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Quantum memories are building blocks for a variety of quantum technologies. However, the collective transfer
between optical excitations and spin-wave excitations determines the performance of the quantum memory. Here
we propose a method for collective excitations transfer with high efficiency and fidelity in a multimode quantum
memory. The pulse uses modulations of the control parameters to cancel the nonadiabatic transitions during
the evolution. We demonstrate the universality of the control pulse by simulations for an atomic frequency
comb spin-wave quantum memory. The protocol is robust to various experimental imperfections in the pulse
amplitude and duration. The protocol also allows one to achieve high multiplexed storage at small cost on
efficiency reduction. The protocol is particularly useful in retaining the phase coherence since the environment
dissipation would decohere the system. These results pave a way for efficient and robust coherent manipulations
in a multiplexed quantum memory.
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I. INTRODUCTION

Quantum memories are essential elements in various quan-
tum information tasks: constituting repeaters for long-distance
quantum communication and enabling functional nodes for
distributed quantum computation [1–6]. The implementation
of quantum memories exploits the storage and manipulation
of photons (flying qubits) and matter (stationary qubits). A
large variety of physical systems are currently being demon-
strated as platforms for quantum memories such as atomic
ensembles [7], single atoms in cavities [8], nitrogen-vacancy
centers [9], and spins in quantum dots [10,11]. Among them,
rare-earth ions doped in solids are a promising candidate [12].
They can provide strong light-matter interactions through high
number densities, while also offering perspectives for inte-
gration and scalability with existing solid-state technology.
Impressive progress has been realized in this system, includ-
ing excellent coherence properties about hours timescales
[13], storage of entanglement [14,15], polarization [16–18],
and orbital angular momentum of photons [19].

There are numerous performance metrics for quantum
memories including high efficiency, high fidelity, large mul-
timode capacity, on-demand readout, and long storage time
[1,3]. However, finding a scheme that simultaneously fulfills
all these good properties is challenging. The atomic frequency
comb–spin-wave (AFC-SW) protocol has been proposed as
a useful resource which combines several figures of merit
[20–23]. Since rare-earth ions doped in crystals exhibit large
inhomogeneous broadening of the optical transitions, the
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AFC-SW protocol can tailor this feature to enable temporal
or frequency multiplexed quantum storage [24–26]. Further-
more, the ability to read out the stored states on demand
can be achieved by applying control pulses to transfer the
optical atomic excitations to collective spin excitations (spin
wave). This transfer also provides a much longer storage time
due to the long-lived spin excitations. While the AFC-SW
protocol offers these advantages, the inevitable imperfections
in the control pulses can lead to a serious reduction in overall
efficiency and fidelity. In the current experiments, chirped
adiabatic pulses are commonly used where transfer efficiency
has a limited value of 67% [22]. In addition, the total duration
of the input pulses includes the train of signal modes and the
control pulse. Therefore, with longer control pulses, the mul-
timode capacity of the memory is reduced more. Operating a
solid-state spin-wave quantum memory with simultaneously
excellent efficiency and fidelity and multiplexing has so far
remained elusive, because of the limitations of control pulses.

In this paper, we propose a scheme to design the control
pulses for collective excitations transfer with high efficiency
and fidelity, which also work with multimode storage. We use
a modulated adiabatic pulse approach, in which the control
parameters of the pulse are tailored to compensate unde-
sired nonadiabatic transitions. Several strategies have been
put forward to design an adiabatic pulse [27], while they
are challenging to apply in the spin-wave quantum mem-
ories. Among these strategies, an auxiliary control field is
introduced which requires complex experimental resources
[28–31], composite pulse sequences are utilized which are
at the price of a very fast growth in the number of pulses
[32,33], or the pulse is only applied to multistate transfer such
as three-level systems [34–36]. Moreover, as many existing
protocols generally assume ideal evolution, their robustness to
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FIG. 1. Schematic diagram of optical quantum memory based
on the AFC-SW protocol. The signal photon field is absorbed by
the ensemble with atomic frequency comb. A pair of control pulses
transfer the atomic excitations forth into and back from the spin
excitations for on-demand readout and long-term storage.

experimental variations and environment dissipation remains
an open question. Here we develop the modulated adiabatic
pulse relevant to spin-wave quantum memories, and address
its robustness both to pulse imperfections and environment
dissipation.

In Sec. II we describe the AFC-SW protocol and focus
on the collective excitations transfer process from the optical
transition to the spin transition. In Sec. III, we present a
control model taking into account the main pulse deviations
and environment noise sources. Then we use the idea of a
modulated adiabatic pulse to design driving amplitude, dura-
tion, and frequency detuning of the control pulses. In Sec. IV,
we give intensive simulations of the control pulses with rele-
vance to applications in a AFC-SW based quantum memory.
As our numerical simulations show, the modulated adiabatic
pulse can realize the desired excitations transfer with a high
efficiency even under realistic situations and outperform the
chirped adiabatic pulse available so far. More importantly,
the designed pulses are robust to pulse imperfections and
dissipation effects of environment. In Sec. V, we also show the
modulated pulse can preserve the phase coherence which is at
the heart of the collective excitations in a spin-wave quantum
memory. We provide conclusions and an outlook for future
works in Sec. VI.

II. CONTROL PULSES IN THE AFC-SW PROTOCOL

The AFC-SW protocol uses the unique systems of rare-
earth ions doped in crystals such as Pr3+:Y2SO5 [22] or
Eu3+:Y2SO5 [21]. The memory is an ensemble of atoms with
three levels as shown in Fig. 1. The optical transitions line
between levels |g〉 and |e〉 is inhomogeneously broadened
and is spectral tailored into a comb-shaped structure, where
narrow peaks with a width γ and a periodicity � span a large
frequency range �. The input signal photon resonant with
the atomic frequency comb can be mapped onto an optical
atomic excitation. This collective excitation is described as a
single atomic excitation delocalized over all the atoms in the
solid [20]:

N∑
j=1

e−i� j t e−iksz j |g1 · · · e j · · · gN 〉. (1)

Here, j denotes the jth atom in the solid, ks is the wave num-
ber of the absorbed signal photon field, and � j and z j are the

frequency detuning and the position of the atom, respectively.
After a time 2π/�, the collective excitations rephase giving
rise to a photon reemission. This AFC based scheme only
stores the photon states as collective atomic excitations with
fixed storage time. Before the collective emission, one can
apply a control pulse to transfer the optical excitation forth
into a long-lived spin state |s〉. This collective spin excitation
is described as

N∑
j=1

e−i� j (2π/�−T0 )e−i(ks−kc )z j |g1 · · · s j · · · gN 〉. (2)

Here, 2π/� − T0 is the delay between the control pulse and
the signal photon field and kc is the wave number of the
control pulse. After a spin-wave storage time Ts, a second
control pulse is applied to transfer the excitation back from the
spin wave. In this context, the full AFC-SW protocol achieves
on-demand storage and retrieval and long-term storage.

III. MODULATED ADIABATIC PULSES

We consider an ensemble of three-level atoms and a pair of
control pulses which are applied to transfer collective excita-
tions between the |e〉 and |s〉 levels. We use the semiclassical
picture where the collective atomic state is treated as a tensor
product of single-atom states. In practice, the control pulse is
implemented as a shape of

�(t ) cos[ωc(t )t − kcz] (3)

with the time-dependent driving amplitude �(t ) and the fre-
quency ωc(t ). Since the cross section of the control pulse is
bigger than the sample, we can assume that the atom-pulse
interaction is uniform for all of the atoms in the crystal.
Working in the rotating wave approximation, the Hamiltonian
of the control pulse is modeled as

H0(t ) = �(t )

2
σx + �(t )

2
σz, (4)

where σi are the Pauli operators defined in the subspace of
|e〉 and |s〉, and �(t ) is the frequency detuning of the control
pulse with respect to the atomic resonance between the |e〉 and
|s〉 levels.

In current experiments, chirped adiabatic pulse has been
proposed [37] and demonstrated to facilitate the excitations
transfer in the AFC-SW memory [21,22]. As shown in
Fig. 2(a), this type of control pulse has a hyperbolic secant
temporal profile and is spectrally chirped as a hyperbolic
tangent,

�(t ) = �maxsech(t/τc), (5)

�(t ) = �

2
tanh(t/τc). (6)

Here �max is the maximum amplitude of the pulse, the varia-
tion range of �(t ) covers the atomic frequency comb range �,
and τc determines the time of the adiabatic sweep. This shape
is considered adiabatic in the large τc limit, as the driving am-
plitude and the frequency chirp vary slowly in time. Although
this kind of control pulse is relatively easy to implement, its
effectiveness is limited when environment decoherence and
pulse fluctuations occur in experiments.
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FIG. 2. Examples of the chirped adiabatic pulse (a) and the
modulated linear pulse (b). The maximum amplitude �max, the du-
ration T0, and the frequency range � specify the control pulses for
a particular implementation. Here �max = 3 MHz, T0 = 4 μs, and
� = 8 MHz.

To address this drawback, we use the approach of mod-
ulated adiabatic pulse to design the control field to realize
fast control time while maintaining the high efficiency of the
adiabatic evolution. For a time-dependent Hamiltonian H0 in
Eq. (4), the nonadiabatic evolution part can be described as

Hna = i

2

∑
n=1,2

(|n〉〈∂t n| − |∂t n〉〈n|), (7)

where |n〉 denotes the instantaneous eigenstates of the original
Hamiltonian H0, and |∂t n〉 is the derivative of the instanta-
neous eigenstates with respect to time. In general, one can
construct an additional interaction term Hca = −Hna to cancel
the effect of the nonadiabatic evolution part. Thus, the total
Hamiltonian Ht = H0 + Hca allows the system evolution to
follow the adiabatic eigenstates of the original Hamiltonian H0

without transitions between these adiabatic eigenstates. For
the control field of H0 in Eq. (4), one can use an explicit form
of the auxiliary field

Hca = 1
2∂tφσy (8)

with the angle φ = arctan( �(t )
�(t ) ).

Schemes to introduce an auxiliary control field Hca have
been presented in various platforms [28–31]. However, these
schemes require an additional laser or microwave field and a
careful design to realize the interaction term absent in the orig-
inal Hamiltonian H0. To avoid the demanding requirements
for complex experimental resources, we use a modulation of
parameters in the original control pulse to achieve the effect
of this extra interaction field Hca.

Starting from an original control Hamiltonian H0(t ) =
�(t )

2 σx + �(t )
2 σz, we modulate the control parameters �(t ) and

�(t ) in such a form Hma(t ) = �ma(t )
2 σx + �ma(t )

2 σz to achieve
the same effect as the total Hamiltonian H0(t ) + Hca(t ) =
�(t )

2 σx + �(t )
2 σz + 1

2∂tφσy. In this way, we absorb the auxiliary
term Hca = 1

2∂tφσy into the modulation form of the original
Hamiltonian H0 using the transformations of Pauli matrices.

Usually, there is a major class of control pulses for imple-
mentation of the Hamiltonian H0 in Eq. (4): linear sweeping

pulse (Landau-Zener model) [38],

�(t ) = �0, (9)

�(t ) = vt, (10)

where v is the sweeping rate. We present our protocol that
modulates and corrects existing control pulses. For the origi-
nal linear sweeping pulses, we can modulate their parameters
as

�ma(t ) = �0

√√√√1 +
(
�0

d�
dt

)2

4�2
0

[
�2

0 + �(t )2
]2 , (11)

�ma(t ) = �(t ) − 1

2

d

dt

[
arctan

( −�0
d�
dt

2�0
[
�2

0 + �(t )2
]
)]

.

(12)

The shapes of the modulated linear pulse are illustrated in
Fig. 2(b). For quantum memory applications, the following
simulations of these pulses use the realistic values of control
parameters from experiments, including pulse maximum am-
plitude �max, duration T0, and frequency range � [21,22]. We
note that here we consider the case of linear sweeping pulse,
while the protocol of modulated pulses is independent of the
physical case under consideration.

The master equation of the system is given by

ρ̇ = −i[H, ρ] +
∑

k

�kLk[D], (13)

where H is the control Hamiltonian and Lk[D] = DρD+ −
1
2 D+Dρ − 1

2ρD+D is the Lindblad operator for the dissipative
process. Here we consider the relaxation process from the ex-
cited state |e〉 to the spin state |s〉 at a rate �1 = 6.6 kHz, and
the dephasing process of the excited state |e〉 at a rate �2 =
30.5 kHz. The spin state dephasing does not play a significant
role during the timescale of the control process. In addition,
we include the spectral diffusion of the excited state |e〉 as a
fluctuation around the detuning � + δ�. This fluctuation is
modeled as a Gaussian distribution with a standard deviation
σsd = 2π × 31 kHz. These realistic values are extracted from
the measurements of time-resolved optical properties in rare-
earth ions doped in crystals [39]. After sampling a random
value of this noise δ�, we numerically calculate the master
equation. The time evolution of the system is averaged over
many repetitions of the simulations.

IV. PERFORMANCE EVALUATION OF CONTROL PULSES

A. Efficiency

There are a number of evaluation criteria for assessing
quantum memory performance, with efficiency and fidelity
being two of the most important [1,3]. Efficiency is defined
as the probability to recover a stored photon, and fidelity is
defined as the overlap between the recovered state and the
input state. The current experiments show that efficiency is the
main limiting factor [22,23], and the increase of entanglement
rate in quantum networks depends crucially on the memory
efficiency, therefore we discuss the efficiency metric in this
section first, and then the fidelity metric in the next section.
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FIG. 3. Excitation transfer efficiency of the modulated linear
pulse and the chirped adiabatic pulse as a function of the maximum
driving strength �max for a constant pulse duration T0 = 6 μs and a
frequency range � = 8 MHz.

The efficiency of the AFC-SW memory protocol is given
by η = ηAFCη2

T ηSW. Here ηAFC is the efficiency of the ab-
sorption and reemission of the atomic frequency comb, ηSW

accounts for the efficiency loss due to the decoherence effect
during the spin-wave storage, ηT is the transfer efficiency of
one control pulse, and the power index 2 includes the transfer
forth and back. ηAFC depends on the optical depth and comb
finesse and the direction of recall [20]. In the forward direc-
tion, the reabsorption effect of the photon limits the efficiency
below 1. It has a formula ηAFC = d2 exp(−d )ηdeph, where d
is the optical depth of the sample, and ηdeph is a dephasing
factor that accounts for the finite width and shape of the AFC.
In backward recall, an interference effect makes the efficiency
ηAFC possible to reach a high value for a long sample. It has
a formula ηAFC = [1 − exp(−d )]2ηdeph. In the following we
focus on the transfer efficiency performance ηT of various
control pulses.

We begin by investigating the transfer efficiency of our
modulated protocol as a function of the maximum amplitude
�max of the control pulses. After initializing excitations into
|e〉 level, a pair of control pulses is applied to transfer the
excitations into |s〉 level, and back and forth. In Fig. 3, for
a typical pulse duration T0 = 6 μs and a frequency range
� = 8 MHz, we vary maximum strength �max to explore dif-
ferent regimes of the control pulses. The presence of various
environment dissipation effects preclude the perfect transfer
efficiency expected in their absence. However, the transfer
efficiency of the modulated linear pulse under the realistic
implementations, significantly outperforms that of the chirped
adiabatic pulse. Furthermore, experimental realization of a
quantum memory in the single-photon regime is challenging
since the strong control pulses create noise which severely
dominates the weak signal mode. The modulated adiabatic
protocol achieves enhancement of seven times in the trans-
fer efficiency over the chirped adiabatic protocol when the
driving amplitude �max decreases to 1 MHz. The modulated
pulses require a relatively small control field to realize a high
efficiency, and thus allow one to reduce the resulting noise

FIG. 4. The converted populations during the control pulses: the
chirped adiabatic pulse (a) and the modulated linear pulse (b) for
�max = 3 MHz and � = 8 MHz, highlighting the adiabatic evolution
of modulated pulses. Pe and Ps denote the populations of the excited
and ground states, respectively.

and increase the signal-to-noise ratio of the memory at the
single-photon level.

To highlight the dynamics of different protocols, in Fig. 4,
we show the time-resolved population during the modulated
pulse and the chirped adiabatic pulse for a constant pulse
amplitude �max = 3 MHz and a frequency range � = 8 MHz.
The change in population occurs mainly in the center of the
process for the chirped adiabatic pulse; however, this change
is continuous over time for the modulated protocol. This evo-
lution is a signature of the adiabatic evolution of modulated
pulses: the system stays in the instantaneous adiabatic state
at all times without sudden transitions between the adiabatic
states. Moreover, we find that the maximal population of the
|s〉 state for the modulated pulse is larger than the chirped
adiabatic pulse, consistent with their theoretical expectation.

To characterize the speedup of our modulated scheme, we
turn to simulate the transfer efficiency by varying the length
T0 of the control pulses. As shown in Fig. 5 for a typical
pulse amplitude �max = 3.5 MHz and a frequency range � =
8 MHz, the modulated linear pulse maintains high transfer
efficiency when the total duration is reduced. For example,
at the pulse length T0 = 2 μs, the modulated pulses can

FIG. 5. Excitation transfer efficiency as a function of the pulse
duration T0 for the modulated linear pulse versus the chirped adia-
batic pulse. Here the driving strength and the frequency range are
constants �max = 3.5 MHz and � = 8 MHz.
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FIG. 6. Two-dimensional plot of the transfer efficiency as a func-
tion of the pulse strength �max and the pulse duration T0 for different
control protocols: (a) the chirped adiabatic pulse; (b) the modulated
linear pulse. Here the frequency range is fixed at � = 8 MHz.

reach the efficiency of 85%, which is two times larger than
that of the chirped adiabatic pulse. Two main mechanisms
are responsible for the efficiency behavior of the modulated
pulse in Fig. 5: the efficiency increase with the pulse length as
the conditions become increasingly adiabatic until the longer
pulse is significantly affected by environment decoherence.
Thus, the efficiency is determined by the competition between
the adiabatic evolution and the dissipation from the environ-
ment. In addition, for a short duration, the adiabatic pulse
dose not satisfy the adiabatic condition well and the system
dynamics would undergo a finite time oscillation [40]. Thus,
as shown in Fig. 5, the efficiency would increase when T0

becomes very small.

B. Robustness to imperfections and dissipation

To investigate the robustness to pulse imperfections of
these protocols, we study the pulse shapes varying in a broad
range of amplitude �max and length T0. In Fig. 6, we simulate
the transfer efficiency with �max and T0 ranging from 2 to
5 MHz, and 2 to 8 μs, respectively. We find that the modu-
lated linear pulse achieves better efficiency than the chirped
adiabatic pulses for a wide range of pulse shapes. The broad
range of high transfer efficiency in Fig. 6(b) demonstrates that

FIG. 7. (a) The lines display the transfer efficiency as a func-
tion of the spectral diffusion width σsd, representing robustness of
different control protocols to the dissipation effects. Here �max =
3.5 MHz, T0 = 5 μs, and � = 8 MHz. (b) The number of modes that
can be stored as a function of the pulse duration T0 for a typical range
of atomic frequency comb � = 8 MHz. The multimode capacity
decreases for a longer pulse length, reflecting the trade-off between
transfer efficiency and multiplexing ability.

the modulated protocol is resilient to potential imperfections
in real applications, such as the pulse amplitude and duration.

In realistic situations, the decrease of the efficiency proba-
bly results from the pulse shape deviations on the one hand
and from the environment dissipation on the other. Since
the quantum memory protocol utilizes the atomic frequency,
one can anticipate that the dissipative mechanisms and
fluctuations, especially the spectral diffusion of the |e〉 state,
would damp the transfer between the excited state and the
spin state. In Fig. 7(a), we fix the rate �1 = 6.6 kHz and
�2 = 30.5 kHz, and present the simulation result that a de-
crease of the transfer efficiency is induced by an increase of
the spectral diffusion width σsd. Similar to Fig. 6(b), the wide
line in Fig. 7(a) suggests that the modulated pulses are also
resilient to moderate dissipation from environment.

C. Multimode capacity

Another important figure of merit for quantum memories is
the capacity to store multiple photons and dimensionality. The
AFC-SW memory scheme can perform efficient multimode
storage by using a train of input signal modes. For an atomic
frequency comb range �, the duration of one mode that can
be stored is limited as τs = 12π/�. The multimode capacity
stems from the fact that the comb can absorb a train of tempo-
ral modes before the first mode is reemitted after time 2π/�.
The ratio between the duration of the train and of one mode
indicates that the total number Ns = �/6� of the input modes
can be stored. Thus, a frequency comb with many peaks (i.e.,
small � with large �) allows one to store a large number of
temporal modes.

Now we consider the effect of the control pulses on the
multimode capacity. The total duration of the write process
of the quantum memory includes the train of the input signal
modes and the control pulse, Tt = Nsτs + T0. More precisely,
we consider a typical system in experiments [21,22]: an
atomic frequency comb with a peak separation � = 100 kHz
spans a frequency range � = 8 MHz. For a total time inter-
val Tt = 2π

�
= 20π μs, we compare the multimode capacity

at different control pulse times in Fig. 7(b). The largest
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FIG. 8. Maintaining a particular phase of the transferred super-
position state as the initial phase φI varies. (a) Sx and Sy components
of the final state for the modulated linear pulse. (b) The transfer
fidelity via different control protocols. Here �max = 5 MHz, T0 =
5 μs, and � = 8 MHz.

number Ns = 11 is achieved with the duration of control pulse
T0 = 2 μs. Combined with Fig. 5, the efficiency (85%) of
the modulated pulse with T0 = 2 μs is much better than that
(36%) of the chirped adiabatic pulse with the same duration.
For the chirped adiabatic pulse, the use of long control pulse
duration T0 increases the transfer efficiency. However, the
price to pay is a reduction of the number of modes Ns that
can be stored for a given total duration Tt . Compared with
the chirped adiabatic pulse. the modulated pulse with short
duration is compatible with both the transfer efficiency and
the multimode capacity.

V. PRESERVING PHASE COHERENCE AND FIDELITY
OF EXCITATIONS TRANSFER

Since we converse the collective optical excitations into
and back from the collective spin excitations, preserving the
phase coherence during the transfer protocol is crucial. The
preserving of phase coherence is a measure of the fidelity
of the storage process. We initialize the system in a super-
position state |ψI〉 = 1√

2
(|s〉 + eiφI |e〉), and apply the control

pulse to transfer the superposition state between the excited
state and the spin state. In ideal situations, the final state
is expected as |ψF 〉 = 1√

2
(|e〉 + eiφF |s〉) with the same phase

factor as the initial state φF = φI . In realistic situations, the
phase φF would be affected by the decoherence mechanisms
incorporating the dephasing and the spectral fluctuations of
the excited state. For measurements of the final state, we
define the density matrix of the final state as ρ = 1

2 (SI I +
Sxσx + Syσy + Szσz ), where I is the identity matrix and Si

are the corresponding components of X , Y , and Z directions.
In Fig. 8(a), we show the X and Y components of the final
state as a function of the initial phase. The modulated pulse
achieves a cosine oscillation with the initial phase, indicating
their coherent manipulations.

To quantitatively assess coherent transfer of these proto-
cols, we use an evaluation criteria, the fidelity defined as
follows:

F = [Tr(
√√

ρrρi
√

ρr )]2, (14)

FIG. 9. Fidelity of the protocols as a function of the relative
deviation of pulse strength �max and pulse length T0 for their fixed
values: �max = 3.5 MHz and T0 = 4 μs. Here � = 8 MHz.

where ρr and ρi are the density matrix of real and ideal
target superposition states. In Fig. 8(b), we plot the fidelity for
different superposition states, where the modulated pulse
achieves a high fidelity beyond 93% over a wide range of
initial phase φI , revealing that the modulated protocol can
retain coherent transfer under the incoherent contributions
from environment. We also test the sensitivity of the pro-
tocols to the perturbations in the control parameters, where
we vary �max and T0 around their fixed values with per-
turbations δ�max and δT0. The results are summarized in
Fig. 9, which show that the modulated pulse is more robust
with respect to the perturbation in the amplitude �max or the
duration T0 .

VI. CONCLUSIONS

In this work we propose modulated adiabatic pulses as a
fast and robust protocol for coherent excitations transfer with
applications to the quantum memories. Our approach has the
flexibility to tailor the parameters to achieve the transitionless
evolution in the nonadiabatic regime. Moreover, we show that
the modulated protocol is more robust against experimental
imperfections and environment dissipation than the chirped
adiabatic pulses used so far. The protocol can be adjusted to
multimode storage, without reducing its efficiency. The exten-
sion of the technique to transfer superposition states highlights
its importance, since the unavoidable dissipation would affect
the phase of collective excitations. Thus our protocol offers
unique advantages for highly efficient and high fidelity ma-
nipulations in a multimode quantum memory. Although we
exemplified it in an AFC-SW quantum memory, the technique
can be applied to various quantum memory schemes and
physical platforms [41–45].
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