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Quantum key distribution (QKD) allows unconditionally secure communication based on the laws of quantum
mechanics rather than assumptions about computational hardness. Optimizing the operation parameters of a
given QKD implementation is indispensable in order to achieve high secure key rates. So far, there exists no
model that accurately describes entanglement-based QKD with continuous-wave pump lasers. We analyze the
underlying mechanisms for QKD with temporally uniform pair-creation probabilities and develop a simple but
accurate model to calculate optimal tradeoffs for maximal secure key rates. In particular, we find an optimization
strategy of the source brightness for given losses and detection-time resolution. All experimental parameters
utilized by the model can be inferred directly in standard QKD implementations, and no additional assessment of
device performance is required. Comparison with experimental data shows the validity of our model. Our results
yield a tool to determine optimal operation parameters for already existing QKD systems, to plan a full QKD
implementation from scratch, and to determine fundamental key rate and distance limits of given connections.
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I. INTRODUCTION

Quantum key distribution (QKD) is a method of creating
a secret and random one-time pad for two remote users us-
able for unconditionally secure encryption of messages [1,2].
Since its first proposal in 1984 [3], intense research has pushed
QKD ever closer to real-life realizations. It has been shown
via free-space links on ground [4–6] and from space [7]
as well as for long-distance fiber links [8] and in network
configurations [9,10]. Many different schemes have been
proposed in recent decades, such as entanglement-based pro-
tocols (E91 [11] and BBM92 [12]), and twin-field [13] and
decoy-state prepare-and-send implementations [14]. Unlike
prepare-and-measure protocols, entanglement-based applica-
tions have the advantage of being able to create their quantum
states in a single coherent process based, for example,
on spontaneous parametric down-conversion. Therefore, no
quantum random number generators or other electronic inputs
are required. Thus, provably no information about the indi-
vidual photon state exists before the actual measurement. In
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this sense, entanglement-based protocols exploit the quantum
nature of the correlations necessary for QKD on the most
fundamental level and can be extended to device-independent
QKD [15]. QKD with entangled photons also allows quantum
network configurations with many users using one and the
same sending apparatus, an entangled-photon source (hence-
forth simply referred to as “source”) [10]. There are two
fundamentally different ways to operate such a source: by
creating the photon pairs with a continuous-wave (CW) or
a pulsed pump laser. Up to now, no in-depth model ex-
ists for the prediction of key rates and the calculation of
optimal source brightness for CW sources. A model describ-
ing sources pumped with a pulsed laser was published in
2007 [16] and has been the state of the art ever since. In such
pulsed schemes, all photon pairs are found in discrete and
evenly spaced time modes depending on the laser’s repetition
rate. This rate can be tuned independently of the pulse inten-
sity, allowing one to individually address photon creation rate
and multipair emission. Due to the broad frequency spectra in
a pulsed-pump scheme, dispersion effects in the optics have
to be accounted for, especially in the nonlinear crystals where
the entangled photons are created.

This model of pulsed operation can be applied to CW
pumped sources with limited accuracy only, as will be shown
below. CW pumping has several advantages compared to
pulsed-pump schemes, especially in the context of fiber-based
QKD: first, the spectrum of the down-converted photons is
narrower, thus reducing dispersion effects in both source and
transmission channels [17]. Second, additional high-precision
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time synchronization is not needed as the temporal correlation
peak can be precisely determined using a delay histogram.
And third, damage to the source optics due to high-intensity
pulses can be avoided.

In this paper, we present a model that accurately describes
CW-pumped entanglement-based QKD systems. Importantly,
all necessary inputs to the model can be read directly from
experimentally available data, without the need of any ad-
ditional assumptions. Our approach allows one to calculate
optimal brightness values and coincidence window lengths as
well as the resulting final key rate. Hence, the present results
are of particular importance for state-of-the-art entanglement-
based QKD applications. Comparison with experimental data
demonstrates the validity of our model. Although we are
focusing here on polarization-encoded BBM92 implemen-
tations, our approach can be extended to other degrees of
freedom, which is, however, outside of the scope of this paper.

The paper is structured as follows: in Sec. II, we explain the
basic working principle of polarization-encoded BBM92. We
then develop our model in Sec. III by first introducing param-
eters for an idealized model (Sec. III A), modifying them to
account for experimental imperfections (Sec. III B) and then
combining them into the final model to calculate the expected
secure key rates (Sec. III C). We optimize the key rate with
regard to pair creation rate and temporal detection tolerance
and compare our model with experimental data (Sec. IV).
Concluding, in Sec. V we discuss our findings and present
optimal parameters to maximize key rates.

II. WORKING PRINCIPLE OF ENTANGLEMENT-BASED
QKD

Entanglement-based QKD protocols such as BBM92 [12]
rely on entanglement between distant physical systems, in
our case specifically in the polarization degree of freedom
of a photon pair. In an idealized scenario, one can create
maximally entangled photon pairs which form a so-called Bell
state, e.g.,

|φ+〉 = 1√
2

(|H〉A ⊗ |H〉B + |V 〉A ⊗ |V 〉B), (1)

where H (V ) denotes horizontal (vertical) polarization and
the subscripts signify the recipient of the single photon tra-
ditionally called Alice (A) and Bob (B). We choose this
state because of the fact that it is correlated in the mutu-
ally unbiased linear polarization bases HV and DA (diagonal
and antidiagonal), where |D〉 = 1√

2
(|H〉 + |V 〉) and |A〉 =

1√
2
(|H〉 − |V 〉). The following model can however be used for

any Bell state, if the correlations are adapted accordingly.
Alice and Bob measure their photons randomly and in-

dependently from each other either in the HV or the DA
basis. The basis choice can in practice be realized actively
or passively. Actively means that Alice and Bob switch their
measurement bases depending on the outputs of a quantum
random number generator. A QKD implementation with pas-
sive basis choice uses probabilistic beamsplitters to direct the
photons to either a HV or a DA measurement, both of which
are realized simultaneously. In the course of the paper, we
will assume active basis choice unless noted otherwise. In

any case, Alice and Bob record outcome (H , D = 0 and V ,
A = 1) and measurement basis for each event. By commu-
nicating about their measurement bases only, Alice and Bob
can discard those recorded events where they measured in
different bases and therefore see no correlation between their
bit outcome (“sifting”). For the other events, they can expect
perfect correlation, and thus use their sifted bit strings for key
creation. By checking a randomly chosen subset of their sifted
measurement outcomes to make sure that correlations have
not degraded, Alice and Bob can rule out the existence of an
eavesdropper.

In a real experiment, however, perfect Bell states such as in
Eq. (1) do not exist. The polarization correlations are degraded
through optical imperfections of the source and the detectors,
which result in bit and/or phase flips. Also, in practice it
is not possible to distinguish each and every consecutively
emitted entangled pair from one another due to imperfec-
tions in temporal detection, as discussed below. We call such
temporally irresolvable emissions “multipairs.”1 Multipairs
degrade the quantum correlations necessary to create a secure
key, since detection of a multipair photon at Alice does not
unambiguously herald the detection of its entangled—and
therefore perfectly correlated—partner photon at Bob (and
vice versa). Instead, with a certain probability, the photon is
wrongly identified as being correlated with a photon from
another pair, which leads to errors. Based on these considera-
tions, in what follows, we will define the parameters necessary
to calculate the performance of a CW-QKD system. All of
these parameters can easily be obtained from experimental
detection results, thus making our model ideally suited for
direct implementation in real-world applications.

III. MODELING QKD WITH CW-PUMPED SOURCES

For developing the model, we will start out with an ideal-
ized polarization-encoded CW-QKD protocol introducing the
basic parameters (Sec. III A). In Sec. III B, we will extend
this consideration by taking into account noise counts and
multipair effects. We then use the experimental quantities
defined in this way to calculate error rate and secure key rate
(Sec. III C).

A. Idealized CW-QKD system

The most general CW-pumped source setup uses a photon
source creating an average number of entangled photon pairs
per time unit. This quantity is called brightness B, for which
we use the unit counts per second (cps) instead of hertz to
emphasize the random nature of the emission process. We
assume the probability of photon-pair creation to be uniformly
distributed in time, as is justified in the case of CW pump-
ing [18,19].

The entangled photons are spatially separated and sent
to communication partners Alice and Bob, where they are
detected with overall channel probabilities ηA and ηB, re-
spectively. Although these probabilities are composed of the

1Unlike in pulsed-source BBM92 [16], coherent emission of n-pair
states is negligible in the case of sources using CW pump lasers due
to the photons’ temporal multimode character [18].
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source’s intrinsic heralding efficiency [20], the channel and
coupling losses, the detection optics’ transmission, and the
detectors’ dead times and efficiencies, we will consider each
ηi as one single entity in the following calculations, sometimes
referred to as system efficiency. This is because isolating
individual loss effects is difficult in a real experiment and not
required for our model.

As a result of these definitions, the average local photon
detection rate of Alice and Bob, the so-called single counts,
can be written, respectively, as

St
A = BηA and St

B = BηB, (2)

where we ignore noise counts for now. Note also that dead-
time-induced losses, unlike other effects contributing to the ηi,
are a function of detector count rates St

i and therefore of the
brightness B, which has to be taken into account for low-loss
scenarios (see Appendix B 1).

Naturally, two photons of a pair must be detected in order
to observe their polarization correlation, i.e., use them for
generating a cryptographic key. The rate of such two-photon
events, which we call “true coincident counts” or “true coin-
cidences,”2 is given as

CCt = BηAηB, (3)

where we again preliminarily ignore noise counts. Using
Eqs. (2) and (3), the ηi can be calculated as [20]

ηA = CCt

St
B

and ηB = CCt

St
A

. (4)

The ηi are sometimes also called “heralding efficiency,” since
they give the probability that the detection of one photon in
one arm announces, or “heralds,” the detection of a photon in
the other arm. One can also define a total heralding efficiency
η = √

ηAηB.
Imperfections of source, polarization compensation, and

optical detection system lead to erroneous polarization mea-
surement outcomes, i.e., two-photon events which do not
comply with the expected Bell state. We call the probability
of such an erroneous measurement epol. It consists of contri-
butions of the individual polarization error probabilities epol

A

and epol
B of Alice and Bob, respectively:

epol = epol
A

(
1 − epol

B

) + epol
B

(
1 − epol

A

)
. (5)

It should be noted that measuring the wrong bit value at
Alice and Bob still counts as a valid measurement, since it
is impossible in principle for the experimenter to distinguish
such an event from a correctly measured true coincidence. In
most practical implementations, it is more convenient to read

2Please note that true coincidences are not a measurable quantity,
since the experimenter cannot distinguish between a true or an ac-
cidental coincidence in principle. Even if an accidental coincidence
does not conform to the expected correlations, it cannot be unam-
biguously identified as “accidental,” since “true” coincidences can
also be measured erroneously [see Eq. (5)]. Therefore, the notion of
true pairs is solely a useful concept for our model, describing the
photons that actually provide the nonclassical correlations necessary
for QKD.

epol directly from the experimental data instead of quantifying
the ei individually (see Appendix A).

B. Noise-afflicted CW-QKD system

In a real-world entanglement-based QKD implementation,
the crucial source of error is not epol, which can be kept below
1% in modern applications [21], but the unavoidable registra-
tion of uncorrelated multipair photons which have lost their
partner, and/or noise counts as coincidences. Such erroneous
coincidences are called “accidental coincidence counts.” To
calculate the accidental coincidence rate for BBM92 with a
CW pump, first one needs to modify Eq. (2) to account for
dark counts DCi in the detectors:

Sm
A = St

A + DCA and Sm
B = St

B + DCB (6)

where Sm
i are the actually measured count rates. Note that

stray light, residual pump laser light, intrinsic detector dark
counts, or any other clicks which do not originate from source
photons all have the same effect for our purposes. Therefore,
we include all such clicks in the DCi. In a real experiment,
Alice and Bob require at least two detectors each to be capable
of distinguishing orthogonal quantum states. In Eq. (6), we
assume that Alice and Bob each own identical detectors the
photon and dark count rates of which can simply be added; for
the case of nonidentical detectors and polarization dependent
detection efficiency, see Appendix B 3.

Alice and Bob identify coincidences by looking for si-
multaneous detection times (accounting for a certain constant
delay tD caused by different photon travel times and elec-
tronic delays). There are three main effects that can degrade
the fidelity of this identification: the detection system’s finite
timing precision, the coherence length of the photons, and
chromatic dispersion effects in fiber, which delay photons of
different wavelengths with respect to each other [17]. These
effects cause a spread of the photons’ temporal correlation
function, the full width at half maximum (FWHM) of which
we call t�. Because in any real experiment t� > 0, Alice and
Bob need to define a so-called coincidence window tCC. It
can be understood as the temporal tolerance allowed for the
difference in detection time of two correlated photons.

It follows that there is a possibility of confusing uncorre-
lated detector clicks with true coincidences. This possibility
can be calculated, since it depends on tCC and the Sm

i . Assum-
ing independent Poissonian photon statistics at Alice and Bob,
one can define the mean number of clicks at Alice and Bob,
respectively, per coincidence window as

μS
A = Sm

A tCC and μS
B = Sm

B tCC. (7)

Most single-photon detectors used today are not photon-
number resolving. Therefore, the chance of an accidental
coincidence being registered can be approximated by the
probability of at least one detection event taking place at each
of them:

Pacc = (
1 − e−μS

A
)(

1 − e−μS
B
)
, (8)

where we use the fact that the click probability is given
by (1 − e−μS

i ); see Refs. [22,23]. This expression for Pacc

provides a good estimate for the accidental coincident-count
probabilities in high-loss regimes. For low-loss scenarios it
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FIG. 1. Number of coincidences per time unit for different rel-
ative measurement times. tD is the delay between Alice and Bob
and t� is the FWHM of the temporal distribution, both of which are
constant. The magnitude of the freely selectable coincidence window
tCC not only determines the number of total coincidences CCm, but
also the QBER E , i.e., the ratio of erroneous (ηtCC CCtepol) plus half
of all accidental ( 1

2 CCacc) coincidence counts to CCm.

needs to be adapted as it overestimates the probability of acci-
dental coincidence counts by also counting true coincidences
as accidental (see Appendix B 2). For μS

i � 1, Eq. (8) can be
simplified to

Pacc ≈ μS
AμS

B. (9)

The rate of accidental coincidences per second is therefore

CCacc = Pacc

tCC
≈ μS

AμS
B

tCC
= Sm

A Sm
B tCC. (10)

Note that, since we assume at least one detector click per
receiver for an accidental count to happen, we take into ac-
count the fact that in a real experiment with several detectors
there can be more than one click per coincidence window
(see Appendix B 2). In that case, a random bit value has to
be assigned [24,25], which has the same error probability as
an accidental count and can therefore be seen as a part of
Eq. (10). Also note that CCacc depends quadratically on B, but
CCt linearly. Thus, noise increases faster than the desired sig-
nal when increasing B, which gives an intuitive understanding
why simply pumping the source with higher power can only
enhance the key rate up to a certain degree (see Sec. IV).

It is not only accidental coincidences which depend on
the choice of tCC. If it is chosen in the order of the timing
imprecision t�, true coincidences will be cut off and lost due
to the Gaussian shape of the g(2) intensity correlation with
FWHM t� between Alice’s and Bob’s detectors (see Fig. 1).

This g(2) function can be modeled as a normal distribution

j(t, t�, tD) = 2

t�

√
ln(2)

π
exp

[
−4 ln(2)

t2
�

(t − tD)2

]
(11)

with delay tD. t� is the resulting timing imprecision between
Alice’s and Bob’s measurements, i.e., it is the convolution of

detector jitter, chromatic dispersion, and coherence time of the
photons at both Alice and Bob. To arrive at the loss which true
coincidences suffer due to the coincidence window, one can
carry out the integration

ηtCC =
∫ tCC/2

−tCC/2
j(t, t�, tD = 0)dt (12)

= erf
[√

ln(2)
tCC

t�

]
. (13)

Here, ηtCC is the proportion of true coincidences which fall into
the chosen coincidence window tCC and are thus identified as
coincidences in the experiment. In this sense, ηtCC can be inter-
preted as coincidence-window dependent detection efficiency.
Now we can define the actually measured coincidences as

CCm = ηtCC CCt + CCacc. (14)

This is the total number of detector events per second that
Alice and Bob use to create their key. But obviously, a subset
of these events occurring with rate CCerr actually does not
show correlations in accordance with Eq. (1)—first, all those
correlated photons which are measured erroneously; and sec-
ond, on average half of all accidental coincidence counts:

CCerr = ηtCC CCtepol + 1
2 CCacc. (15)

C. Error rate and secure key rate

From the quantities defined above, one can now calculate
the quantum bit error rate (QBER E ), i.e., the ratio of erro-
neous coincidences to total coincidences:

E = CCerr

CCm = ηtCC CCtepol + 1
2 CCacc

ηtCC CCt + CCacc . (16)

As a side remark, the commonly used parameter “visi-
bility” V relates to E as V = 1 − 2E [1]. Figure 1 shows a
geometrical interpretation of Eq. (16). Coincidences corre-
spond to different areas under the graphs, which are restricted
by the chosen coincidence window. On one hand, it is desir-
able to increase the ratio of the light blue area to the combined
dark blue and orange ones, which is equivalent to decreasing
E . This can be done by decreasing tCC, since the Gaussian-
shaped CCm (dark blue curve) scales more favorable in this
case than the uniformly distributed accidental coincidence
counts CCacc. On the other hand, reducing tCC means that ηtCC

reduces the total number of coincidences which can be used
for key creation.

In order to evaluate the tradeoff between these two effects,
we will analyze the secret key rate in the limit of infinitely
many rounds—the so-called asymptotic key rate.3 Alice and
Bob choose randomly between measurement settings in the
HV and DA bases. Let us denote the probability that Alice
and Bob measure in the same basis as q. Only in this case,
the polarization measurement outcomes at Alice and Bob are

3Where finite-key effects are of interest, one will have to take into
account the total number of coincidences per block size and modify
Eq. (17) accordingly. This might lead to different optimal experimen-
tal parameters satisfying Eq. (20). Nevertheless, the experimental
parameter definitions of Sec. III B will be applicable also in this case.
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(a) (b)

FIG. 2. (a) Setup used to create and detect polarization-entangled photon pairs for quantum key distribution. Top: A periodically poled
lithium niobate nonlinear crystal is placed inside a Sagnac-type interferometer loop and pumped bidirectionally with a 775-nm continuous-
wave laser (CWL). Via spontaneous parametric down-conversion (SPDC), it produces H -polarized photon pairs. The polarization of the
counterclockwise pair is rotated to V via a half-wave plate (HWP) set to 45◦. It interferes with the clockwise pair at the beamsplitter and is
directed to a single-mode-fiber (SMF) coupler by use of a dichroic mirror (DM). An off-the-shelf wavelength division demultiplexer (WDM)
separates the two photons and directs them to two polarization analyzing modules (bottom left). The manual polarization controller (MPC)
in the pump fiber is used to set the photon pairs’ Bell state of Eq. (1). The MPC in Alice’s arm compensates for the random polarization
rotation in Bob’s arm in order to arrive at the desired correlations. Alice and Bob perform an orthogonal polarization state measurement on
their photon using polarizing beamsplitters (PBS) the output modes of which are coupled into SMF and directed to superconducting nanowire
single-photon detectors (SNSPD). Different loss scenarios are set by purposeful misalignment of the fiber couplers. Detection events of the
SNSPD channels are recorded using a time-tagging module (TTM). From these tags, the g(2) correlation function can be determined from
delay histograms between the channels, and secure key rates can be calculated. (b) Comparison of our model (solid lines) and experimentally
obtained data points (dots) for different loss settings and polarization measurement errors epol. SNSPD jitter values vary with count rate, which
we account for in the model calculations by making t� a linear function of B. The data show that our model correctly predicts secure key rates
over a wide range of losses, polarization errors, and brightness values.

correlated. All other coincidences have to be discarded. There-
fore, the rate of coincidence rounds left for postprocessing is
equal to qCCm. Subsequently, Alice and Bob reveal a small
fraction of measurement outcomes in both bases to estimate
the error. Now we can finally evaluate the amount of achiev-
able key per second as [16]

Rs = qCCm[1 − f (Ebit )H2(Ebit ) − H2(Eph)], (17)

where H2 is the binary entropy function defined as

H2(x) = −xlog2(x) − (1 − x)log2(1 − x). (18)

Ebit and Eph are the bit and phase error rates, which
are measurement-basis-dependent rates of measurement out-
comes incompatible with the maximally entangled state
described in Eq. (1). f (Ebit ) is the bidirectional error cor-
rection efficiency which takes into account how much of the
key has to be sacrificed due to the fact that postprocessing
is performed in finite blocks. In order to asses the validity
of our model against an actual experiment, both the sifting
rate q and efficiency f (Ebit ) need to be defined. We assume
that the measurement settings of Alice and Bob are chosen
uniformly, and thus q = 1/2. Further, we choose a realistic
value of f (Ebit ) = 1.1 [26]. Finally, since in our model the
noise parameters are independent of measurement settings,
we can set Ebit = Eph = E . With these choices, the key rate

formula becomes

Rs = 1
2 CCm[1 − 2.1H2(E )]. (19)

From Eq. (19) follows immediately that there is a fundamental
limit Emax ≈ 0.102, above which no key creation is possible.
In the following section we maximize Rs depending on the
parameters discussed up to now. Importantly, all parameters
used in this optimization can be directly determined in real-
life experiments, which is explained in detail in Appendix A.
Finally, note that the key rate formula can be adjusted using
Eq. (17) to take into account measurement setting dependent
losses as well; see Appendix B 4 for details.

IV. COMPARISON TO EXPERIMENTAL DATA

For realistic applications, the ηi, the optical error epol, the
dark counts DCi, and the temporal imprecision t� cannot be
modified freely. Two important parameters however can be
chosen by the experimenter: brightness B and coincidence
window tCC. The experimenter can vary B up to a certain level
by changing the laser pump power in the source. With laser
powers of many hundreds of milliwatts, brightness values
of up to 1010 cps are feasible with current state-of-the-art
sources [21]. The coincidence window tCC can in principle be
chosen at will. It follows that for each QKD scenario there
is an optimal choice of B and tCC which maximizes Rs of
Eq. (19). Figure 2 shows a comparison of our model and
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experimental values, where tCC has been numerically opti-
mized for each curve with regard to the highest obtainable key
rate and is then kept constant for every curve.

The data were collected using a Sagnac-type source of
polarization-entangled photons in the telecom C band. For a
detailed description of such a source’s working principle, we
refer the reader to Ref. [21]. After passing wavelength divi-
sion multiplexing (WDM) filters of 18.4-nm FWHM centered
about 1531 and 1571 nm, the photons impinge on single-
photon superconducting nanowire detectors (SNSPDs) of the
Single Quantum Eos series with detection efficiencies of 80%
and dead times as low as 40 ns according to the manufacturer.
The detectors were connected to the time tagging module
(TTM) Ultra 8 by Swabian Instruments. To keep the analysis
of the model simple, we measured only in one superposition
basis. Losses were introduced by controlled misalignment of
the single-mode-fiber (SMF) couplers. All experimental pa-
rameters were determined by using count rates, coincidence
rates, and temporal histograms of the single-photon detections
only, with no need of additional “external” characterization
(see Appendix A). Since the timing jitter of nanowire detec-
tors strongly depends on the count rates they measure, linear
fits of the jitter change depending on brightness have been
included in the model.

The data show excellent agreement with our model’s pre-
dictions. The losses introduced in the measurements range
from 40 to 80 dB in total, with different distributions along the
channels. Note that the two loss scenarios with equal total loss
of 60 dB (orange and turquoise curve) perform very differ-
ently. Assuming DCA = DCB,4 symmetric loss is preferable
to asymmetric loss because the probability of a partnerless
photon matching with a dark count is reduced in this case.
In Fig. 2, this effect on the two 60-dB curves is, however,
exaggerated due to different polarization errors epol, which
we set via a manual polarization controller (MPC) to show
the model’s validity for different parameter regions. The total
losses are equivalent to in-fiber distances between 200 and
400 km. Nevertheless, our model can be applied to all kinds
of quantum channels, including, e.g., free-space satellite con-
nections, where variation of the channel attenuation [27,28]
can be integrated in our model in a straightforward manner.

We want to emphasize that in any case our optimization
strategy works exclusively with experimentally measurable
quantities that can be inferred directly from the actual QKD
implementation (see Appendix A). Furthermore, the presented
model can be used during the planning phase of an experiment
to devise optimal working parameters based on specification
sheets. While several calculations are approximated in our
model, it shows excellent agreement with the experimental
data. This is proof of its usefulness in a wide range of ex-
perimental parameters. For a more extensive treatment of
phenomena that might become necessary in certain parameter

4If DCA and DCB differ strongly, loss asymmetry can actually be
beneficial. In a simplified view, this is because higher dark count
rates matter less when occurring at detectors with higher single count
rates. However, since in most scenarios neither loss nor dark counts
can be chosen freely, we omit an in-depth discussion of this effect.

FIG. 3. Key rate Rs vs total symmetric link loss ηAηB for dif-
ferent timing imprecision values t�. Brightness B and coincidence
window tCC have been optimized for every point of every curve.
Dark counts DCA = DCB = 250 cps are kept constant for each of
the four detectors per communication partner. Also polarization error
epol = 1% is constant for all curves. Lower t� allows both for higher
key rates and longer maximum distance, since CCacc, the main source
of errors, is directly proportional to t�. Note that the dotted green
curve (t� = 10−10 ps) is the same curve as the equally colored one in
Fig. 4.

regimes, such as dead-time effects, low-loss channels, and
nonidentical detectors, we refer the reader to Appendix B.

V. OPTIMIZATION OF QKD WITH A CW-PUMPED
SOURCE

Now that we have shown the validity of our model in
different parameter scenarios, we want to use it to illustrate the
limits and potential of CW-QKD. Therefore, we numerically
maximize both B and tCC for every point on the curves in
Figs. 3 and 4, i.e.,

∂

∂B

∂

∂tCC
Rs(B, tCC; ηi, epol, DCi, t�) = 0 (20)

is fulfilled continuously. Figure 3 shows the maximum ob-
tainable key rate assuming symmetric loss for different jitter
values. Lower jitter allows for a smaller coincidence window,
which in turn allows for higher brightness values and thus key
rates. Note that no matter the jitter value there is an abrupt
drop to zero key after a certain amount of loss. This is because
dark counts will inevitably induce a minimum accidental co-
incidence count value CCacc

min = DCADCBtCC. In a regime of
high loss, this constant value can mask true coincidences if
ηtCC CCt � 10CCacc

min. In this case, key creation is frustrated.
Figure 4 now shows how CCacc

min is reduced with lower dark
count values. For the hypothetical case of DCi = 0, the
accidental coincidences CCacc can be decreased to arbitrarily
low values by reducing the brightness B. Although this also
decreases maximum key rates beyond the point of usefulness,
they never drop to zero, as indicated by the dark blue curve.
When comparing Figs. 3 and 4, it becomes apparent that in
a real-world scenario reducing the timing imprecision t� is
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FIG. 4. Key rate Rs vs total symmetric link loss ηAηB for dif-
ferent dark count rates DC per detector and four detectors per
communication partner. The timing imprecision t� is kept constant
at 100 ps and the polarization error at epol = 1%. As can clearly be
seen, reducing detector noise counts effectively only increases the
maximum achievable distance. In the case of no dark counts (dark
blue curve), there exists no distance limit, since tCC can in principle
be set arbitrarily small, thus keeping the error rate below Emax for any
loss. Note that the dotted green curve (DC = 250) is the same curve
as the equally colored one in Fig. 3.

more important than reducing the dark counts. This is because
lower DCi can only increase the maximum distance in high-
loss regimes, where key rates are extremely low already. To
increase the key rate for a given loss, it is more favorable to
lower t� in most cases.

We would also like to emphasize that when wrongly using
the model for pulsed-source BBM92 by Ma et al. [16] to esti-
mate key rates for a CW-pumped implementation one arrives
at erroneous results, even when trying to adapt it. One could
try to do so by replacing the mean photon number per pulse
2λ with the average photon number per coincidence window

FIG. 5. Comparison of 40- and 20-dB experimental data with the
secure key predicted by our model (blue line) vs an adapted version
of the pulsed-source model from Ref. [16] (orange line). Since tem-
poral detection imprecision does not enter the pulsed-source model,
it overestimates both the maximum key rate and the optimal bright-
ness value.

μ = BtCC and changing the multipair probability of Eq. (5) in
Ref. [16] to a Poissonian distribution. Since doing so ignores
any effects of temporal uncertainty, the results differ strongly,
as can be seen in Fig. 5.

VI. CONCLUSION

In this paper, we have presented a comprehensive and accu-
rate model of continuous-wave entanglement-based quantum
key distribution. Our model allows one to estimate and op-
timize the performance of any given CW-QKD system by
extracting experimental parameters from the recorded de-
tections only, without the need to perform any additional
characterization of the experiment. It also allows one to com-
pare different devices and find the optimal solution for a
given quantum link. For a given QKD setup, the model can
accurately estimate the optimal settings of brightness and
coincidence window to extract the maximal possible key and
thus enhance the performance of the implementation. Further-
more, the presented approach is readily extendable to BBM92
based on entanglement in other degrees of freedom. We are
confident that our easy-to-implement model will be used as an
important design and optimization tool for CW-QKD links.
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APPENDIX A: PARAMETER ESTIMATION

There are numerous ways to estimate the parameters dis-
cussed in this paper. When planning a QKD link from scratch,
one has to rely on data sheets and fiber loss measurements.
However, one can also estimate all parameters with the same
QKD equipment used for the experiment, if already available.

Directly accessible parameters for the experimenter are tCC

(since it is a free variable to be chosen by the experimenter),
Sm

i , and CCm. The delay tD between Alice’s and Bob’s detec-
tion times can be found out by calculating a delay histogram
of single counts at Alice and Bob and determining the location
of the histogram peak (see Fig. 6). From the same histogram,
the (total) timing imprecision t� can be read from the peak’s
FWHM (less CCacc). It should be mentioned that SNSPD jitter
depends on both the detector’s bias current and its count rate,
and exhibits the lowest specified values for high current and
low count rates only. This dependency has been included in
the model of Fig. 2 by using a linear fit of t� vs B rather than
a constant jitter value.

The dark counts DCi can be determined by blocking the
source of photons and observing the Sm

i , which are equal
to the DCi for B = 0 [see Eqs. (2) and (6)]. Note however
that stray light from the pump beam cannot be observed with
this method. To do so, one either needs filters that block just
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FIG. 6. Measured g(2) correlation histogram for the 40- and 40-
dB loss setting. CCm contains all measured counts for all possible
channel combinations, where all histograms have been shifted by
their respective delays tD. CCerr only shows undesired correlations,
i.e., between polarization measurements not in accordance with
Eq. (1). The orange curve’s small peak around zero corresponds
to erroneous polarization measurements, while the noise floor is
equivalent to accidental coincidence counts CCacc (see Fig. 1).

the SPDC wavelength, or the possibility to frustrate SPDC
without blocking or misdirecting the laser, e.g., by changing
the crystal temperature. Especially for long-distance single-
mode-fiber links designed for the SPDC wavelength, it is safe
to assume that pump light is sufficiently suppressed at the
detectors.

For the following calculations, it is necessary to determine
CCt (for a certain brightness). Especially in the case of low
loss and low jitter, this can be done experimentally by lower-
ing the brightness to a value where CCacc → 0 and therefore
CCm → CCt. Alternatively, CCacc can be subtracted from
CCm: either by calculation using Eq. (10) or experimentally
by changing tD to a value far from the actual coincidence peak,
while keeping tCC constant. In absence of CCt, the measured
CCm become equal to CCacc. For all these approaches, it is
important to choose tCC large enough such that ηtCC → 1; as a
rule of thumb, tCC = 3t� is sufficient.

Now to determine the optical error epol, one can use the
methods just described to eliminate CCacc in Eq. (16) such
that E ≈ epol.

The heralding efficiencies or transmission factors ηi can be
calculated using Eq. (4), where again CCt and St

i have to be
determined in advance by subtracting CCacc and DCi.

Finally, also the brightness B can be calculated using CCt

and St
i via

B = St
ASt

B

CCt . (A1)

Note that for this calculation of the ηi and B, dead-time effects
have not been taken into account. Thus, even if the CCacc

are simply measured and subtracted, one should take care
to operate the source at sufficiently low pump power (see
Appendix B 1).

If it should be necessary to incorporate dead-time effects,
the most efficient way to determine t† is to calculate an auto-
correlation histogram in time of each detector channel while

subjecting it to photons with Poissonian emission statistics.
The temporal stretch for which no correlations are found is
the detector channel’s dead time.

APPENDIX B: ADDITIONAL CORRECTIONS

1. Dead-time loss

In scenarios with high detector count rates, an additional
loss factor might be considered to account for the detectors’
dead time t† [29]:

η
t†
i = 1

1 + Bηit†/d
. (B1)

Here d is the number of (identical, see Appendix B 3) detec-
tors deployed per communication partner. This effective loss
cannot simply be considered as a constant contribution to ηi,
since it is a function of Sm

i and therefore B. For Bηit†/d <

0.02, ηT
i ≈ 1 holds. Note that the estimation of B can be

compromised if this assumption is not justified due to low
loss, high brightness, and/or long detector dead time.

Another result of dead-time loss is that the definition of the
μS

i in Eq. (7) needs to be modified, since photons arriving at
the detectors during the dead time do not contribute to Sm

i .
One therefore needs to modify the CCacc in Eq. (10) to

CCacc
t† ≈ Sm

A Sm
B tCC

η
t†
Aη

t†
B

(B2)

where we assume DCi � St
iηi, which is reasonable in the

high single-count regimes where dead-time effects become
important.

2. Accidental coincidence probability

Equation (8) slightly overestimates the probability of ac-
cidental coincidence counts. Since it assumes completely
independent photon statistics at Alice and Bob, any photon
contributes to CCacc, regardless of whether it has lost its
partner or not. Thus, here we want to give a more extensive
description Pacc

ext , which is well approximated by Pacc in Eq. (9)
for ηi � 1. We start by defining the probability of a coinci-
dence happening per coincidence window, PCCt

:

PCCt =
∞∑

n=1

e−μ μn

n!

n∑
i=1

[
[(1 − ηA)i−1(1 − ηB)i−1ηAηB]

×
(

1 − ηA

2

)n−i(
1 − ηB

2

)n−i

×
(

1 − PDC
A

2

)(
1 − PDC

B

2

)]
(B3)

where μ = BtCC is the average number of photon pairs created
per coincidence window before any loss, and PDC

i = DCitCC

are the probabilities of a noise count happening at Alice
and Bob, respectively, per coincidence window. This formula
takes into account the Poissonian emission and dark count
statistics. Multipair emissions can still yield a valid measure-
ment if photons get lost in a way that two correlated photons
end up at the detectors before all others (first factor inside
the square brackets). However, if photons emitted after the
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true pair, but inside the coincidence window, are detected as
well, they can in some cases eliminate a true coincidence
(second line). The divisions by 2 come from the fact that if
the later photon detection occurs in the same detector as the
true photon detections this case cannot be distinguished from a
true coincidence. If it clicks in the other detector, a random bit
value has to be assigned, i.e., only this case has to be counted
as an accidental. Dark counts can also occur in the presence

of a true pair, eliminating a valid coincidence in the same way
as photons arriving later, which gives rise to the factors in
the third line. As a side remark, in the case of passive basis
choice using beamsplitters, there are four instead of two detec-
tors deployed; accordingly, the factor 1/2 has to be replaced
by 3/4.

Using PCCt
, the actual probability of detecting an acciden-

tal coincidence per coincidence window reads

Pacc
cor = 1 − e−μ

[
1 − PDC

A PDC
B

] − PCCt −
∞∑

n=1

e−μ μn

n!

[
(1 − ηA)n + (1 − ηB)n − (1 − ηA)n(1 − ηB)n

− (1 − ηA)n[1 − (1 − ηB)n]PDC
A − [1 − (1 − ηA)n](1 − ηB)nPDC

B − (1 − ηA)n(1 − ηB)nPDC
A PDC

B

]
. (B4)

The formula can be understood as follows: The accidental
coincidence probability Pacc

cor can be seen as all those two-click
events that did not originate from a true pair. We proceed
by subtracting from probability 1 all events which are no
accidental coincidences.

Thus, in the first line, we subtract the probability of no
photon pair being emitted, corrected by the case of two dark
counts producing a coincidence. We also subtract all correct
coincidences according to Eq. (B3). Then we subtract the sum
over all remaining pair emission probabilities which are not
the vacuum state, not a true coincidence, and not an acci-
dental count. In the second line, we count those cases where
no accidental coincidence happens since in at least one arm
no click occurs. Since the possibility of both detectors not
clicking is included in both (1 − ηA)n and (1 − ηB)n, it has
to be subtracted. This subtraction avoids mistakenly counting
the case of all photons lost twice.

In lines 3 and 4 of Eq. (B4), we have to re-add the cases
where dark counts cause an accidental coincidence by “replac-
ing” a photon. All other dark count cases are already included
in the first line of the equation—either as part of PCCt

or in 1,
since a dark count happening when an accidental coincidence
would have occurred anyway does not change their statistics.

For ηi � 1, one can approximate Pacc
cor with Pacc from

Eq. (9), which actually constitutes an upper bound for Eq. (8).

3. Nonidentical detectors

In our model, we assume Alice and Bob, respectively,
to use identical detectors for their orthogonal polarization
measurements. It has recently been shown [30] that vast differ-
ences in detector performance do not necessarily degrade the
security of a QKD protocol. However, different detection ef-
ficiencies lead to asymmetric single-count rates and therefore
different accidental coincidence rates for different polariza-
tion correlations. On top of this, different detector jitters lead
to different ηtCC for each correlation. These asymmetries and
differences of used detectors can lead to a deviation from the
reported model.

To account for such imbalances one has to define two
heralding efficiencies per communication partner, which we
denote by ηA j and ηBk , where j and k indicate the detectors.
Following Eq. (3), one can now differentiate true coincidence

values:

CCt
jk = BηA jηBk, (B5)

for which
2∑

j,k=1

CCt
jk = CCt (B6)

holds. Additionally, one has to subdivide the Sm
i while ac-

counting for different dark count rates

Sm
A j = BηA j + DCA j, (B7)

Sm
Bk = BηBk + DCBk (B8)

where similarly

Sm
A =

2∑
j=1

Sm
A j and Sm

B =
2∑

k=1

Sm
Bk (B9)

and assign different accidental coincidence rates to different
detector combinations:

CCacc =
2∑

j,k=1

CCacc
jk =

2∑
j,k=1

Sm
A jS

m
BktCC. (B10)

To take into account different detector jitters, one arrives at
different values of t� jk , which require an adaptation of the
coincidence window loss of Eq. (13):

η
tCC
jk = erf

[√
ln(2)

tCC

t� jk

]
. (B11)

In this case, Eq. (14) becomes

CCm =
2∑

j,k=1

[
η

tCC
jk CCt

jk + CCacc
jk

]
, (B12)

and similarly Eq. (15) can be written as

CCerr =
2∑

j 
=k

[
η

tCC
jk CCt

jkepol + CCacc
jk

]
. (B13)

Here we assume a correlated Bell state (φ+/−) in the respec-
tive basis. For anticorrelated ones (ψ+/−), the indices to be
summed over have to be replaced by j = k.
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4. Key-rate-formula adjustments

Following from the above considerations, in a realistic
experiment, one might additionally expect that one of the po-
larization measurement settings used in the BBM92 protocol
is more prone to errors than the other one. Let us assume that
this is due to different optical errors epol which can depend on
the measurement basis. As an example, the HV basis often
shows higher fidelity than the superposition bases as a result
of the source design, which relies on polarizing beamsplitters
defining H and V with high extinction (1 : 1000 or better).
Because of this, we obtain two values of QBER [see Eq. (16)],
one for each measurement setting. Let us denote these with
EHV and EDA. If coincidences obtained in the HV basis are
used to derive the key, then in Eq. (17) we can set Ebit = EHV

and Eph = EDA. Similarly, for a key derived from coincidences
in the DA basis we set Ebit = EDA and Eph = EHV . If both
Alice and Bob choose the HV setting with probability p and
the DA setting with probability (1 − p), they would obtain two
key rates, each in one basis:

Rs
HV = p2CCm[1 − H2(EDA) − f (EHV )H2(EHV )], (B14)

Rs
DA = (1 − p)2CCm[1 − H2(EHV ) − f (EDA)H2(EDA)].

(B15)

The total key rate is then the sum of these two key rates, and
the total compatible basis choice probability from Eq. (17) is
q = p2 + (1 − p)2.

Another common technique is to use predominantly one
of the basis settings and use the other only with very low
probability to obtain the estimate on Eph. This is often referred
to as the “efficient BB84 protocol” [31]. In the asymptotic
setting, one can therefore assume that the probability p to
choose the HV basis approaches unity, and the final key rate
is

Rs
efficient = CCm[1 − H2(EDA) − f (EHV )H2(EHV )]. (B16)

Additionally, in some works the authors assume that in
the asymptotic setting the block length is also approaching
infinity and therefore f (Ebit ) approaches unity [32,33]. Last
but not least, even in the case of different error rates, one
can in practice use the average error E = (EHV + EDA)/2 with
Eq. (19) to obtain a lower bound on the secret key rate [10,34],
since

2H2

(E1 + E2

2

)
� H2(E1) + H2(E2) ∀ Ei ∈ [0, 0.5].

(B17)
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