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Quantum information scrambling under the dynamics of a closed many-body system is of wide interest. The
tripartite mutual information (TMI) can quantify the scrambling via its stable negative value under temporal
evolution. Here, we study the quench dynamics of the TMI in a nonintegrable Ising model with different
initial states in the regimes of strong and weak thermalization. Our numerical results show that the most
efficient scrambling can occur when the inverse temperatures of initial states are near zero and in the regime of
strong thermalization, and weak thermalization accompanies slow scrambling. We then present an experimental
protocol for observing strong and weak thermalization in a one-dimensional array of superconducting qubits,
based on which the relation between scrambling and the degree of thermalization revealed in this work can be
directly verified by superconducting quantum simulators. The inevitable decoherence effects in real situations
are also analyzed, paving the way for faithful quantum simulations on actual experimental platforms.
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I. INTRODUCTION

Under unitary dynamics, whether or not the locally en-
coded quantum information is localized or spreads over the
entire system is a fundamental question [1,2]. When delo-
calization of quantum information occurs in a system, it is
referred to as a scrambler. For instance, the most efficient
scrambler in nature is the black hole [3–5]. The characteriza-
tion of scramblers has attracted considerable attention [6–9].
A well-known probe of quantum information scrambling is
the out-of-time-order correlator (OTOC), whose decay rate
extracted from its dynamics is closely related to the Lyapunov
exponent [6,10]. Quantum information scrambling can pro-
vide insight into the subjects in condensed-matter physics. By
studying OTOCs, it has been recognized that the scrambling
plays an important role in information propagation [11,12],
many-body localization (MBL) transitions [13–15], and quan-
tum phase transitions [16–19].

Besides the OTOC, the scrambling can also be character-
ized by the negative tripartite mutual information (TMI) [6,7].
Different from the OTOC, the TMI is an operator-independent
quantity. The experimental measurements of OTOCs and TMI
require different technologies. The direct measurement of
OTOCs requires the inverse-time evolution, which can be
performed in trapped ions [20] and nuclear magnetic res-
onance (NMR) quantum simulators [21]. Nevertheless, the
inverse-time evolution is an experimental challenge in su-
perconducting circuits because the sign of local intraqubit
interactions cannot be adjusted on the fly [22]. On the other
hand, measuring the TMI calls for quantum state tomogra-
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phy (QST). Accurate and efficient QST can be performed in
several platforms, such as trapped ions [23], superconduct-
ing qubits [22,24,25], and NMR [26]. Consequently, TMI
is an experimentally feasible probe for quantum information
scrambling in general.

Recently, more attention has been paid to the TMI in quan-
tum many-body systems. It has been shown that the TMI can
diagnose the ergodic and the MBL phase; i.e., the TMI is close
to zero and the scrambling is suppressed in the MBL phase. In
contrast, the TMI becomes more negative in the ergodic phase,
indicating stronger scrambling [27]. In addition, by studying
the TMI, it has been shown that the scrambling is observed in
both the Bethe integrable system with fermionic interactions
and a generic nonintegrable system, while one-dimensional
noninteracting fermions do not scramble [28].

Quantum information scrambling accompanies thermal-
ization in quantum many-body systems driven out of equi-
librium. If thermalization occurs, the dynamics of local
observables will stably attain their thermal values predicted
by the Gibbs ensemble. The occurrence of the aforemen-
tioned thermalization (known as strong thermalization) is
dependent on the choice of initial states. Starting from an
initial state corresponding to the Gibbs state with an in-
verse temperature β far away from zero, it has been revealed
that the dynamics of local observables shows obvious per-
sistent oscillation, and can achieve the thermal values only
by adopting the long-time average, which is a signature of
weak thermalization. In contrast, strong thermalization hap-
pens when the inverse temperatures of initial states are close
to zero. The weak and strong thermalization in a noninte-
grable Ising model with both parallel and longitude magnetic
fields was numerically explored [29,30], and explained from
a quasiparticle viewpoint [31]. Recent numerical results of
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FIG. 1. (a) Schematic representation of the Hayden-Preskill
thought experiment. (b) A protocol for characterizing information
scrambling in the quantum simulator enlightened by the Hayden-
Preskill thought experiment. The arrows in (a) and (b) represent
the direction of time. (c) Schematic representation of the generic
experimental protocol for studying quantum information scrambling
by measuring the TMI. The sequence consists of three parts: (i) ini-
tialization, (ii) evolution, and (iii) readout. Throughout the protocol,
the whole system remains in a pure state.

the nonintegrable long-range Ising model suggest the ex-
istence of strong and weak thermalization in this system,
paving the way to experimentally observing the phenomena in
trapped ions [32].

Previous works of the TMI mainly focused on whether
the integrability of the system is broken. However, its de-
pendence on the initial states with different temperatures in
nonintegrable systems remains limited. In this work, we first
study the time evolution of TMI in the nonintegrable Ising
model with different initial states in the regimes of both strong
and weak thermalization, and reveal the relation between the
information scrambling and the degree of thermalization. We
then present an experimental protocol for observing weak
and strong thermalization in a superconducting qubit chain,
which constitutes one of the most common superconducting
circuits. Finally, we calculate the TMI in the superconduct-
ing qubit chain and explore the impact of decoherence on
the TMI.

II. TRIPARTITE MUTUAL INFORMATION AND A
GENERIC EXPERIMENTAL PROTOCOL

We first introduce the Hayden-Preskill thought experiment
[3] [see Fig. 1(a)], which can be further employed to quantify
the information scrambling [27]. Four parties are involved
in the thought experiment: Party B holds certain quantum
information encoded in its state. Party A is an ancillary system
acting as a reference, which is maximally entangled with B,

so that B’s information can be reflected by A through the
entanglement between them. Party C, being the black hole, is
the information scrambler, and party D is an examiner of C, if
needed. The powerful examiner D has full knowledge of C by
maximally entangling with it. In this setup, B wants to hide
and erase its quantum information through the scrambler C
by throwing its physical qubits into the black hole and letting
them interact. There, one is interested in how it is possible for
party D to retrieve the information of party B by collecting the
Hawking radiation of the evaporating black hole and selecting
part of his qubits such that they are also maximally entangled
with the reference system A. One key ingredient as such is the
ability of the black hole to efficiently scramble information.

Now, we consider a more realistic scenario of using a
quantum simulator as an information scrambler, where the
whole system, consisting of A, B, C, and D, is always a pure
state. Similar to the black hole setup, the ancillary reference
system A will not participate in the unitary transformation
after getting maximally entangled with B. Unlike the black
hole scenario, where nobody is able to directly detect the black
hole, and as a result one has to employ an examiner D which
is maximally entangled with C, in our case, there is no need to
include the examiner D, since the quantum simulator can be
directly detected. However, to keep the discussion consistent
with the Hayden-Preskill thought experiment, we preserve
the party D, which is initially independent of C, but under
the dynamics of the quantum simulator together with C [see
Fig. 1(b)].

In the Hayden-Preskill thought experiment [3], the system
size of A is exactly equal to that of B, and D should be
comparable with C. Moreover, the former two subsystems
should be much smaller than the latter two in order for C to
sufficiently and efficiently scramble the quantum information
of B. Here, we focus on a simple situation where A and B
each only have one qubit.

The reduced density matrices of the subsystems A, B, C,
and D are denoted as ρA, ρB, ρC , and ρD, respectively. In
general, the definition of TMI is [6]

I3 = S(ρA) + S(ρB ) + S(ρC ) + S(ρD )

− S(ρAB ) − S(ρAC ) − S(ρBC ), (1)

where S(ρ) = −Tr(ρ ln ρ) is the von Neumann entanglement
entropy (EE). A stable negative value obviously away from
zero is a diagnostic of quantum information scrambling [6].

We then present a generic experimental protocol for study-
ing quantum information scrambling by measuring the TMI.
A schematic diagram of the protocol is shown in Fig. 1(c).
The whole system is comprised of N qubits denoted as
Q1, Q2, . . . , QN , and an ancillary qubit QA. They are as-
signed to four parties as QA ∈ A, Q1 ∈ B, {Q2, . . . , Qi} ∈
C, and {Qi+1, . . . , QN } ∈ D. We define the state |θ, φ,±〉
as the eigenstate of the matrix n̂ · �σ = (sin θ cos φ)σ x +
(sin θ sin φ)σ y + (cos θ )σ z (σα with α ∈ {x, y, z} referring to
the Pauli matrices) with the eigenvalues ±1. The initial state
of QA is |θA, φA〉 ≡ (|θ1, φ1,+〉 + |θ1, φ1,−〉)/

√
2, and all

other qubits are in |θ1, φ1,+〉. The generalized controlled-NOT

022405-2



QUANTUM INFORMATION SCRAMBLING IN THE … PHYSICAL REVIEW A 104, 022405 (2021)

(CNOT) gate in Fig. 1(c) reads

CNOT ≡ |θ1, φ1,+〉〈θ1, φ1,+| ⊗ 1

+ |θ1, φ1,−〉〈θ1, φ1,−| ⊗ X̃ , (2)

where 1 is a two-dimensional identity matrix, and X̃ ≡
Rσ xR−1 with

R ≡
(

cos θ1
2 −e−iφ1 sin θ1

2
eiφ1 sin θ1

2 cos θ1
2

)
. (3)

After applying the CNOT gate, we in fact gener-
ate a Bell state |�〉A1 = (|θ1, φ1,+〉A|θ1, φ1,+〉1 +
|θ1, φ1,−〉A|θ1, φ1,−〉1)/

√
2, maximally entangling the

ancillary qubit and Q1 and locally encoding the information
in the two qubits [see Figs. 1(b) and 1(c)]. In short, the initial
state can be written as

|ψ0〉 = |�〉A1(⊗N
j=2|θ j, φ j,+〉). (4)

The next step is the time evolution under the quantum chan-
nel U = e−iHt , i.e., |ψt 〉 = U |ψ0〉, with H as the Hamiltonian
of the N-qubit isolated system. To study the quantum informa-
tion scrambling, we conventionally consider the spin chains
that are beyond quadratic fermionic form after the Jordan-
Wigner transformation [28]. The final step is measuring the
TMI by QST based on Eq. (1). In this work, we adopt the open
boundary condition for the physical systems studied below.

III. RESULTS

A. Results for a nonintegrable Ising model

We first pay attention to a spin-1/2 Ising model whose
Hamiltonian reads

HIsing = −J
N−1∑
i=1

σ z
i σ z

i+1 + g
N∑

i=1

σ x
i + h

N∑
i=1

σ z
i , (5)

with g and h referring to the strength of the transverse
and the parallel magnetic fields. With the chosen parame-
ters g/J = 1.05 and h/J = −0.5, the Ising model becomes
a paradigmatic nonintegrable model [29–31]. Similar to
the quench protocol in Ref. [29], the chosen initial states
are isotropic, i.e., θ = θi and φ = φi ∀i ∈ {1, 2, . . . , N} in
Eq. (4), and |θ, φ〉 ≡ ⊗N

i=1|θi, φi,+〉. The inverse temperature
β for the state |θ, φ〉 can be obtained by solving the equa-
tion Tr{[ρ(β ) − ρ(θ, φ)]H} = 0 with ρ(θ, φ) ≡ |θ, φ〉〈θ, φ|,
ρ(β ) ≡ e−βH/Tr(e−βH ), and H as the Hamiltonian.

It has been shown that the quench dynamics with the initial
state |Z+〉 = |0, φ,+〉 (i.e., β 
 0.7275) shows a signature of
weak thermalization, while with |Y +〉 = |π/2, π/2,+〉 (i.e.,
β = 0) as the initial state, strong thermalization occurs [29].
Additionally, we can employ the normalized energy

ε = 〈θ, φ,+|H |θ, φ,+〉 − Emin

Emax − Emin
(6)

with Emax(min) as the maximum (minimum) eigenvalue of the
Hamiltonian H . The normalized energy can quantify the rel-
ative position of the state in the energy spectrum. It can be
directly calculated that for |Z+〉 in the weak thermalization
regime, the normalized energy ε 
 0.0812, i.e., |Z+〉 is quite
close to the ground state of HIsing (here, the system size is

N = 14), which is consistent with the quasiparticle explana-
tion in Ref. [31]. For the state |Y +〉, which is far away from
the ground state, the normalized energy is ε 
 0.5602.

Using the protocol in Fig. 1, we study the quench
dynamics of TMI I3 in the nonintegrable Ising model with the
Hamiltonian (5). We first explore the dependence of I3 on the
length of subsystem C denoted as l . Considering different l ,
the time evolution of I3 with the initial state |Y +〉 and |Z+〉 is
displayed in Figs. 2(a) and 2(b), respectively. It is shown that
except for l = 6 and 7, the I3 tends to a value close to zero
for both strong (|Y +〉) and weak (|Z+〉) thermalization. The
values of I3 at late time for weak and strong thermalization
are the most distinctive when l = 6 and 7. We also consider
a time-averaged TMI I3 ≡ 1

t f −ti

∫ t f

ti
I3(t ) dt with ti = 100 and

t f = 1000, extracting the stationary value of TMI from its
dynamics. The I3 as a function of l is plotted in Fig. 2(c),
suggesting that to characterize the regimes of strong and
weak thermalization using the dynamics of I3, the appropriate
length of subsystem C is l = N/2 − 1 or N/2 (N is even for
convenience). Consequently, we fix l = 6, i.e., the subsystem
C = {Q2, Q3, . . . , Q7} for a 14-qubit system in the following
studies.

As shown in Fig. 2(d), when φ varies from zero to
0.5π with θ = 0.5π , the decrease of TMI suggests that
stronger thermalization corresponds to more efficient infor-
mation scrambling. The dynamics of I3 with φ = 0.5π and
θ ∈ [0, 0.5π ] is presented in Fig. 2(e), showing a similar
tendency of TMI in Fig. 2(d). The normalized energy ε can
characterize the initial states in the strong or weak thermaliza-
tion regime, and therefore we plot the I3 as a function of ε in
Fig. 2(f). The I3 has a local minimum value near ε 
 0.56,
which exactly corresponds to a maximum density of states
(DOS) (see Appendix A), revealing that the most efficient
scrambling occurs when the initial state has the normalized
energy with maximal DOS, equivalent to the inverse tempera-
ture β = 0.

As a side remark, we compare the dynamics of TMI
for different isotropic initial states and the initial Néel-type
initial states with the same ε. The results are presented in
Appendix A, showing that the stationary values of TMI are
almost identical for all initial states with the same ε.

B. Experimental protocol for observing weak and strong
thermalization on a superconducting qubit chain

In the above section, we have studied the relation between
the information scrambling quantified by the TMI and the
degree of thermalization characterized by initial states with
different normalized energy or temperature in the noninte-
grable Ising model [Eq. (5)]. To experimentally demonstrate
the relation in the Ising model using superconducting qubits,
one can employ the digital quantum simulation to realize the
Ising interaction [33,34], which cannot be directly realized in
the setup, since a chain of transmon qubits with capacitive
couplings λ is typically described by the one-dimensional
(1D) spin-1/2 XY model [22,35–37]

HXY = λ

N−1∑
i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

)
. (7)
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FIG. 2. (a) Time evolution of the TMI I3 in the nonintegrable Ising model [Eq. (5)] with g/J = 1.05, h/J = −0.5, system size N = 14,
and different length of the subsystem C, i.e., l . The initial state is chosen as |Y +〉. (b) Similar to (a) but for the initial state |Z+〉. (c) The
time-averaged TMI I3 as a function of l with two initial states |Y +〉 and |Z+〉. (d, e) The dynamics of the I3 with l = 6 and different isotropic
initial states |θ, φ〉. (f) The I3 as a function of the normalized energy ε with l = 6. The dashed line in (f) highlights the ε corresponding to the
minimum I3. The unit of time t is 1/J .

It has been revealed that the Trotter error in the digi-
tal quantum simulation of the Ising model is proportional
to the number of qubits, N [33], bringing the experimen-
tal challenge to the implementation of the nonintegrable
Ising model [Eq. (5)] with large size in superconducting
qubits.

Nevertheless, the phenomena of strong and weak thermal-
ization do not uniquely exhibit in the Hamiltonian in Eq. (5).
Actually, any nonintegrable model is a potential platform to
observe strong and weak thermalization, for instance, the
long-range transverse-field Ising model studied in Ref. [32].
Thus, in the following, we construct a nonintegrable model
using a 1D array of transmon qubits, and present a protocol of
analog quantum simulation to study strong and weak thermal-
ization, as well as the dynamics of TMI in different regimes
of thermalization.

The Hamiltonian HXY can be mapped to a free fermion
system via the Jordan-Wigner transformation [38]. Thus,
quantum thermalization is absent in HXY because of the
infinitely many conserved quantities in the thermody-
namic limit (for a finite XY chain, there are an extensive
number of conserved quantities) [39,40]. To make the
superconducting qubit chain nonintegrable for observing
quantum thermalization, we impose uniform resonant mi-
crowave drives on all qubits, generating the local transverse
field with amplitude , and the final Hamiltonian reads
(see Appendix B)

HSQ = λ

N−1∑
i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

) + 

N∑
i=1

σ
y
i . (8)

The local transverse field has been realized in a re-
cent quantum simulation experiment [41], where the XY -
crosstalk correction and phase alignment of the transverse

field were discussed. A sketch of the pulse sequence
for the realization of the Hamiltonian (8) is depicted in
Fig. 3. More details for the breakdown of integrability
in Eq. (7) due to the term 

∑N
i=1 σ

y
i are presented in

Appendix B.
Before we study the TMI in Hamiltonian (8), weak

and strong thermalization in the system should be demon-
strated. Here, we adopt λ =  = 1 and N = 14. It can be

In
iti
al
iz
at
io
n

R
ea
do
ut

FIG. 3. Schematic representation of the experimental waveform
sequence for the time evolution. The qubits Q1, Q2, . . . , QN are
biased to the interaction frequency ωint

q via their Z pulse control
lines (the rectangular pulses). Since the ancillary qubit QA does not
participate in the time evolution, its frequency should be detuned
away from ωint

q . Meanwhile, the microwave drives (the sinusoidal
pulses) are imposed on Q1, Q2, . . . , QN through the XY control lines.
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FIG. 4. (a) The dynamics of local observables with the initial state |θ, φ〉 = |π/2, 1.369π〉 (β 
 0) for the superconducting circuit model
[Eq. (8)] with λ =  = 1, and system size N = 14. (b) Similar to (a) but with the initial state |θ, φ〉 = |π/2, 0.369π〉 (β 
 −0.6547). (c) Time
evolution of the distance d (ρsub.(t ), ρsub.

th ) with the two initial states. (d) Similar to (c) but for the dynamics of TMI. The unit of time t is 1/λ.

calculated that for the isotropic initial state |θ, φ〉 =
|π/2, 1.369π〉, the inverse temperature β 
 0, and strong
thermalization is expected. To observe the weak thermaliza-
tion, we consider another isotropic initial state |π/2, 0.369π〉
with β 
 −0.6547.

To characterize strong and weak thermalization, we study
the quench dynamics of local observables 〈O(t )〉 − 〈O〉th

with O ∈ {σ x, σ y, σ z}, and the operator norm distance be-
tween a reduced density matrix (RDM) of a three-body
subsystem and the corresponding thermal density matrix, i.e.,
d (ρsub.(t ), ρsub.

th ) defined as the maximum eigenvalue of the
matrix ρsub.(t ) − ρsub.

th . Here we chose the subsystem con-
sisting of the qubits Q5, Q6, and Q7. The time evolution of
local observables with two different initial states is shown
in Figs. 4(a) and 4(b). One can see that the observables re-
lax to the thermal values when the initial state is |θ, φ〉 =
|π/2, 1.369π〉 (β 
 0) in the strong-thermalization regime.
However, the undamped oscillation of 〈O(t )〉 − 〈O〉th can be
observed with another initial state |θ, φ〉 = |π/2, 0.369π〉,
which is a signature of the weak thermalization. Moreover,
the dynamics of d (ρsub.(t ), ρsub.

th ) with the two initial states is
shown in Fig. 4(c). In the strong-thermalization region, the
quenched RDM quickly saturates to the thermal state and the
distance d (ρsub.(t ), ρsub.

th ) monotonically decays, while the dis-
tance exhibits dramatic fluctuation in the weak-thermalization
regime.

C. Results for the superconducting qubit chain

We then study the TMI I3 in Hamiltonian (8). The time evo-
lution of I3 with various initial states is presented in Fig. 4(d).
The behaviors of I3 are similar to those in the nonintegrable
Ising model [see Figs. 2(d) and 2(e)]. Efficient and slow
quantum information scrambling are observed in the strong-
and weak-thermalization regions, respectively. Moreover, the
saturation of I3 at long time can also be observed in system
(8).

Next, we study the relation between the TMI and the nor-
malized energy ε. Different from the Ising model [Eq. (5)],
the minimum attainable ε of all isotropic states is 0.3093 in
system (8) (see Appendix A). To study the I3 of the initial
states with ε < 0.3093, we can consider the Néel-type ini-
tial states (see Appendix A). The time-averaged TMI I3 ≡

1
t f −ti

∫ t f

ti
I3(t )dt (ti = 100 and t f = 1000) as a function of ε

is displayed in Fig. 5. It is shown that the most efficient
information scrambling diagnosed by I3 
 −0.5 occurs when
the initial state has the normalized energy ε 
 0.39, accompa-
nying the inverse temperature β 
 0, and the maximum DOS
(see Appendix A).

The results of I3 in Hamiltonian (8) suggest that the linkage
between information scrambling and thermalization revealed
in the Ising model [Eq. (5)] is not unique to a specific model,
and can be experimentally verified in the superconducting
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FIG. 5. The time-averaged TMI I3 as a function of the normal-
ized energy ε for the superconducting circuit model [Eq. (8)] with
different system size. The dashed line highlights the ε corresponding
to the minimum I3. For the system with size N = 12 and N = 10, the
length of the subsystem C is l = 5 and 4, respectively.

qubit chain using the protocol. We also note that for both the
nonintegrable Ising model (5) and system (8), in the strong-
thermalization regime, the TMI approaches −0.5 at long time,
which is consistent with the dynamics under a Haar random
circuit (see Appendix C).

Here, we note that the universal minimal value of TMI,
−0.5, in the regime of strong thermalization and the Haar
random circuit come from the Page value, i.e., the average
entropy of a subsystem of a random pure state, which is
defined as [42]

SPage
m,n = ln (m) − m

2n
, (9)

where m = 2s and n = 2N−s with s and N being the size of
the subsystem and the total system. Considering our protocol
in Fig. 1(c) with the total system size N = 15 including
an ancillary qubit, SPage(ρA) = SPage(ρB ) = 0.6931 (s = 1),
SPage(ρAB ) = 1.3861 (s = 2), SPage(ρC ) = 4.0964 (s = 6),
and SPage(ρAC ) = SPage(ρBC ) = SPage(ρD ) = 4.6020 (s = 7).
Thus, according to Eq. (1), we can directly obtain IPage

3 

−0.5.

We further study the time-averaged TMI for initial states
with various ε in the Hamiltonian HSQ with smaller number
of qubits N = 10, 12, and the results are depicted in Fig. 5. It
is seen that the time-averaged TMI does not suffer from the
finite-size effect.

D. The effects of decoherence

The coupling of superconducting qubits to the environment
is unavoidable in quantum simulations, which leads to deco-
herence affecting the dynamics of TMI. Here, we consider
both the energy relaxation effect and dephasing effect, quanti-
fied by the energy lifetime T1 and Ramsey dephasing time T2,
respectively.

The dissipative dynamics under Markovian approximation
can be numerically simulated by solving the Lindblad master

equation [43]

ρ̇t = − i[H, ρt ] + 1

2

∑
n

(2Lnρt L
†
n − {L†

nLn, ρt }),

(10)

where ρt is the density matrix of the quenched state, and Ln

(L†
n) refers to the Lindblad operators for the Markovian dis-

sipation. For the energy relaxation and dephasing effect, the
Lindblad operator is Ln = 1√

T1
σ−

n and Ln = 1√
2T2

σ z
n , respec-

tively. According to recent developments of superconducting
qubits, for system (8), the energy lifetime and Ramsey dephas-
ing time are estimated as T1 
 800 and T2 
 100 (in the unit
of the hopping interaction λ = 1) [22].

Below, we will present the dynamics of TMI with different
T1 and T2. Since the finite-size effect of I3 is not dramatic
(see Fig. 5), we consider Hamiltonian (8) with N = 10. As
shown in Fig. 6(a), for the initial state |π/2, 1.369π〉 in
the strong-thermalization regime, the saturation of I3 under
unitary evolution (T1 → ∞) is destroyed by the decoher-
ence. With the decrease of T1, the time evolution of I3 tends
to zero. For weak thermalization, i.e., with the initial state
|π/2, 0.369π〉, the value of I3 also becomes closer to zero in
the presence of shorter T1 [see Fig. 6(b)]. We also present the
results of the dynamics of I3 with different T2 in the regimes
of strong and weak thermalization in Figs. 6(c) and 6(d),
respectively. It is seen that the impact of dephasing on I3 is
similar to that of energy relaxation.

In Fig. 6, one can notice that for the given dissipation rates,
the decoherence plays its role only after accumulating its
effects for certain duration longer than t = 10. Consequently,
we can extract the minimum TMI Imin

3 from its dynamics
with the time t � 10. As depicted in Figs. 7(a) and 7(b),
although the Imin

3 sightly decays with the increase of T1 [see
the inset of Fig. 7(a)], the difference between the TMI in the
regimes of strong and weak thermalization is still obvious. We
then study the Imin

3 with different normalized energy ε around
ε = 0.39 corresponding to the maximum DOS (see Fig. 5).
We consider T1 = 500 and T2 = 100 as the conditions with
relatively strong decoherence. As shown in Fig. 7(c), there is
a cusp of the Imin

3 as a function of ε, which is consistent with
the results in Figs. 2(b) and 5.

E. Physical argument

We have shown that the relation between the value of
TMI after a long-time evolution and the normalized energy
ε of initial states is valid for both the nonintegrable Ising
model (5) and the superconducting circuit model (8). To
explain the relation, we present additional numerical results
in Appendix D, including the EE of the eigenstates of the
studied models and the superposition of quenched states.
Two remarks are in order. First, the long-time quenched state
|ψt 〉 = exp(−iHt )|ψ0〉 can be written as the superposition of
eigenstates of the Hamiltonian H . It can be demonstrated
that the eigenstates near the ε of the chosen initial state
|ψ0〉 have the main contribution to the quenched state |ψt 〉.
Second, for the half-chain EE of the eigenstates, the EE
as a function of the ε of eigenstates closely relates to the
DOS. In the regime of high DOS, the EE approaches the
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FIG. 6. The dynamics of the TMI I3 for the superconducting circuit model [Eq. (8)] with various T1 and the initial state (a) |θ, φ〉 =
|π/2, 1.369π〉 and (b) |θ, φ〉 = |π/2, 0.369π〉. The dynamics of the TMI I3 with various T2 and the initial state (c) |θ, φ〉 = |π/2, 1.369π〉
and (d) |θ, φ〉 = |π/2, 0.369π〉. The units of time t , T1, and T2 are 1/λ.

Page value, while in the lower-DOS regime, the EE becomes
smaller.

We have verified that the most efficient information
scrambling, diagnosed by the TMI with a saturated value
around −0.5, can be obtained from the Page value. In
the strong-thermalization regime, the long-time quenched
states can be approximate to a superposition of eigenstates
with the Page value of EE. Consequently, large informa-
tion scrambling corresponds to strong thermalization. The

aforementioned physical argument can also support the
claim that small information scrambling corresponds to weak
thermalization.

IV. DISCUSSION

We have investigated the quantum information scrambling
quantified by the TMI in the nonintegrable Ising model where
both strong and weak thermalization exist. We reveal that
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0 1000 2000

-0.55
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100 200 300 400 500
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-0.3(a) (b) (c)

FIG. 7. The minimum of I3 for the superconducting circuit model [Eq. (8)] with t � 10, i.e., Imin
3 , as a function of (a) T1 and (b) T2. The

circle and diamond points in (a) and (b) refer to the results of weak and strong thermalization, i.e., with the initial state |θ, φ〉 = |π/2, 0.369π〉
and |π/2, 1.369π〉, respectively. (c) The dependence of Imin

3 on the normalization energy of initial states. The units of time t , T1, and T2 are
1/λ.
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FIG. 8. (a) The normalized energy ε of isotropic initial states as
a function of θ and φ in the nonintegrable Ising model [Eq. (5)].
(b) The DOS as a function of ε for the nonintegrable Ising model
[Eq. (5)]. The dashed line highlights the normalized energy corre-
sponding to the maximum DOS, ε 
 0.5602. (c) The normalized
energy ε of isotropic initial states as a function of θ and φ in the
superconducting circuit model [Eq. (8)]. (d) The normalized energy
ε of Néel-type initial states as a function of θ with φ = 0 in the
superconducting circuit model [Eq. (8)]. (e) The DOS as a function
of ε for the superconducting circuit model [Eq. (8)]. The dashed
line highlights the normalized energy corresponding to the maximum
DOS, ε 
 0.3930.

the efficient and slow information scrambling occurs in the
regime of strong and weak thermalization, respectively. Tak-
ing the recent developments of quantum simulations based
on the one-dimensional array of superconducting qubits
[22,25], we present an experimental protocol to realize a
nonintegrable model and observe strong and weak thermal-
ization in this platform. We have also calculated the TMI
in the superconducting qubit chain, and shown that the re-
lation between the TMI and the degree of thermalization
revealed in the nonintegrable Ising model can be demon-
strated in superconducting qubits, even with decoherence
effects.

Reference [32] has revealed the weak and strong thermal-
ization in the long-range Ising model which describes the
trapped-ion quantum simulator [44]. As a consequence, this
work may inspire the investigations on the TMI in long-range
interacting systems [45,46], especially in the presence of weak
and strong thermalization [32]. Besides the weak thermal-
ization, the weak ergodicity breaking characterized by the
long-lived oscillations can also be originated from quantum
many-body scars [47,48], and the study of information scram-
bling with quantum many-body scars is another intriguing
direction to explore in the future.

Quantum thermalization dynamics has been experimen-
tally studied in optical lattice [49] and trapped ions [50].
Previous experiments mainly focused on the strong ther-
malization (which is actually regarded as the conventional
quantum thermalization), and a distinct comparison between
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FIG. 9. (a) Time evolution of the TMI with different isotropic
initial states with the same normalized energy ε = 0.5602 in the non-
integrable Ising model [Eq. (5)]. The unit of time t is 1/J . (b) Similar
to (a) but with another ε = 0.0812. (c) In the nonintegrable Ising
model [Eq. (5)], the dynamics of TMI I3 for the isotropic initial state
|Y +〉 and the Néel-type initial state with θ = π/2. The value of ε for
both initial states is 0.5602. (d) Similar to (c), but for the isotropic
initial state |θ = 0.5π, φ = 0.4π〉 and the Néel-type initial state with
θ = 0.7013π . The value of ε for both initial states is 0.6690. (e)
In the superconducting circuit model [Eq. (8)], the dynamics of
TMI I3 for the isotropic initial state |θ = 0.18π, φ = 1.5π〉 and the
Néel-type initial state with θ = 0.1810π . The value of ε for both
initial states is 0.3093. The unit of time t is 1/λ. (f) Similar to (e), but
for the isotropic initial state |θ = 0.4π, φ = 1.5π〉 and the Néel-type
initial state with θ = 0.1124π . The value of ε for both initial states is
0.3564. (g) In the nonintegrable Ising model [Eq. (5)], the dynamics
of I3 for the isotropic initial state |θ = 0.5π, φ = 0.5π〉 and ten
randomly chosen states. The value of ε for all initial states is 0.5602.
The unit of time t is 1/J . (h) Similar to (g) but for the isotropic
initial states |θ = 0.3π, φ = 0.5π〉 and ten randomly chosen states.
The value of ε for all initial states is 0.3541.

strong and weak thermalization remains absent. Our proposed
scheme to probe strong and weak thermalization can enlighten
experimental observation of the phenomena using the analog
quantum simulation.

It has been shown that the normalized energy plays a
key role in the MBL mobility edge [51–54]. The relation
between information scrambling and normalized energy re-
vealed by our work could provide new insight into the
mobility edge. Furthermore, the slow information scrambling
in the weak-thermalization region has potential applications
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FIG. 10. (a) Time evolution of the TMI for the Hamiltonian
HXY + Hdrive with λ = 1, and several values of . (b) Similar to
(a) but for the local observable 2

N

∑
i∈odd σ z

i . The unit of time t is
1/λ.

for quantum information storage devices [25] and stabilizing
out-of-equilibrium phases of matter [55,56].
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APPENDIX A: ADDITIONAL RESULTS

Here, we present several additional results supporting the
main text. For the nonintegrable Ising model [Eq. (5)], we plot
the normalized energy of isotropic initial states |θ, φ,+〉, de-
fined as ε(θ, φ) ≡ (〈θ, φ,+|HIsing|θ, φ,+〉 − Emin)/(Emax −
Emin) in the θ -φ plane in Fig. 8(a), and the DOS as a function
of ε in Fig. 8(b). Similarly, for the system in Eq. (8) with
λ =  = 1, the normalized energy of isotropic initial states
|θ, φ,+〉 is displayed in Fig. 8(c), showing that the normal-
ized energy ε < 0.3093 is not attainable for isotropic initial
states. Thus, we consider another type of initial states, i.e., the

Néel-type initial states

|ψ0〉 = |�〉A1 ⊗ |θ2, φ2,−〉 ⊗ |θ3, φ3,+〉
⊗ · · · ⊗ |θN−1, φN−1,+〉 ⊗ |θN , φN ,−〉 (A1)

with θi = θ , φi = φ (i = 1, 2, . . . , N) and the number of
qubits N as an even number for convenience. We further
calculate the normalized energy of the Néel-type initial states
with φ = 0 and several values of θ . As shown in Fig. 8(d),
the dynamics of TMI for the initial states with ε < 0.3093 are
available by choosing the Néel-type initial states. The DOS as
a function of ε for the system in Eq. (8) with λ =  = 1 is
displayed in Fig. 8(f).

The results in Figs. 9(a) and 9(b) have suggested that for
the isotropic state, the saturated value of TMI is directly
dependent on the ε. Therefore, it can be predicted that the
saturated value of TMI is insensitive to the specific initial
states, i.e., the isotropic or Néel-type states, if the ε of the
states are equal to each other. The results in Figs. 9(c)–9(f)
provide further evidence for this prediction.

To demonstrate the relation between TMI and the ε of
initial states in a more general case, we consider a type of
initial states defined in Eq. (4) with θ j (φ j) randomly drawn
from a uniform distribution [0, π ] ([0, 2π ]), which are known
as random initial states. We chose ten random initial states
with ε 
 0.5602, and plotted the time evolution of TMI in
Fig. 9(g), in comparison with the TMI for the isotropic initial
state |θ = 0.5π, φ = 0.5π〉. It is shown that the saturated
values of TMI for isotropic and random initial states with
identical ε are almost equal to each other. The claim is further
verified for the normalized energy ε 
 0.3541 [see Fig. 9(h)].
The error bars in Figs. 9(g) and 9(h) represent the standard
deviations over random initial states.

APPENDIX B: REALIZATION OF HAMILTONIAN (8) IN A
SUPERCONDUCTING QUBIT CHAIN

Conventionally, the Hamiltonian of a transmon qubit array
can be described by the Bose-Hubbard model [22,25],

HBH = �

N−1∑
i=1

(a†
i ai+1 + aia

†
i+1) + U

2

N∑
i=1

ni(ni − 1),

(B1)

where a†
i (ai) is the bosonic creation (annihilation) operator,

ni = a†
i ai, U is the strength of nonlinear interaction, and �

refers to the nearest hopping strength. In the limit U/� → ∞,
Hamiltonian (B2) reduces to an XY model [57,58],

HXY = �

N−1∑
i=1

(σ+
i σ−

i+1 + σ−
i σ+

i+1)

= λ

N−1∑
i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

)
, (B2)

with λ = �/2.
Actually, the nonequilibrium properties of the Bose-

Hubbard model (B2) are close to those of the XY model (B2)
when U/� � 8 [58]. For the device in Ref. [22], U/� 
 18,
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and the XY model can be experimentally studied using analog
quantum simulation.

When the microwave drives with amplitude  are applied
to each qubit, we can obtain [41]

Hdrive = 

N∑
j=1

e−iϕ j σ+
j + eiϕ j σ−

j . (B3)

By adjusting the phase of the microwave drives, one can
force ϕ = ϕ j = π/2 ( j = 1, 2, . . . , N), and then Hdrive can be
rewritten as Hdrive = 

∑N
j=1 σ

y
j . Thus, Hamiltonian (8), i.e.,

HSQA = HXY + Hdrive, can be realized in a qubit array.
To better understand the strong thermalization in system

(8), we can rewrite the Hamiltonian in the σ x basis:

HSQP = �

N−1∑
i=1

σ z
i σ z

i+1 + 

N∑
i=1

σ x
i + 

N−1∑
i=1

σ x
i σ x

i+1

= H0 + Hint.. (B4)

By employing the Jordan-Wigner transformation σ x
i = 1 −

2c†
i ci and σ z

i = −∏
l<i(1 − 2c†

l cl )(ci + c†
i ) with c†

i (ci) re-
ferring to the fermionic creation (annihilation) operator, one
can see that in Hamiltonian (B4), H0 ≡ �

∑N−1
i=1 σ z

i σ z
i+1 +


∑N

i=1 σ x
i as the Ising model without parallel field can be

mapped to a quadratic system (free fermions). Moreover,
the Hint. ≡ 

∑N−1
i=1 σ x

i σ x
i+1 gives the Heisenberg coupling

cicici+1ci+1, from which the quantum thermalization and
MBL are originated [59]. Based on above discussions, we
explain the occurrence of the strong thermalization in the
superconducting qubit array.

To illustrate the integrability breaking due to Eq. (B3), we
calculate the dynamics of TMI with different values of .
Here, we consider a Néel-type initial state, i.e., Eq. (A1) with
θ = 0. There are two reasons behind the choice of the initial
state. First, when  = 0, the system HXY has a conservation of
the spin number

∑N
i=1 σ z

i=1. The Néel-type initial state allows
us to study the nonequilibrium dynamics of HXY in the largest
subspace. Second, for all  � 0, the inverse temperature of
the initial state is β = 0, and we can explore the breakdown
of integrability because of Hdrive without the influence of the
degree of thermalization.

As shown in Fig. 10(a), in the integrable limit  = 0, the
TMI exhibits a dramatic oscillation and a recurrence of zero
value during its dynamics. In contrast, with a finite value of
, the TMI tends to a stable negative value. Additionally,
we also calculate the quench dynamics of the local observ-
able O = 2

N

∑
i∈odd σ z

i to explore the integrability breaking
and thermalization in the system. If thermalization occurs,
the local observable converges to its thermal value [here the
thermal value is 〈O〉th = Tr(Oρβ ) = 0 since β = 0] [60]. In
Fig. 10(b), we observe the convergence for nonzero , while
the strong oscillation of local observable in the integrable
system with  = 0 suggests the absence of thermalization in
the integrable model HXY .

FIG. 11. (a) Schematic representation of the random circuit
model with the system size N = 6. Each two-site gate is a 4 × 4
unitary matrix, which is randomly chosen from the Haar distribution.
(b) The dynamics of the TMI for the Haar random circuit with
N = 14, and three different initial states |Z+〉, |X+〉, and |Y +〉.

APPENDIX C: TRIPARTITE MUTUAL INFORMATION IN
A HAAR RANDOM CIRCUIT

Here, we numerically show that the TMI approaches a
value around −0.5 at long time if the dynamics is coming
from a Haar random circuit. In Fig. 11(a), we plot the structure
of the Haar random circuit comprised of two-qubit gates,
which has been widely employed to study thermalization and
scrambling [61]. The dynamics of TMI with three initial states
|Z+〉, |X+〉, and |Y +〉 is displayed in Fig. 11(b), suggesting
that the convergence of TMI to −0.5 is independent of the
choice of initial states. Since for the Haar random circuit the
temperature and normalized energy of initial states are not
well defined, the slow information scrambling in the presence
of weak thermalization cannot be observed in the random
circuit system.

APPENDIX D: ENTANGLEMENT ENTROPY OF
EIGENSTATES AND THE SUPERPOSITION OF

QUENCHED STATES

In this Appendix, we present the numerical results relevant
to the physical argument that explains the relation between the
TMI and the normalized energy of initial states.

We calculate the half-chain EE defined as S(ρA) =
−Tr(ρAln ρA), for all eigenstates of the nonintegrable Ising
model [Eq. (5)] and the superconducting circuit model

022405-10
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FIG. 12. (a) The half-chain EE for the eigenstates of the nonin-
tegrable Ising model [Eq. (5)]. The dots present the EE of a single
eigenstate with the normalized energy ε, and the circles present the
averaged EE as a function of ε with an energy window ε ± 0.01.
(b) Similar to (a) but for the superconducting circuit model [Eq. (8)].
The horizontal line in (a) and (b) represents the Page value of the EE,
SPage 
 4.352. The vertical lines in (a) and (b) represent the ε with
maximum DOS [see also the vertical lines in Figs. 8(b) and 8(e)].

[Eq. (8)]. The system size is N = 14, and the ρA is the RDM
of the subsystem consisting of the qubits Q1, Q2, . . . , Q7. The

FIG. 13. (a) For the quenched state |ψt 〉 = exp(−iHt )|ψ0〉 with
t = 1000, H being the Hamiltonian of the nonintegrable Ising model
[Eq. (5)], and the initial state |ψ0〉 = |Z+〉 in the regime of weak
thermalization, the parameter |cα|2 of all the eigenstates as a function
of the normalized energy ε. (b) Similar to (a) but for the initial state
|ψ0〉 = |Y +〉 in the regime of strong thermalization. (c) Similar to
(a) but for the sum of |cα|2 as a function of the normalized energy ε

with an energy window ε ± 0.01. (d) Similar to (c), but for the data
of |cα|2 in (b). The vertical lines in (c) and (d) refer to ε = 0.0812 and
ε = 0.5602, being the normalized energy of the initial state |Z+〉 and
|Y +〉, respectively.

results are displayed in Fig. 12. One can see that the shape of
EE as a function of eigenstates’ normalized energy ε is similar
to the DOS plotted in Figs. 8(b) and 8(e).

In addition, we focus on the quenched state |ψt 〉 =
exp(−iHt )|ψ0〉, where t = 1000, H is the Hamiltonian of the
nonintegrable Ising model [Eq. (5)], and |ψ0〉 is the initial
state. The quenched state can be written as |ψt 〉 = ∑

α cα|Eα〉,
where |Eα〉 is the αth eigenstate of H , and |cα|2 = |〈Eα|ψt 〉|2.
With the initial state |Z+〉 in the weak-thermalization regime,
we plot the parameter |cα|2 as a function of the normalized
energy ε of the eigenstate |Eα〉 in Fig. 13(a), and plot the
sum of |cα|2 in an energy window ε ± 0.01 in Fig. 13(c). It
is shown that the |cα|2 is large for the eigenstates near the
ground state. The results of |cα|2 for another initial state |Y +〉
are displayed in Figs. 13(b) and 13(d), suggesting that the
maximum value of |cα|2 can be achieved for the eigenstates
whose ε is close to 0.5602, being the ε of initial state |Y +〉.
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