E10)

= χ

(
q + i

2
−→
∂p

)
WÔ(q, p), (E11)

where WÔ(q, p) is the Wigner function for Ô. Then, perform-
ing the second Moyal product gives

[Wχ (q̂)Ô � Wχ∗(q̂)](q, p) = Wχ (q̂)Ô(q, p)χ∗
(

q − i

2
←−
∂p

)
(E12)

= χ∗
(

q − i

2
−→
∂p

)
Wχ (q̂)Ô(q, p).

(E13)

Plugging Eq. (E11) into Eq. (E13) gives

Wχ (q̂)Ôχ∗(q̂)(q, p) = χ∗
(

q − i

2
∂p

)
χ

(
q + i

2
∂p

)
WÔ(q, p),

(E14)

where we drop the arrow in our notation since the partial
derivatives all act on WÔ(q, p). We now evaluate Eq. (E14).
First, we introduce a δ function and then change variables,
w = p − p′, to get18

Wχ (q̂)Ôχ∗(q̂)(q, p)

=
∫

d p′χ∗
(

q − i

2
∂p

)
χ

(
q + i

2
∂p

)
δ(p − p′)WÔ(q, p′)

(E15)

=
∫

dw WÔ(q, p − w)χ∗
(

q − i

2
∂w

)
χ

(
q + i

2
∂w

)
δ(w).

(E16)

Using the Wigner function for a pure (unnormalized) state

|ψ〉 =
∫

ds ψ (s)|s〉q =
∫

dt ψ̃ (t )|t〉p (E17)

in terms of its position wave function ψ (q),

W|ψ〉〈ψ |(q, p) = 1

π

∫
dy ψ∗(q + y)ψ (q − y)e2ipy (E18)

= 1

π
ψ∗

(
q − i

2
∂p

)
ψ

(
q + i

2
∂p

)∫
dy e2ipy

(E19)

= ψ∗
(

q − i

2
∂p

)
ψ

(
q + i

2
∂p

)
δ(p), (E20)

it is straightforward to write Eq. (E16) as a convolution be-
tween two Wigner functions

Wχ (q̂)Ôχ∗(q̂)(q, p) =
∫

dw WÔ(q, p − w)W|χ〉〈χ |(q,w),

(E21)

18Decompositions of Dirac δ functions in this form and their appli-
cations is discussed far more rigorously in Ref. [59].

where we have defined

|χ〉 :=
∫

ds χ (s)|s〉q =
√

2πχ (q̂)|0〉p, (E22)

which is not, in general, a normalized state.
For maps given by diagonal operators of p̂, Eq. (E3), a

similar procedure gives

Wϕ( p̂)Ôϕ∗( p̂)(q, p) =
∫

dw WÔ(q + w, p)ϕ∗
(

p − i

2
∂w

)

× ϕ

(
p + i

2
∂w

)
δ(−w). (E23)

Using the Wigner function for a pure (unnormalized) state |ψ〉
[Eq. (E17)] in terms of its momentum wave function ψ̃ (p),

W|ψ〉〈ψ |(q, p) = 1

π

∫
dx ψ̃∗(p + x)ψ̃ (p − x)e−2ixq (E24)

= ψ̃∗
(

p − i

2
∂q

)
ψ̃

(
p + i

2
∂q

)
δ(−q) (E25)

yields the result

Wϕ( p̂)Ôϕ∗( p̂)(q, p) =
∫

dw WÔ(q + w, p)W|ϕ〉〈ϕ|(w, p).

(E26)

Here, |ϕ〉 is defined to be a state whose momentum wave
function is given by ϕ(t ):

|ϕ〉 :=
∫

dt ϕ(t )|t〉p =
√

2πϕ( p̂)|0〉q. (E27)

The Wigner-function maps in Eqs. (E21) and (E26) are the
major results of this Appendix. Each describes a “raking” (see
Sec. VIB1), where the input Wigner function is raked in either
position or momentum by the the state |χ〉 or |ϕ〉, respectively.

Applying the operators χ (q̂) and χ ( p̂) consecutively to Ô,
we have

Wϕ( p̂)χ (q̂)Ôχ∗(q̂)ϕ∗( p̂)(q, p)

∝
∫∫

dw′dw′′ W|ϕ〉〈ϕ|(w′, p)W|χ〉〈χ |(q + w′,w′′)

× WÔ(q + w′, p − w′′), (E28a)

Wχ (q̂)ϕ( p̂)Ôϕ∗( p̂)χ∗(q̂)(q, p)

∝
∫∫

dw′dw′′ W|χ〉〈χ |(q,w′′)W|ϕ〉〈ϕ|(w′, p − w′′)

× WÔ(q + w′, p − w′′). (E28b)

Note that these two forms are not the same, which is
due to the fact that χ (q̂) and ϕ( p̂) do not, in general,
commute.

1. Action of the embedded-error operator

We use the general result above to describe the action of
the embedded-error operator ξ̂ (�) [Eq. (3.20)] on an operator
Ô in phase space

ˆ̄O = ξ̂ (�)Ôξ̂ (�) → WŌ(q, p). (E29)
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In the low-noise limit, ξ̂ (�) separates into two exponential
operators, Eq. (3.23), each being diagonal in either q̂ or p̂.
Following the previous section, we label these operators as
χ (q̂) and ϕ( p̂):

χ (q̂) = e− 1
2 κ2 q̂2

, (E30a)

ϕ( p̂) = e− 1
2 2 p̂2

, (E30b)

also noting that χ (q̂) = [χ (q̂)]† and ϕ( p̂) = [ϕ( p̂)]†. Their
Wigner functions are univariate,

Wχ (q̂)(q, p) = 1

2π
χ (q) = 1

2π
e− 1

2 κ2q2
, (E31)

Wϕ( p̂)(q, p) = 1

2π
ϕ(p) = 1

2π
e− 1

2 2 p2
. (E32)

The states associated with each of these operators |χ〉
[Eq. (E22)] and |ϕ〉 [Eq. (E27)] have Wigner functions

W|χ〉〈χ |(q, p) =
√

π

κ
G 1

2κ2
(q)G κ2

2
(p), (E33)

W|ϕ〉〈ϕ|(q, p) =
√

π


G 2

2
(q)G 1

22
(p), (E34)

which are found using Eqs. (E18) and (E24), respectively.
We now find the Wigner function for the transformed op-

erators

ˆ̄O1 = ϕ( p̂)χ (q̂)Ôχ (q̂)ϕ( p̂), (E35)

ˆ̄O2 = χ (q̂)ϕ( p̂)Ôϕ( p̂)χ (q̂), (E36)

using Eq. (E28a). The Wigner function for Eq. (E35) is

W ˆ̄O1
(q, p) = π

κ
G 1

22
(p)

∫
dq′G 1

2κ2
(q′)G 2

2
(q′ − q)

×
∫

dw WÔ(q′, p − w)G κ2
2

(w). (E37)

When the operators are applied in the other order, Eq. (E36),
the Wigner function is

W ˆ̄O2
= π

κ
G 1

2κ2
(q)

∫
d p′G κ2

2
(p′ − p)G 1

22
(p′)

×
∫

dw′ WÔ(q + w′, p′)G 2
2

(w′). (E38)

As we are are interested in the low-error limit 2, κ2 �
1, where Ô′ ≈ Ô′

1 ≈ Ô′
2. We apply the approximation in

Eq. (C3), with the result that both Eqs. (E37) and (E38) yield
the Wigner function

W ˆ̄O(x) ≈ π

κ
G 1

2 �0
(x)

∫
d2x′ WÔ(x − x′)G 1

2 �−1
0

(�x′)

(E39)

= π

κ
G�env (x)

∫
d2x′ WÔ(x − x′)G�spike (x′), (E40)

where we have used Eqs. (5.13) and (5.14), and we have
written the arguments in terms of x for convenience. The
convolution above can also be written as a blurring operation
(2.31) on the Wigner function for Ô:∫

d2x′ WÔ(x − x′)G�spike (x′) = D�spikeWÔ(x). (E41)

We now consider an operator ÔX whose Wigner function
is a two-dimensional X function, Eq. (4.7). The convolution
in Eq. (E40) replaces each δ function with a Gaussian of co-
variance �spike, yielding a two-dimensional θ function, giving

W ˆ̄OX
(x) ≈ π

κ
G�env (x)θA

[
v1

v2

]
(x, 2π i�spike), (E42)

recognizing that the factor π/(κ ) arises from the definitions
of the exponential operators, Eq. (E30), but is of no particular
physical consequence. An important example is ÔX = ρ̂L,
where ρ̂L is an ideal GKP state with Bloch 4-vector r. The
approximate GKP state ˆ̄ρL has the Wigner function

W̄r(x) ≈ 1

N G�env (x)
3∑

μ=0

rμθ√
πI

[
��μ/2

�μ/2

]
(x, 2π i�spike),

(E43)

with all prefactors absorbed into the normalization N .
Finally, we estimate the order of the approximation by

comparing the convolved envelopes to their unconvolved
counterparts. We express the error ε as

ε(x) = [G2/2 ∗ Gκ−2/2](x) − Gκ−2/2(x), (E44)

whose L2 norm∫
dx [ε(x)]2 = κ

2
√

π

(
1 + 1√

1 + κ22
− 2

√
2√

2 + κ22

)
(E45)

is of order O(κ22) and thus negligible in our approximation.
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