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The status of the quantum wave function is one of the most debated issues in quantum foundations—whether

it corresponds directly to the reality or just represents knowledge or information about some aspect of reality.
We propose a yr-ontology theorem that excludes a class of ontological explanations where the quantum wave
function is treated as mere information. Our result, unlike the acclaimed Pusey-Barrett-Rudolph’s theorem, does
not presume the absence of holistic ontological properties for product quantum preparations. At the core of
our derivation, we utilize the seminal no-go result by Bell that rules out any local realistic world view for
quantum theory. We show that the observed phenomenon of quantum nonlocality cannot be incorporated in
a class of y-epistemic models. Using the well-known Clauser-Horne-Shimony-Holt inequality, we obtain a
threshold bound on the degree of epistemicity above which the ontological models are not compatible with

quantum statistics.
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I. INTRODUCTION

What does a quantum wave function stand for? Does it
represent the state of reality of the physical system (y-ontic
doctrine) or does it merely provide information about the
system (y-epistemic doctrine)? This question has been at the
core of the quantum foundational debate ever since the advent
of the theory [1]. A mathematically precise formulation of this
question, within a broad class of realist approaches to quan-
tum theory, can be made in the ontological model framework
of Harrigan and Spekkens [2] (see, also [3,4]). Epistemicity,
in this framework, is defined (as well as quantified) through
the amount of overlap between probability distributions over
the ontic states resulting from different quantum preparations.

In a fascinating development, Pusey, Barrett, and Rudolph
(PBR) have shown that a yr-epistemic interpretation contra-
dicts the prediction of quantum theory in any model where
independently prepared systems have independent physical
states [named the preparation independence (PI) assump-
tion] [5]. This result drew the attention of the quantum
foundations community and, within a few days, several re-
searchers reported similar theorems [6-9], commonly called
Y-ontology theorems [10], derived under different assump-
tions. Subsequently, several criticisms were raised regarding
the assumptions used in those 1-ontology theorems [11-14]
(see, also, [10]). In particular, the authors in [14] have shown
that the physical rationale for composition principles such as
PI overreaches and thus places the no-go theorem put forward
by PBR into jeopardy.

Interestingly, Maroney came up with a new kind of -
ontology theorem that uses no compositional assumption and
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rules out a class of ontological models with a certain degree
of epistemicity [15,16]. Subsequently, several other results
were obtained excluding -epistemic models with an increas-
ingly lower degree of epistemicity and consequently imposing
a higher degree of onticity on the quantum wave function
[17-21]. However, all these theorems apply to Hilbert spaces
of dimension strictly greater than two.

In this work, we derive a yr-ontology theorem that excludes
the maximally i -epistemic model as well as nonmaximal
ones with a certain degree of epistemicity. Importantly, our
theorem does not assume the ontic composition principles of
PI. In fact, it does not presuppose that the ontic state space for
quantum product preparations should be a Cartesian product
of their individual ontic state spaces only. In other words, we
consider that the two or more quantum systems prepared even
in a product state can possess holistic ontic features accessible
only through global measurements, which broadens the scope
of our result over PBR’s theorem. Furthermore, unlike the
Y-ontology theorems reported in Refs. [15-21], the present
theorem applies to qubit Hilbert space too. Quite importantly,
our result demonstrates an interesting connection between the
degree of epistemicity and Bell nonlocality [22-25]. While it
was already recognized that ¢ -complete and ¥ -ontic mod-
els for quantum theory are inconsistent with the concept of
locality [1,2], our result establishes the fact in the reverse
direction. It shows that the phenomenon of Bell nonlocality
prefers a y-ontic interpretation for the quantum wave function
as y-epistemic models having epistemicity above a threshold
degree cannot incorporate the observed quantum nonlocality.

II. FRAMEWORK

We first recall the ontological model framework as devel-
oped in [2] (see, also, [3,4,10,13]). Such a model consists of
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a space A of ontic states that completely identify the possible
physical properties of a system. A quantum system prepared
in the state |y) is associated with a probability distribution
w(A|y) over A, where each realization of the preparation
|) results in an ontic state A € A sampled with probability
measure w(A|y). The probability distribution of the result-
ing ontic states is called the epistemic state associated with
|¥), and Supp[uA[[¥ )] = Ay = {A € A|u(rly) > 0} is
called the ontic support of |y). For all |¢), we must have
f Ay dip(A|yr) = 1. Whenever an observable M is measured
on a system, the possible outcomes are the eigenvalues ¢ with
the associated eigenvectors |¢), i.e., M =), ¢ |dr) (¢l
Here we restrict our attention to rank-1 projective measure-
ments only, although quantum theory allows a more general
measurement process described by the positive operator val-
ued measure (POVM). Given a system in the ontic state
A, the probability of obtaining the kth outcome is given
by a response function &(¢r|r, M) € [0, 1]. A generic on-
tological model keeps open the possibility for this outcome
response to be contextual [3]; whenever the measurement
context is not important, we will denote the response function
simply as &(¢r|A). An outcome deterministic (OD) ontolog-
ical model demands & (¢ |A, M) € {0, 1}V k, A, M. Denoting
Supp[§(¥[A)] := {1 € A|E(Y[1) > 0} and Core[§([1)] :=
{L € AE(Y|L) = 1}, the following set of inclusion relations
is immediate:

Ay < Core[€(Y|1)] S Supp[€ (¥|1)].

An OD model satisfies Core[£(y|1)] = Supp[€ (¥ |A)],
whereas a model with A, = Core[§(y/|1)] is termed re-
ciprocal [13]. Interestingly, the authors in [13] have also
established that

Maximally ¢y — epistemic < OD A Reciprocal. (1)

An operational transformation procedure 7' at the ontological
level corresponds to a transition matrix '7(, &) denoting
the probability density for a transition from the ontic state
X to the ontic state A. In the prepare and measure scenario,
the reproducibility of the Born rule at the operational level

demands [, dA&(¢x|r, MOLIY) = gl ¥)* = Pr(ge|¥).

III. DEGREE OF EPISTEMICITY

In a maximally ¥ -epistemic model, the quantum over-
lap |(¥|¢)|*> for any two state vectors |¢) and |¢p) is
completely accounted for by the overlap between the cor-
responding epistemic distributions w(i|y) and w(r|¢), i.e.,
fA¢> wk|Y)dr = |(¥|¢)|> [15]. Maroney’s theorem [15]
and the subsequent results [16-21] exclude the maxi-
mally 1 -epistemic model and a class of ontological models
with increasingly lower degree of epistemicity. To quan-
tify the degree of epistemicity of an ontological model,
please note that fA¢ dipu(Ay) = fA¢ drE(P|I MM Y) <

fA dAE(P|M)(M ) = |(p|¥)|%. The first equality is due to
the fact that Ay € Core[£(¢|1)]. One can express the above
inequality as an equality of the following form:

fA dAplY) = Qo ¥) [(P1Y) P, 2
¢

where Q(¢, ¥) captures degree of epistemicity of a model
and for any pair of nonorthogonal quantum states, Q2(¢, V) €
[0, 1]. For a maximally v -ontic model, €2(¢, ¥) = 0 for all
nonorthogonal pairs of state, while Q2(¢, ¥) = 1 for all such
pairs in a maximally i -epistemic model (see [15] for more
elaboration). The larger the departure of (¢, ¥) from its
maximum possible value, the more the model is ¥ -ontic and,
consequently, the less yr-epistemic it is.

IV. ONTIC COMPOSITION

The discussions so far consider ontological models for
a single system only. More involved situations arise for
composite systems. Consider System-A and System-B with
ontic state space A4 and A%, respectively. For a composite
quantum system prepared in a state psp, a naive classical
thinking suggests the joint ontic state Ajoine to be in Ay X Ap,
ie., A,, € A% x AB. However, the lesson from the seminal
Bell’s theorem indicates a more intricate description of the
ontic state for a composite system. Violation of any local
realistic inequality by some joint quantum preparation psp
necessitates some “nonlocal” ontic state space AN, More
precisely, this nonlocal variable captures the essence of a
nonlocal correlation in the sense of Bell [22,23]. At this point,
the reader should be reminded that these nonlocal correlations
are perfectly compatible with the no-signaling principle that
prohibits the instantaneous transfer of information. There-
fore, we can say that A,,, € (A* x AB)U AVE, where ANE
accounts for a Bell-type local realistic inequality violation.
Importantly, all product states are Bell local (as is the case
for a separable state and local entangled states [26-28]). But,
does it assert that such a product quantum preparation should
not contain any holistic ontic feature, i.e., their ontic support
ought to be a subset of A% x AZ? PBR in their derivation
have considered such an assumption. In fact, their PI assump-
tion is even restrictive as it explicitly spells p(Aa, Ap|ysa ®
Yp) = wdal¥a)w(Ap|p) [S]. However, such an assump-
tion is conservative as it considers the (local) reality of the
product measurements only. It is possible that a composite
system even prepared in a product state contains properties
that are accessible through global measurements only, e.g.,
a Bell basis measurement. More dramatically, the phenom-
ena of “nonlocality without entanglement” indeed indicates
such a situation even without involving any entanglement in
the measurement basis [29-31]. Thus, for a bipartite prod-
uct (also for separable) quantum state p4p, the ontic support
should be considered as A,,, € A% x A® x AY, where A°
carries strictly relational holistic information about the two
systems and remains hidden under local measurements, i.e.,
not accessible through local measurements. Here we make
a clear distinction between A® and ANE. Both are non-
classical features of ontological state space for a bipartite
quantum system. But they correspond to two completely
distinct operational nonclassical features of quantum theory.
ANT contains variables that are nonlocal strictly in the sense
of Bell inequality violation, which is revealed through local
measurements performed on spatially separated subsystems
of the composite system—no global measurement is involved
or required in this case. This is clearly not the case for ontic
elements belonging to A®, which accounts for the global
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properties corresponding to nonclassical joint measurements
allowed in quantum theory due to its richer bipartite effect
space structure containing entangled effects in addition to
product effects. These global measurements with entangled
effects correspond to holistic properties or observables of the
composite system whose outcomes can never be realized by
locally measuring the individual subsystems. At this point,
one may consider the possibility that the product quantum
states have ontic support within AN in such a way the
nonlocal effect gets averaged out in the operational statis-
tics. However, our following proposition (see Appendix A
for the proof) puts a no-go on such assertion.

Proposition 1. In a maximally 1-epistemic model (more
generally, in any outcome deterministic ontological model),
quantum product preparations do not possess any nonlocal
ontic state.

At this point, we leave this question of whether the propo-
sition can be extended for any -epistemic model open for
further investigation. However, for other -epistemic models
(apart from those considered in Proposition 1), the nonexis-
tence of a nonlocal ontic state in the support of quantum prod-
uct preparation can be justified using the principle of Occam’s
razor, which researchers in quantum foundations have applied
in a different context [32]. For an entangled state psp ex-
hibiting Bell nonlocality, the ontic description will be A,,, C
(A" x AB x AS)U AN with A,,, N AN # (. The Carte-
sian product structure assumed above is not necessary for our
argument, but it provides a simple way to present the idea.

V. A y-ONTOLOGY THEOREM

We are now in a position to prove our ¥-ontology theorem.
To this aim, we consider a quantum copying machine M
that perfectly copies the states |0) and |1). The pioneering
“no-cloning” theorem does not prohibit the existence of such
a machine as the copying states are mutually orthogonal [33].
The action of M can be described by a unitary evolution Ung
satisfying Uypp |i) |r) = |i) |i), where |r) is some fixed refer-
ence state and i € {0, 1}. The machine has two input ports,
i.e., one fed with particles R prepared in some reference state
|r) and the other fed with system S prepared in state |0)
or [1).

The action of this copying machine is worth analyzing in
the ontological picture. Whenever S is prepared in the state |i),
a composite ontic state Ajoin = (A, AR, 19) is fed into the ma-
chine, where A5 € A; € AS, AR e A, € AR, and A9 € AC,
ie., Ay = {uhoindl lir)) > 0} € A x AR x AC. After the
successful completion of cloning, the machine yields the
outcome [ii), i.e., it yields an ontic state that belongs in A;; C
AS x AR x AY. Let us now feed the above copying machine
with the system state prepared in |+) = (|0) + |1))/\/§.
At the ontological level, the machine receives some ontic
state  Ajoint € AS x AR x AC sampled with probability
distribution s (Ajoinc| |47)) = w(AS, AR AC||+r)). Let us
consider a maximally -epistemic model underlying quantum
theory. This will imply Ay = (AgNAL)U (AN AL) and
Arr = (Nor N AL U (AN AY) C Apr U A, Since the
ontic state obtained after the machine’s action only
depends on the input ontic state fed into the machine,
Suppl i (Ajoint [Umll+r)D 1 S Supp [ (Ajoint|[Una [ 0r) 1)U

Suppl it (Ajoint [Uml[17)])] = Ago U Ajy. Since a  product
preparation cannot have any nonlocal ontic reality, i.e.,
Ago N AN = ¢ = Ay N AN (see Proposition 1), it, in turn,
implies Supplit Chioin [Una[|+7) DT N AN = .

But the above conclusion is in direct contradiction with
predictions of quantum theory. Due to the linearity of
the machine’s action, one will obtain the output |[¢pF) =
(]0) |0) + |1) |1))/«/§ whenever the machine M is supposed
to copy the state |+). Being the maximally entangled state, it
exhibits maximum violation of the Clauser-Horne-Shimony-
Holt (CHSH) inequality [34] for a suitable measurement
choice on its local parts. Hence the entire ontic support of
the output pairs cannot be contained within AS x AR x AY;
in other words, Ay N ANE 2 (. At this point, it is im-
portant to note that like PBR, we have neither considered
ontic state space for a product preparation to be a Carte-
sian product of their individual state space nor presumed the
strong assumption of “preparation independence.” We have
also not invoked the assumption of “local independence,” i.e.,
[ drC S, AR 26| lir)) = w(AS]i)w(AR|r) as considered in
[12], and the assumption of “ontic indifference” used in [6].

A similar proof runs if we feed any state |¢) = « |0) +
B |1) into the machine M instead of the state |+), where C >
o, B #0 and |a|?> + |B|> = 1. In a maximally 1/ -epistemic
theory, the ontic support A, entirely gets shared between Ag
and A ;. Whereas for [+) these two shares are equal, for [y)
the shares are proportional to the quantum overlaps. A simi-
lar argument in this case implies Supp[u(Ajoine|[Um[|¥7) D] N
ANE = (. But this is again in contradiction with the quantum
prediction as the machine’s action on |¢r) yields the state
« |00) 4+ B |11}, which is known to be Bell nonlocal [35].

Our result thus establishes that a maximally y-epistemic
model cannot account for the Bell nonlocal correlations. In
the “orthodox” interpretation of quantum theory, the wave
function ¥ alone provides the complete description of reality,
which itself can be considered as a y-complete ontological
model. Researchers have already acknowledged that Einstein,
at the Solvay conference, had shown the incompatibility of
a Y-complete model with locality through a simple argu-
ment [1]. In Einstein’s own words [36], “One arrives at
very implausible theoretical conceptions, if one attempts to
maintain the thesis that the statistical quantum theory is in
principle capable of producing a complete description of an
individual physical system....” Extending this result, the au-
thors in [2] have shown that “Any yr-ontic ontological model
that reproduces the quantum statistics (QSTAT) violates
locality.”

In brief, these two results together assert “i-complete
and/or -ontic = — locality.” Our theorem can be viewed
as a converse of this claim as it shows that “Nonlocality
(in the sense of Bell) = — maximal -epistemicity.” Here
we recall the result of Ref. [17], where it has been shown
that “maximally v -epistemic = Kochen-Specker noncontex-
tual.” Therefore, Kochen-Specker contextuality [37] excludes
the maximally ¥ -epistemic model for quantum systems with
Hilbert space dimension strictly greater that two. Similarly,
our theorem shows that the Bell nonlocality rules out the max-
imally yr-epistemic ontological model. Manifestly, the scope
of our theorem is broader than that in [17] as it excludes the
maximally 1/ -epistemic model even for a qubit system.
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So far, we have shown that Bell nonlocality prohibits
the ontological model that is maximally ¥ -epistemic. Nat-
urally, the question arises, What about the nonmaximally
Y-epistemic models [see Eq. (2)]? Interestingly, we will now
show that a broader class of ontological models having a
certain degree of epistemicity can also be excluded from a
similar reasoning.

Whenever the state |4) is fed into the machine copying the
state |0) and |1) perfectly, the resulting state being maximally
entangled exhibits Bell nonlocality. Thus, part of the ontic
support A must lie outside Ag U A, which accounts for the
observed CHSH violation and, consequently, this will impose
a bound on the degree of epistemicity. For a suitable choices
of measurements, the maximally entangled state can exhibit
CHSH violation up to 2v/2, i.e., (¢7| CHSH |¢*) = 2+/2;
CHSH denotes the CHSH expression or operator. The quan-
tum reproducibility condition, therefore, demands

/ d,\S/ / dXRd A phoint| 1+7))CHS Hippa,
Ay AR JAG

= (7| CHSH |¢) = 2+/2.

Here, Ajoine = (A%, A%, 2C) is the input ontic state and
M[Ajoinc] is the output ontic state after the machine’s action.
The domain of integration for the variable AS can be di-
. . . e . . S S
vided into three disjoint parts, i.e., fA+ d)s = onﬂA+ d)s +

fAmA+ dr® + fA+\(A0UA1) da’.

Note that whenever A5 € A; N A, the joint ontic state
Ajoint = (AS, AR A9) belonging in Ay, as well as in A;
cannot lead to the observed nonlocality since M[Aoinc] €
A;;. However, there may exist (A5, A, 1’%) € A, such that
(S, VR, V0) ¢ A, where AS € A; N A for some i € {0, 1}.
In such a case, the machine can distinguish the input prepara-
tion |+) or |i) by accessing AR and/or A’C and the observed
nonlocal behavior can be well explained. At this point, we
assume that

viaie AiNAL,
A5, AR A9 e Ay, = (5, AR 19 € A, 3)

Importantly, this is a strictly weaker assumption than
the ontic composition principle of PI used by PBR.
To argue this, first note that for ASe Ay N A, the
Bayes’ rule allows us to write u(AS, AR, AC||+r)) =
WS OEIAS, [+ ACIAS, AR |+7)). We can also
write w(x®, A%, 291 |ir)) = w3 [ir)wRAS, [ir) w925,
AR ir)). Clearly, the assumptions

RS |4r)) = RIS, Jir)), (4a)
wAEIAS AR 1)) = O IAS, AR, i) (4b)

will imply Eq. (3). Unlike the PI assumption, Eqs. (4a) and
(4b) do not prohibit correlation at the ontic level for two oper-
ationally independent preparations and hence they are weaker
assumptions [38]. Furthermore, the conditions in Eqgs. (4a),
(4b) suffice for our purpose, but they are not at all the neces-
sary requirements. The following weaker conditions:

pRIAS, fir)) = 0 = w(AFAS, [+7) = 0, (5a)
pCIAS AR ir)) = 0 = wOA5, A% |+r) =0,  (5b)

serve well for our purpose. Therefore, A \ (Ag U A;) should
have a nonzero measure in order to explain the observed
nonlocality.

The area of the domain, A \ (Ao U A}), required to ex-
plain the observed quantum nonlocality imposes a bound
on the degree of epistemicity of the underlying ontologi-
cal model. Assuming Q(+,0) = Q(+4, 1) := €, it turns out
that € < 2 — +/2 (see Appendix B). Therefore, a threshold
amount of onticity is required in the ontological model to
incorporate the observed CHSH violation in quantum theory.
Taking a more general consideration of a cloning machine M,
that perfectly copies the states |¢) and |¢L), one can obtain
the following general bound: |« |>Q(¢, V) + |B>Q(¢p*, ¥) <
2— /1 +4la?|B?, where |) =alp) +Bl¢") and o #
0, I (see Appendix B).

VI. DISCUSSIONS

The PBR theorem has initiated a surge in research in-
terest regarding the reality of the quantum wave function
[6-10,39-44]. Between the two competitive views—1i/-ontic
vs Yr-epistemic—it favors the former. To this claim, it uses an
assumption, called PI, regarding the ontology of a compos-
ite system. Establishing such a powerful doctrine about the
reality of the quantum state, the theorem has gone through
detailed scrutiny and the PI assumption has gained several
criticisms [11-14]. In particular, the criticism in Ref. [14]
is quite severe. The authors there consider the ontic com-
position assumption to be weaker than the assumption of
“preparation independence” and reject the vast class of deter-
ministic hidden-variables theories, including those consistent
on their targeted domain. This result challenges the compo-
sitional aspect of the real or ontic states one might wish to
assume through preparation independence while modeling a
tensor-product quantum state. It therefore motivates renewed
aspirations to establish the y-ontic nature of the quantum
wave function from a more rational assumption or using no
such assumption at all. At this point, our theorem starts con-
tributing. Our result established that if we take the maximally
Y-epistemic doctrine, then quantum nonlocality cannot be
explained in such a model. Importantly, unlike PBR, we do not
consider any compositional assumption. In fact, we consider
that ontic state space for product preparation can be more
general than the Cartesian product of their individual ontic
states as they can possess composite ontic properties. In this
regard, the toy model of Spekkens [45] is worth mentioning.
The model is maximally yr-epistemic by construction. Though
it reproduces a number of phenomena as observed in quantum
theory, it is a Bell local model. Our theorem establishes a
general result in this direction as it shows that no maximally
Y-epistemic model can incorporate the nonlocal behavior of
quantum theory. Furthermore, we show that the observed
phenomenon of quantum nonlocality excludes not only the
maximally y-epistemic models, but it also imposes a bound
on the degree of epistemicity of the underlying models. The
extent of our theorem is also broader than the yr-ontology
theorems in [15-21] as these results apply to quantum systems
with dimensions greater than two but remain silent for a qubit
system. Here it is worth mentioning the theorem proved by
Aaronson ef al. [46]. There the authors have considered only
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those yr-epistemic models in which every pair of nonorthog-
onal states has ontic overlap of nonzero measure. However,
our theorem does not limit itself to such pairwise y-epistemic
models; i.e., given any two nonorthogonal states, the theo-
rem dictates an upper bound on their ontic overlap without
assuming anything about the degree of ontic overlap between
all other pairs of nonorthogonal states. Our result opens up
some research possibilities. In our work, we have considered
the CHSH inequality. It would be interesting to study whether
more stringent restriction(s) on the underlying ontological
models can be obtained from other classes of local realistic
inequalities. It may also be interesting to study what new kind
of restriction genuine quantum nonlocality would impose on
the nature of the quantum wave function.

ACKNOWLEDGMENTS

A.D.B. and M.B. acknowledge fruitful discussions with
Guruprasad Kar, Some Sankar Bhattacharya, and Tamal
Guha. M.B. would like to thank Michael J. W. Hall for
useful suggestions (through private communication). M.B.
acknowledges a research grant through the INSPIRE-faculty
fellowship from the Department of Science and Technology,
Government of India.

APPENDIX A: PROOF OF PROPOSITION 1

Before going to the main part of the proof, let us first
discuss what conclusion one can make regarding the evolution
of the underlying ontic states when some measurement is
performed on some operational quantum preparation.

Single system. Consider that a qubit is prepared in the state
|0), the +1 eigenstate of o,. At the ontological level, the sys-
tem is prepared in some ontic state A € Ag := {A|n(A]|0) >
0} C A. Suppose o, measurement is performed on system.

In such a scenario, what can we say about the postmea-
surement ontic state (say) A’? Can we give a deterministic
evolution from the premeasurement ontic state XA to the post-
measurement ontic state A’? The answer to this question is no.
However, we can make some conclusion regarding A'. Given
that on the premeasurement ontic state A, the measurement
o, is performed, we can say that the postmeasurement on-
tic state A’ must belong to (AL UA_), i.e.,, Ag D> A XN e
(AL UAL).

Suppose that on the quantum preparation |0), the o, mea-
surement is performed instead of the o, measurement. Clearly,
the operational state remains identical as a measurement does
not disturb its eigenkets. In this case, can we make the con-
clusion that the postmeasurement ontic state A’ is the same
as the premeasurement ontic state A? Again the answer is no.
However, we can make the conclusion that A’ must belong
to the support Ag. In other words, a measurement that does
not disturb the operational preparation can disturb the ontic
preparation. Such a disturbance is indeterministic in general,
but the final ontic state remains within the support of the
operational preparation, i.e., Ay 2 A ENe Ay.

Therefore, in general, we can say a measurement, disturb-
ing or nondisturbing on an operational preparation, should not

TABLE I. Note that A satisfies the condition of parameter in-
dependence. None of Alice’s outcomes depend on the measurement
context(s) chosen by Bob, and vice versa. Therefore, observables of
both A and B possess local reality (independent of any remote context
chosen by another observer).

No. xy(l)/ab(—) +1,+1 +1, —1 —1,+1 -1, -1
1 o, ® oy 1 0 0 0
2 o, ® 0y 0 1 0 0
3 oy ® oy 0 0 1 0
4 oy ® oy 0 0 0 1

assume any deterministic state-update rule for the underlying
ontic states. The only thing that can be specified is the set of
possible postmeasurement ontic states for a given premeasure-
ment ontic state.

Bipartite system. Consider a two-qubit bipartite system
Sap. As discussed in the main text, the ontic state space of
such a system has three parts: A4 x Ap corresponding to local
reality, AC carrying strictly relational information about the
two systems that remains hidden under local measurements,
and AN corresponds to reality resulting in the Bell nonlocal
feature. Since in the following we will consider local measure-
ments on the bipartite system, without loss of any generality
we only consider the joint ontic states Ajoine € (Ag X Ap)U
AN Any Ajoine € (Aa X Ap) can be thought of as Ajin =
(Aa, Ag), where A4 € A4 and Ag € AB. On the other hand,
a Ajoine € AN must violate at least one of the conditions of
outcome independence (OI) and parameter independence.

Outcome independence:

(Ala)
(Alb)

p(a|b7 X, ), )\joim) = p(a|-x7 Vs )"joint)a Vav ba X, )5
p(bla, x,y, Ajoine) = p(bIx, ¥, Ajoint)> Y a, b, x, y.
Here, a, b respectively, denote Alice’s and Bob’s outcome

for their respective local measurements x and y.
Parameter independence:

(A2a)
(A2b)

plalx, y, Ajoin) = plalx, Ajoine), Y@, x, y;
p(blx,y, Ajoint) = p(bly, A’j()il'lt)! Vb, x,y.

In an OI model, a nonlocal ontic state Ajine € AN must
violate the condition of parameter independence, which can
happen in three ways:

(i) Violation of Eq. (A2a) for some choice of a,x,y.
Such a Ajoine we will represent as Ajoine = (Aa—p, Ap), as
Bob’s measurement choice affects Alice’s marginal outcome
probabilities.

(ii) Violation of Eq. (A2b); Ajoint = (A4, Aa—p)-

(iii) Violation of Eq. (A2a) and Eq. (A2b); Ajoint = Aaws-

For a better clarification, specific examples of these four
types of Ajoine are discussed below.

Case (]) )Ljoim = ()\.A, )\B) (S AA X AB Table I.

Such a Ajoinc can be described by the Cartesian product
of ontic states A4 € A4 and Ag € Ap corresponding to the
following tables respectively.
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No. x()/a(—) +1 —1
1 oy 1 0
2 oy
No. y({)/b(—) +1 -1
1 o 1

oy 0 1

Case (2-i). hjoint = (Aa—p, Ag) € ANE Table I1. In this case,
observables of the A system do not possess any local reality,
i.e., it cannot be described by an ontic state belonging to its
local ontic space A“4. However, observables of the B system
take values independent of the measurement contexts chosen
by Alice, and hence they possess local ontic reality, i.e., B has
its local ontic state Az € A® corresponding to the following
table:

No. y)/b(=) +1 -1
1 oy 1 0
2 oy 1 0

Case (2-ii). Aigint = (A, ramsp) € ANE Table 111 In this
case, the outcome of the observables on the A system do not
depend on Bob’s measurement choice. Therefore, although
B does not possess local reality (i.e., context independent
reality), the system A is in a local ontic state A* € A? cor-
responding to the following table:

No. x({)/a(—) +1 —1
1 Oy 1 0
2 oy 1 0

Case (2-iii). Ajoint = Aap. In such joint ontic state, pa-
rameter independence is violated both from A to B and from
B to A. Specification of such a Ajuiy requires two different
tables: one of [Type (2-ii) nonlocal] for the case when Alice
measures first, Bob measures second. And the other table will
be of [Type (2-i) nonlocal] for the case when Bob measures
his system before Alice measures her system. We are now in
a position to prove Proposition 1 stated in the main text.

Proof. Consider the product quantum preparation |0) 4 |0) 5.
Contrary to Proposition 1, assume that there exists some

TABLE II. Note that Alice’s outcome for the o, measurement
depends on Bob’s measurement choice(s) (compare the third and
fourth rows). However, Bob’s outcomes are independent of the mea-
surement contexts chosen by Alice.

No. xy(})/ab(—) +1,+1 +1,—-1 —-1,+1 —-1,-1
1 oy ® 0y 1 0 0 0
2 o, ® o, 1 0 0 0
3 0y ® 0y 1 0 0 0
4 o, ® o, 0 0 1 0

TABLE III. Note that the o,’s value for Bob depends on the
measurement context chosen by Alice (compare the second and
fourth rows). Importantly, Alice’s outcomes do not depend on Bob’s
measurement choice(s).

No. xy({)/ab(—~) +1,+1 +1,—-1 —-1,+1 —1,—-1
1 o, ® oy 1 0 0 0
2 o, ® 0y 1 0 0 0
3 0y ® 0y 1 0 0 0
4 oy ® oy 0 1 0 0

nonlocal joint ontic state Ajoine € AME lying in the support
Agp. Since we are considering the ontological model to be
maximally ¥ -epistemic, the model must be outcome deter-
ministic and reciprocal [13]. Thus the nonlocal A4 must
violate at least one of the assumptions of parameter in-
dependence and outcome independence (OI) [47,48]. Since
outcome deterministic models satisfy OI [49], Asp must
violate parameter independence. Note that nonlocal correla-
tions have a classical-like explanation if we assume that the
agents sacrifice their free choice or measurement indepen-
dence [41,50-53]. However, here we are considering that the
agents enjoy their free choice.

Consider a Ajoine = Aawsp [Type (2-iii) nonlocal]. Such a
Ajoint Tequires two different tables of assignments: one for
when Alice measures first (which would be [Type (2-ii) non-
local]) and a different one for when Bob measures first (which
would be [Type (2-i) local]). But, for simplicity, we consider a
fixed order of their measurements: Alice measures her part of
the system before Bob performs any measurement on his part,
so that a single table of assignments is sufficient. A typical
example of such Ajoint = Auop € Ago is given in Table IV.

Note that in accordance with our chosen order of measure-
ments, the table of assignment for Ajoine = Aawp is of [Type
(2-ii) nonlocal]. Here, we do not provide any table of [Type
(2-i) nonlocal] associated with Ajoine = Aycsp that considers
the case when Alice and Bob measure in the reverse temporal
order (i.e., Bob first and Alice second) since it is straightfor-
ward to construct such a table.

On this premeasurement joint ontic state, let Alice first
measure o, on her system. This will cause all observables
at Bob’s end to take values in accordance with the chosen
context of o, at Alice’s side. Therefore, postmeasurement

TABLE IV. Ajoint = Aaop the table shows only the value assign-
ments for the case when Alice measures first, Bob second.

No. xy({)/ab(—) +1, +1 +1, —1 -1, +1 -1, —1
1 0, ® o, 1 0 0 0
2 0, Q0 1 0 0 0
3 o, ® o, 1 0 0 0
4 0y ® 0oy 1 0 0 0
5 o, ® oy 1 0 0 0
6 oy ® oy 0 1 0 0
7 oy ® oy 1 0 0 0
8 o, ® o, 1 0 0 0
9 1 0 0 0

oy, ® o,
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TABLE V. M5 € Ap in the postmeasurement joint ontic state
Nioint = (M ap, A'p) after Alice’s measurement. Notice that A to B
parameter dependence is destroyed due to Alice’s measurement and
as a result, system B attains local reality.

No. y()/b(—) +1 -1
1 o 1 0
2 oy 1 0
3 oy 1 0
Migine Will be of Type (2-i) nonlocal, i.e., (A} _p, A), where

A% is described in Table V.
The measurement o, on the A system thus leads to the
following ontic transformation:

0,1

joint _ l
A = )‘A <B A ‘joint

= (Myp Ap) € Bpe(2 — ).

Following reasoning clarifies such a postmeasurement evo-
lution of the ontic state. Before Alice’s measurement,
observables of system B possess no local reality, which is re-
flected in the premeasurement ontic state A4..p. For instance,
Bob’s o, observable does not have context independent reality
in the state A, p (see Table IV). In other words, one cannot
assign value to o, of B independent of Alice’s choice of
measurement (which is evident from the second and sixth
rows of Table IV). But, as soon as Alice chooses one particular
measurement context, Bob’s observables take the correspond-
ing values in accordance with Alice’s chosen measurement
context. To see this, consider the second row of the premea-
surement state (Table IV) which asserts the following: “If
Alice measures o, on A, Bobwill obtain +1 if he measures o, on
B.” When Alice has already performed the measurement o,
Bob’s o, observable must take the value +1 in the postmea-
surement state )Lj’oim; otherwise, the proposition of the second
row of the premeasurement state gets violated. If Alice had
measured o, instead of 0., Bob’s o, observable would have
taken the value —1; otherwise, the proposition of the sixth row
of the premeasurement state would have been violated. Since
Alice measures o7, not o, the possibility of Bob’s o, value be-
ing —1 is no longer there in the postmeasurement state ;..
Therefore, Alice’s choice of a particular context assigns Bob’s
observable context independent local reality. Similarly, after
Alice’s o, measurement, the eighth row demands that B should
have o, = 1 in the postmeasurement joint ontic state A;,.
In general, in the postmeasurement joint ontic state A;.
o, of B will take the value obeying the condition imposed by
the row corresponding to o, ® o), of the premeasurement joint
ontic state As.,p. Thus, all the observables of B take some
fixed particular value, and therefore attain local reality, as soon
as Alice chooses her measurement context. Therefore, in the
postmeasurement state, although parameter independence can
be violated from B to A, there is no such violation from A to
B and hence, in )Lj’oim, B is in the ontic state A € Ap (given in
Table V).

Please note that we can only claim that the postmeasure-
ment ontic state A/, = (A} _p, Ap) € Type(2 — i), but which

‘joint

(A3)

particular )Ljfoim is not specified and, for our argument, is not
required. Suppose Bob now performs o, measurement on the
state Aj;,.. A similar reasoning as above will imply that the
final ontic state Ay, = (A}, Ay) € Type(1). Thus, we have

QI
Bope (2 — iii) 3 hiop = (Myo g Ny) € Trpe(2 — i)

I®o.
25 (L M) € Tpel).

(A4)
Here, in the second step of ontic evolution in Eq. (A4), we
have made the following assumption regarding ontic evolution
of a certain class of joint ontic states:

In any joint ontic state A28 | if there exists no parameter
dependence from A — B (or from B — A), the local measure-
ment on B (or A) cannot generate parameter dependence from
A — B (or B— A) in the postmeasurement state A5 . Due
to this, in the second step of ontic evolution in (4), the fol-
lowing has not been the case: (A5, Ap) € Type(2 — i) %
(M}, My g) € pe(2 — ii). More precisely, as there was no
parameter dependence from A — Bin (1} _p, 1), measuring
0, on B cannot generate parameter dependence from A — B
in the postmeasurement state.

As the local joint ontic states [i.e., Ajoint = (A4, Ap) €
Type(1)] do not possess parameter dependence in either di-
rection (i.e., neither A — B nor A < B), the assumption
immediately leads to the following:

0,1 ,
(A, k) € Type(1) — (A, Ap) € Type(l)

I®o.
=% (M, M) € Tope(D).

Joint ontic states of system AB which are local remain lo-
cal under local measurements done on subsystems A and/or
B. [Note that as we have fixed a specific temporal order
in which Alice measures first and Bob measures second,
Mg € Tpe(2 — iii) is essentially of Type(2 — ii) in which
no parameter dependence exists from B — A. Therefore, we

could have as well used the assumption in the very first step of

. .. . - ®I
ontic evolution in (A4) to obtain Fype(2 — iii) 3 g —os

(W) M) € Trpe(])].

Therefore, from Eq. (A4), for any premeasurement Ajoin €
ANE that was assumed to lie within the ontic support of |00),
the postmeasurement joint ontic state after Alice and Bob
perform their local measurements will be Ajoin; = (A, A3) €
Ap x Ap. Therefore, the postmeasurement quantum state
cannot contain any Ajoint € AN in its ontic support. But since
the postmeasurement quantum state remains unchanged, i.e.,
itis again |0)4 |0) g, this implies that ontic support of |0), |0) 5
cannot contain any Ajoine € AN, which is in contradiction
with our initial assumption.

It is not hard to see that one arrives at a similar contradic-
tion for every product quantum preparation. Furthermore, the
arguments also hold in any outcome deterministic ontological
model instead of the maximally 1 -epistemic one only. This
completes our proof. |

APPENDIX B: GENERAL BOUND ON DEGREE
OF EPISTEMICITY

Consider a quantum copying machine My that perfectly
copies the state |¢) and |¢*). While the machine is fed with
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]l(/\SI(/)) lll(/\s|¢7) ]l(/\s|(/)_L)

H

-3

&,
B

AS

FIG. 1. Ontic support A, = Supp[u(r|x)] for |x) € {|¢),
l¢L), |¥) = o |@) + B |pt)]. Along the x axis, ontic states for the
system S are shown, and along the y axis, the probability distri-
bution on these ontic states for different quantum preparations is
plotted. In the case of a nonmaximally v -epistemic model, A, N
(Ag U Ay )€ # (. The area of the sky-blue shaded region is given
by [ Ao dX5u(AS|y) and the area of the pink shaded (black dotted)

region is [, . dXSp(AS|y).
¢

system S prepared in state |¢) and |¢*) and the reference
system R is prepared in some fixed state |r), its action at the
ontological level is similar as discussed in the main text. If
we fed My with |1)g |r)g, With ) = a|§) + B |¢™) (o #
0, 1), then the linearity of quantum theory results in the
output state |O)gp = o |)s |d)g + B |d")s [¢T ). For suit-
able choices of measurements, this state can exhibit CHSH
inequality violation up to 24/1 + 4|«|?|8|? [35]. Assuming
maximally y-epistemicity, an argument similar to the one pre-
sented in the main text implies Supp[ it (Ajoint|Um LLYrDhIn
AN = ¢ and hence the observed nonlocality cannot be ex-
plained. To incorporate this nonlocality, we need to depart

J

from -maximal epistemicity. Now the quantum repro-
ducibility condition for the observed nonlocality demands

/ s / / DR o] 19 CHS g,
A AR JAC

= (Os| CHSH |Ogg) =2

where Ajoint = (A5, AR, A% and Mg [Ajoine] is the evolved ontic
state after the machine action, and CHSH denotes the CHSH
expression. As argued in the main text, Mg[Ajoin] ¢ AN
whenever Ajoine € (Ay N Ag) U (Ay N Ayr). Let us, there-
fore, consider that the ontic region Ay \ (Ag U Ag) has
nonzero measure, which will be the case for nonmaximally
r-epistemic models. Thus, the domain of integration for A5,
in the left-hand side of Eq. (B1), can be divided into three
disjoint regions: Ay N Ag, Ay N Ay, and Ay \ (Ayp U Ayr)
(see Fig. 1). Thus, we have

1+ 4ja?|BI?, (BI)

f 43S / RIS (S, AR, 2] [ r))CHS Hiyg,
AyNA,
:/ dAS/dARdAGu(AS,AR,AGI [Wr)) x 2
AyDAy

=2/A AXS OGS ) = 290, ¥l
¢

= 2la’Q¢. ¥). (B2)
We have considered that a local ontic state yields the max-
imum possible value 2 for the CHSH expression, and used
the fact that [dARdACu(AS, AR A0 |yr)) = pnQS|yr) =
w(AS|yr). Similar reasoning yields

/ dr® / drRda (S, 18, 1) [yrr) ) CHS Hiv, 0 = 2181 Q% ). (B3)
Av/ﬂA(pL

Whenever Ajoine € Ay \ (Ag U Ayr), the evolved ontic state My [Ajoin ] may lie in AN and, consequently, contributes to the
observed quantum nonlocality. Assuming that all such Ajein; yield the maximum possible CHSH value (i.e., 4), we obtain

/ d}\.s / d)\-Rd)\-GM()\-S, )‘-R9 )"Gl |1//r>)CHSHM¢[)\jOim]
Ay\(AgUA 1)

_ / 48 / DRAAE LGS, 1R A0 [r)) x 4
Ay \(ApUA ;1)

=4U dm(xsm—/ dxsmsm—/ dxsu(xshm]
Ay A AyL

¢

=4[1 — |a*Q, ¥) — |BIPQUST, Y. (B4)

Equations (B1)—(B4) together, therefore, imply

2V 1+ 4laP|B1? < 2[al*Qe, ¥) + 2 1BIPQp™, ) + 411 — |a*Qe, ¥) — |BI*Q(HT, ¥)1. (B5)

Here, instead of equality, we put inequality as some local Mg[Ajoinc] can yield a CHSH value less than 2 and some nonlocal
M4 [Ajoint] can yield a CHSH value less than 4. Simplifying the above expression, we obtain

l*Q(p, ¥) + 1BI*Qp™, ¥) <2 — 1+ 4|al?|BI2. (B6)
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