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Non-Hermitian skin effect as an impurity problem
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A striking feature of non-Hermitian tight-binding Hamiltonians is the high sensitivity of both spectrum and
eigenstates to boundary conditions. Indeed, if the spectrum under periodic boundary conditions is point gapped
by opening the lattice the non-Hermitian skin effect will necessarily occur. Finding the exact skin eigenstates
may be demanding in general, and many methods in the literature are based on recurrence equations for the
eigenstates’ components. Here we devise a general procedure based on the Green’s function method to calculate
the eigenstates of non-Hermitian tight-binding Hamiltonians under open boundary conditions. We apply it to
the Hatano-Nelson and non-Hermitian Su-Schrieffer-Heeger models and finally we contrast the edge states
localization with that of bulk states.
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I. INTRODUCTION

For more than 20 yr since the seminal paper [1] in 1998,
there has been a growing interest in the field of non-Hermitian
quantum mechanics [2–4] and whether the full Hamiltonian
of a quantum system has to be Hermitian is source of debate
[5,6]. From the physical standpoint, non-Hermitian Hamil-
tonians are often understood as a tool to make an effective
description of the evolution of a quantum system that interacts
with an environment where quantum jumps are discarded
[7,8]. Therefore, these effective Hamiltonians, do not generate
the full quantum dynamics but provide a correct description of
an open dynamics as long as stochastic jumps can be avoided
[9,10].

A peculiar feature of non-Hermitian Hamiltonians is the
existence of exceptional points (EPs), that are points in pa-
rameter space at which spectrum and eigenstates become
degenerate and, therefore, diagonalizability is lost [11,12].
One of the main quests is how these EPs can be harnessed,
and many efforts have already been performed [13–19].

One of the most powerful tools in the study of peri-
odic systems (solids, coupled cavity arrays,. . .) has certainly
been the understanding of band-structure topology and its
connection to the existence of topologically robust edge
states [20,21]. This has culminated in the celebrated bulk-
boundary correspondence (BBC): the presence of boundary
modes can be predicted by a topological number that
depends only on bulk modes [20]. This correspondence
is based on the tacit assumption that, as long as the
system is large, boundary conditions do not affect bulk
properties.

Natural questions which have been investigated are related
to whether non-Hermiticity disrupts topological properties
[22,23], whether new topological invariants can be introduced
[24–26], and whether BBC holds true and in which sense
[27–30].

A major issue regarding the restoration a non-Hermitian
BBC is that non-Hermitian one-dimensional tight-binding
Hamiltonians with point gapped spectra under periodic

boundary conditions (PBCs) always yield the non-Hermitian
skin effect [31–40], that is, the unusual accumulation of
bulk eigenstates at the ends of the same lattice under open
boundary conditions (OBCs), Fig. 1. This phenomenon has
no Hermitian counterpart as under OBCs the eigenstates of
a Hermitian lattice Hamiltonian are delocalized wave func-
tions. Along with the skin effect, high spectral sensitivity with
respect to boundary conditions is typical of non-Hermitian
Hamiltonians with point gap spectra [25], that is, when the
latter is represented by a closed curve in a complex plane.
This is precisely why, when dealing with the spectrum of a
non-Hermitian lattice Hamiltonian, one needs to specify the
boundary conditions. In particular, many models of interest
display an entirely real spectrum under OBCs and a complex
one under PBCs. This transition is often understood as in
pseudo-Hermitian models in terms of the crossing of one
or more high-order exceptional points in the moving from
PBCs to OBCs [22]. This can be achieved by tuning one or
more couplings in the lattice such that setting their values to
zero one effectively opens the chain, leaving unchanged the
number of sites. This approach has been widely investigated in
the literature [27,32,41] and allows the study of the spectrum’s
and eigenstates’ transition from PBCs to OBCs. In particular,
in this approach, the calculation of the eigenstates under open
or generalized boundary conditions is based on recurrence
equations for the components of their wave functions [41].

In this paper, we propose a complementary approach
based on the Green’s function method that provides a model-
independent procedure to diagonalize a non-Hermitian lattice
Hamiltonian, highlighting a more physical origin of skin
states. We will describe the method in full generality and then
apply it to the relevant cases on the Hatano-Nelson and the
non-Hermitian Su-Schrieffer-Heeger (SSH) model.

II. FROM PERIODIC TO OPEN BOUNDARY CONDITIONS

Consider a general one-dimensional non-Hermitian
bosonic lattice Hamiltonian with a point gap spectrum [22]
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FIG. 1. Non-Hermitian skin effect in the simplest lattice with a
point gapped PBC spectrum, the Hatano-Nelson model, Fig. 2(d),
Eq. (9). In all panels we plot one representative eigenstate (black), as
all of them have the same qualitative behavior. In red are highlighted
the lattice sites, 100 under PBCs and one less under OBCs as the
chain is opened placing an infinite potential in the last site (that is
decoupling it from the others). Under PBCs (left column), both in
the Hermitian [(a), δ = 0] and in the non-Hermitian case [(b), δ =
1/20] eigenstates are delocalized. Under OBCs (right column), in the
Hermitian case [(c), δ = 0] eigenstates are delocalized while in the
non-Hermitian case [(d), δ = 1/20] they all accumulate at the right
boundary.

under PBCs with N unit cells and Ns sublattices where we
only allow for hoppings within the same unit cell or between
nearest-neighbor unit cells,

H =
N∑

m,n=1

Ns∑
α,β=1

Jαβ
mn |m, α〉〈n, β|, (1)

where Jαβ
mn = 0 for m �= n ± 1 or α �= β ± 1 and |N + 1, α〉 ≡

|1, α〉 for all necessary α’s to ensure periodic boundary condi-
tions. Such tight-binding Hamiltonians occur in very different
fields [42–45] and can be implemented in several platforms
[46]. We assume uniform on-site energies, which are, there-
fore, set to zero. This Hamiltonian can be, at least, in principle,
exactly diagonalized through the Bloch’s theorem as the sys-
tem is translationally invariant under PBCs [45]. If the number
of sublattices Ns is less or equal to 3, which in most rele-
vant models is always the case, then the eigenvalues Eα (k),
where k ≡ kq = 2πq/N, q = 1, . . . , N and the band index
α = 1, . . . , Ns, can be worked out exactly and bulk eigenstates
are given by superposing the sublattices Bloch sums.

In order to study the transition from PBCs to OBCs, one
method [41] is to tune the couplings Jαβ

1,N and Jαβ

N,1 between

first and last cells by replacing them with δ
αβ
R Jαβ

1,N and δ
αβ
L Jαβ

N,1

where δ
αβ

R/L ∈ [0, 1] are tunable parameters that interpolate
among PBCs (when 1) and OBCs (when 0), see Figs. 2(a)
and 2(b).

There are many ways in which OBCs can be determined
as one can set all δ

αβ

R/L = 0’s for all α, β’s, or, if the hoppings

inside a unit cell are only nearest neighbors,by setting δ
αβ

R/L =
0 for some α, β’s. The former method effectively decouples
one cell from the lattice, yielding a lattice with N − 1 cells

FIG. 2. (a) General one-dimensional (simple) lattice under peri-
odic boundary conditions. These can be opened, at least, in two ways:
by tuning one of the couplings (b), or, as proposed in this paper,
placing an infinite potential (i.e., a vacancy) on one site (c) reducing
by one the total number of sites. (d) Hatano-Nelson model. (e) Non-
Hermitian SSH model.

under OBC, whereas the latter yields a lattice under OBCs
with N − 1 cells plus a broken cell. Under these generalized
boundary conditions it is possible, at least, for some models,
to study the spectrum and profile of the eigenstates. Usually
recurrence equations for the wave-function components need
to be solved [27,32,41].

In this paper we propose a different approach to study
the PBCs-OBCs transition, which allows in full generality
the calculation of the OBC spectrum and skin states. Instead
of considering tunable couplings, in order to open the chain
we consider tunable local impurities, Figs. 2(a) and 2(c).
The Hamiltonian under PBCs but not anymore translationally
invariant with local impurities reads

H εα = H +
∑

α

εα|N, α〉〈N, α|, (2)

where εα > 0. This Hamiltonian describes the same system
with a set of potential barriers on (generally all) the sites of
last cell. In the limit εα → ∞ for all α’s, all corresponding
lattice sites decouple, effectively opening the chain,

H̃ = lim
εα→∞ H εα , (3)

where H̃ denotes the Hamiltonian under OBCs. The main
advantage of opening the chain through local impurities in-
stead of tunable couplings is that the Green’s function of a
lattice Hamiltonian with impurities can be exactly calculated
[47], even for finite εα , and this allows the calculation of
the eigenvalues (poles of the Green’s function) and of the
corresponding impurity states. We will show that, for two
representative models, these impurity states are either gener-
alization of edge or vacancy states (if any), and skin states
coming from the bulk. The localization of bulk skin states will
result from our method without any ansatz on their profile.
Similar approaches have also recently been used [48] also in
more general and higher-dimensional models [49] in order to
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relate the manifestation of boundary modes to the system’s
topology.

In a Hermitian lattice in thermodynamic limit N → ∞, the
presence of one finite impurity adds one pole to the Green’s
function leaving the continuous spectrum unmodified, and the
eigenstate corresponding to this additional pole is localized
around the impurity [47]. For a finite but large Hermitian
lattice instead, the part of the spectrum that becomes continu-
ous in the thermodynamic limit, along with the corresponding
unbound modes, is slightly perturbed, except for the new pole
still corresponding to a bound state near the impurity. Further-
more, in the limit where OBCs are achieved (εα → ∞), one
is left with a shorter Hermitian lattice with slightly perturbed
spectrum and delocalized normal modes.

Remarkably, for the non-Hermitian lattice of our interest,
under OBCs, the poles of the Green’s function are all dras-
tically different from those of the lattice under PBCs. All
the corresponding impurity bulk states are the so-called skin
states which are too drastically different from the delocalized
normal modes of the lattice under PBCs, showing that the
skin effect can be understood in terms of an impurity problem.
More concretely, considering only one impurity in the last site
of a simple lattice (Ns = 1) |N〉 the corresponding Green’s
function defined by Gε(z) = (z − H ε )−1 reads [47,50,51]

Gε(z) = G(z) + ε
G(z)|N〉〈N |G(z)

1 − ε 〈N | G(z) |N〉 , (4)

where G(z) = (z − H )−1 is the Green’s function of the lattice
under PBCs. In order to deal with more impurities, Eq. (4)
can be used iteratively. The poles of G∞(z) are the N − 1
eigenvalues Ẽ ’s and under OBCs (ε → ∞) the right and left
(unnormalized) eigenstates are given by

|�̃R(Ẽ )〉 =
∑

n

G(n, N ; Ẽ ) |n〉 , (5)

〈�̃L(Ẽ )| =
∑

n

G(N, n; Ẽ ) 〈n| , (6)

where G(m, n; z) = 〈m| G(z) |n〉 and n runs up to N − 1 as the
OBC lattice has one site less than the PBC one.

On one hand, if |ψk〉’s are the unnormalized eigenstates
of a Hermitian operator Ĥ in order to construct the com-
pleteness relation the eigenstates are normalized as |ψk〉 →
|ψk〉 /

√〈ψk|ψk〉 and this normalization coefficient is unique
up to a state-dependent phase factor. On the other hand, for
a non-Hermitian Hamiltonian Ĥ (λ), where λ parametrizes
non-Hermiticity, both left and right eigenstates |ψR/L

k (λ)〉 are
needed in order to form the closure relation. A possible way of
having a consistent Hermitian limit as λ → 0 is to binormalize
[52] left and right eigenstates as∣∣ψR

k (λ)
〉 → ∣∣ψR

k (λ)
〉
/

√〈
ψL

k (λ)
∣∣ψR

k (λ)
〉
, (7)

〈
ψL

k (λ)
∣∣ → 〈

ψL
k (λ)

∣∣ /√〈
ψL

k (λ)
∣∣ψR

k (λ)
〉
, (8)

so that
∑

k |ψR
k (λ)〉〈ψL

k (λ)| = 1. However, this binormaliza-
tion is unique up to a state-dependent scale factor, that is,
binormalization and completeness relation are invariant under
the transformations |ψR

k (λ)〉 → Ak |ψR
k (λ)〉 and 〈ψL

k (λ)| →
A−1

k 〈ψL
k (λ)| for any nonzero Ak . Therefore, we will assume in

FIG. 3. Imaginary part of the spectrum of a Hatano-Nelson lat-
tice with 20 sites under PBCs with a local potential ε on one site as
function of ε. As the potential barrier increases, many exceptional
points are crossed until the spectrum becomes purely real.

the following that right and left eigenstates are not normalized
or binormalized, unless otherwise specified.

III. HATANO-NELSON MODEL

The Hatano-Nelson model without disorder [22,53],
Fig. 2(d), is the prototypical example of a non-Hermitian
Hamiltonian exhibiting the non-Hermitian skin effect, Fig. 1.
Its Hamiltonian under PBCs reads

HHN =
N∑

n=1

J (1 + δ)|n + 1〉〈n| + J (1 − δ)|n〉〈n + 1|, (9)

where we assume that both J and δ are real, δ ∈ [−1, 1],
and |N + 1〉 ≡ |1〉. Being a simple lattice (Ns = 1), its left
eigenstates are obtained by Hermitian conjugation of the right
ones despite the Hamiltonian being non-Hermitian |�(k)〉 =
1/

√
N

∑N
n=1 eikn |n〉 where k ≡ kq = 2πq/N, q = 1, . . . , N

and its spectrum is given by

E (k) = 2J (cos k − iδ sin k), (10)

forming an ellipse (in the thermodynamic limit) on the com-
plex plane.

We describe the transition from PBCs to OBCs as dis-
cussed in the previous section, that is, tuning one local
potential in the last site. Defining H ε

HN = HHN + ε|N〉〈N |, we
can write the Hamiltonian under OBCs as H̃HN = H∞

HN [this
equality is meant to hold for the upper left (N − 1)(N − 1)
block of both matrices]. The Green’s function of H ε

HN has
exactly the same expression of Eq. (4) and its poles are the
solutions to [47]

1

N

∑
k

1

z − E (k)
= 1

ε
. (11)

For a general ε only numerical roots of Eq. (11) are avail-
able, but still their dependence on ε makes clear the crossing
of many EPs as ε → ∞, see Fig. 3.

As discussed in Ref. [32], the OBC spectrum is obtained
from the PBC one by applying the complex shift k → k/2 −
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i ln ρ with ρ = √
(1 + δ)/(1 − δ),

Ẽ (k/2) = 2J
√

1 − δ2 cos(k/2), (12)

with q = 1, . . . , N − 1, which by construction are solutions to
Eq. (11). This transition from PBCs to OBCs in the Hatano-
Nelson model can also be described in terms of self-inversive
polynomials as described in Ref. [54]. Considering that the
PBCs’ Green’s function has matrix elements [55],

〈m| GHN(z) |n〉 = 1

N

∑
k

eik(m−n)

z − E (k)
, (13)

the corresponding unnormalized eigenstates can be obtained
through the Green’s function as described earlier and are
explicitly given by

|SR(k/2)〉 =
∑

n

[
1

N

∑
k′

eik′n

Ẽ (k/2) − E (k′)

]
|n〉 , (14)

〈SL(k/2)| =
∑

n

[
1

N

∑
k′

e−ik′n

Ẽ (k/2) − E (k′)

]
〈n| . (15)

At this level the localization (or not) of these eigenstates is not
clear, but, as proved in Appendix A, we find that

∑
k′

e±ik′n

Ẽ (k/2) − E (k′)
∝

[
1 + δ

1 − δ

]±n/2

sin

(
kn

2

)
. (16)

Therefore, performing no ansatz on the eigenstates’ profiles,
the skin effect naturally emerges by calculating the eigenstates
of the Hatano-Nelson model through the Green’s function
method by placing an infinite potential (i.e., a vacancy) on
one site, instead of opening the chain by tuning couplings. In
particular, for the Hatano-Nelson model all impurity states are
skin states and Eq. (16) shows that right and left skin states
always accumulate at opposite ends of the open lattice.

IV. NON-HERMITIAN SSH MODEL

Another instance where skin states naturally emerge
through the Green’s function method is the non-Hermitian
SSH model [56,57], Fig. 2(e), whose Hamiltonian under PBCs
is

HSSH =
N∑

n=1

(
t1 + γ

2

)
|n, A〉〈n, B| +

(
t1 − γ

2

)
|n, B〉〈n, A|

+t2(|n + 1, A〉〈n, B| + |n, B〉〈n + 1, A|), (17)

where N is the number of cells, A, B label the two sublattices
(Ns = 2), t1,2, γ are real and |N + 1, A〉 ≡ |1, A〉.

Under PBCs we can diagonalize HSSH through Bloch’s
theorem, and its Bloch Hamiltonian reads

HSSH(k) =
(

0 fab(k)
fba(k) 0

)
, (18)

with k ≡ kq = 2πq/N and q = 1, . . . , N , where fab(k) =
t1 + e−ikt2 + γ /2 and fba(k) = t1 + eikt2 − γ /2, and its right
and left binormalized eigenstates are

|vR
±(k)〉 = 1√

1 + ω(k)2

fba (k) fab(k)

[
|A〉 ± ω(k)

fab(k)
|B〉

]
, (19)

and 〈vL
±(k)|, given by replacing kets with bras and ab by ba.

The spectrum under PBCs is given by E±(k) = ±ω(k) where
ω(k) = √

fab(k) fba(k). Its full right and left eigenstates are

|�R
±(k)〉 = 〈A|vR

±(k)〉 |ψA(k)〉 + 〈B|vR
±(k) |ψB(k)〉 ,

〈�L
±(k)| = 〈vL

±(k)|A〉 〈ψA(k)| + 〈vL
±(k)|B〉 〈ψB(k)| ,

where |ψC (k)〉 = 1/
√

N
∑N

n=1 eikn |n,C〉 , C = A, B. Its
Green’s function matrix elements are given by

Gαβ
mn (z) = 1

N

∑
k

∑
s=±

〈α|vR
s (k)〉〈vL

s (k)|β〉 eik(m−n)

z − Es(k)
,

where Gαβ
mn (z) = 〈m, α| GSSH(z) |n, β〉 , m, n = 1, . . . , N , and

α, β = A, B.
We now consider the transition to open boundary condi-

tions by placing a potential on the last site of the lattice. We
define again H ε

SSH = HSSH + ε|N, B〉〈N, B| so that the Hamil-
tonian under OBCs is H̃SSH = H∞

SSH. The OBCs’ eigenvalues
are again given by the solutions to GBB

NN (z) = 0 and are Ẽ0 = 0
and

Ẽ±(k/2) = ±
√

c2 + t2
2 + 2ct2 cos(k/2), (20)

where now q = 1, . . . , N − 1 and c =
√

t2
1 − γ 2/4. The cor-

responding eigenstates given by the Green’s function method,
see Eqs. (5) and (6), read

|�̃R(Ẽ )〉 =
N∑

n=1

GAB
nN (Ẽ ) |n, A〉 +

N−1∑
n=1

GBB
nN (Ẽ ) |n, B〉 , (21)

〈�̃L(Ẽ )| =
N∑

n=1

GBA
Nn(Ẽ ) 〈n, A| +

N−1∑
n=1

GBB
Nn (Ẽ ) 〈n, B| , (22)

where Ẽ is any of the OBCs’ eigenvalues. We now discuss
separately the bulk eigenstates and the zero energy ones as
their localization properties have different physical origins.

A. Bulk eigenstates

Consider Ẽ �= 0 belonging to the OBC spectrum of the
SSH lattice and its corresponding eigenstates, given by
Eqs. (21) and (22). Then, as proved in Appendix B, their
components satisfy the following relations:

GAB
nN (Ẽ ) = 1

2N

∑
k

∑
s=±

fab(k)

Es(k)

eikn

Ẽ − Es(k)
∝ αn(Ẽ )rn−1, (23)

GBB
nN (Ẽ ) = 1

2N

∑
k

∑
s=±

eikn

Ẽ − Es(k)
∝ βn(Ẽ )Ẽrn, (24)

where r = √
(t1 − γ /2)(t1 + γ /2) and similar expressions for

GBA/BB
Nn (Ẽ ), see Appendix B. Therefore, we again see how

the non-Hermitian skin effect comes up naturally from the
(bulk) eigenstates calculated through the Green’s function. We
observe that, as in the Hatano-Nelson model, right and left
bulk eigenstates always accumulate at opposite ends of the
OBC lattice. Note that the components of these eigenstates
on the B sublattice are proportional to the eigenvalue itself.
Finally, the bulk states are localized skin states only in the
non-Hermitian case (γ �= 0).
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FIG. 4. Vicinity of edge and skin states. If t2 > t1 − γ /2 (t2 <

t1 − γ /2) the former localizes at the same (opposite) edge. We set
γ = t1 in the plot as different values change only qualitatively the
result. The sum is up to the number of lattice sites, that are 20 (red,
dot-dashed), 40 (green, dashed), and 200 (black, solid).

B. Edge states

The zero modes of the non-Hermitian SSH model, given
by Eqs. (21) and (22) with Ẽ = 0 which we label here |ER/L〉,
are a generalization of the edge states of the Hermitian one
[58]. As the lattice is opened through one vacancy, leaving a
broken cell, there will always be one topological (right) edge
state localized at one of the two boundaries of the lattice. In
particular, the components of |ER〉 and 〈EL|, respectively, are
given by

GAB
nN ∝

[
− t1 − γ /2

t2

]n

, GBA
Nn ∝

[
− t1 + γ /2

t2

]n

, (25)

whereas GBB
nN/Nn ≡ 0 as the B components are proportional

to the energy. Remarkably, these eigenstates do not fol-
low automatically the same localization of the bulk skin
states, displaying their topological robustness against the non-
Hermitian skin effect. Indeed, right and left edge states can
be localized on opposite or equal ends of the lattice, and non-
Hermiticity can enhance or reduce their localization length. In
order to find whether edge states accumulate where the bulk
skin states, do we consider the quantity defined by∑

n

|〈n|BR〉〈n|ĒR〉|, (26)

where |ĒR〉 is the normalized right edge state and |BR〉 is the
normalized sum of all bulk right eigenstates. This number is
a measure of the vicinity of these states: They localize at the
same (opposite) edge if t2 > t1 − γ /2 (t2 < t1 − γ /2) is the
opposite edge, Fig. 4.

V. CONCLUSIONS

We presented a method to calculate the eigenstates of
the non-Hermitian lattice Hamiltonian under open boundary
conditions based on the Green’s function method. Interpret-
ing an open lattice as resulting from a closed one with an
added pointlike potential barrier, the Green’s function and,
therefore, all eigenstates can be exactly calculated without

performing any ansatz. We showed how with this method, the
localization of the non-Hermitian skin states emerges from the
non-Hermiticity of the model and how possible edge states are
modified by non-Hermiticity.

A tight connection between the skin effect and the pres-
ence of an impurity in a one-dimensional lattice through the
Green’s function method has been discussed, and recently
similar tools have also been considered in relation to the
skin effect [59,60]. Indeed under PBCs bulk states describ-
ing chiral propagation along the lattice (e.g., δ dependent in
the Hatano-Nelson model). However, by introducing a va-
cancy they are forced to accumulate close to it. This picture
can change when considering higher-dimensional systems ex-
hibiting the skin effect [36,38]. The generalization of the
present method to such cases is under ongoing investigation.
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APPENDIX A: PROOF OF EQ. (16)

Here we derive explicitly the skin states of the Hatano-
Nelson model under OBCs with N − 1 sites whose eigenval-
ues are

Ẽ (k/2) = 2J
√

1 − δ2 cos(k/2), (A1)

with k ≡ kq = 2πq/N and q = 1, . . . , N − 1. Being the
eigenvalues all real and distinct, the Hamiltonian is diago-
nalizable, and, therefore, all eigenspaces are nondegenerate.
Using the fact that the matrix representation is Toepliz, its
unnormalized kth (skin) right eigenstate |ψR(k/2)〉 has com-
ponents [61–64],

〈n|ψR(k/2)〉 = ρn sin(kn/2), n = 1, . . . , N − 1. (A2)

On the other hand, through the Green’s function method
we know that the kth (skin) right eigenstate |φR(k/2)〉 has
components,

〈n|φR(k/2)〉 = G(n, N ; Ẽ (k/2)). (A3)

Therefore |φR(k/2)〉 and |ψR(k/2)〉 must be proportional,

1

N

N∑
k′

eik′n

Ẽ (k/2) − E (k′)
= A(ρ, kq )ρn sin(kn/2), (A4)

where A(ρ, kq ) is a proportionality constant and ρ =√
(1 + δ)/(1 − δ). Therefore, the right-hand side of this equa-

tion is the inverse discrete Fourier transform of [Ẽ (k/2) −
E (k′)]−1 so that transforming back we get

1

Ẽ (kq/2) − E (k′)
= A(ρ, kq )

N∑
n=1

e−ik′nρn sin(kqn/2),

which leads to

Aq(ρ, kq ) = 1 + ρ2

2ρJ (−1 + (−1)qρN ) sin(kq/2)
. (A5)
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A by-product of our proof is the summation rule,

1

N

∑
k′

eik′n

Ẽ (kq/2) − E (k′)
= (1 + ρ2)ρn sin(kqn/2)

2ρJ[−1 + (−1)qρN ] sin(kq/2)
.

A similar argument holds for the left eigenstates, which leads
to

1

N

N∑
k′

e−ik′n

Ẽ (kq/2) − E (k′)
= A(1/ρ, kq )ρ−n sin(kqn/2).

APPENDIX B: EIGENSTATES OF THE OPEN SSH
LATTICE THROUGH THE GREEN’S FUNCTION METHOD

Consider an open SSH lattice as described in Sec. IV
whose Hamiltonian is H̃SSH. Through the nonunitary matrix,

W = diag{1, r, r, r2, r2, . . . , rN−1, rN−1}, (B1)

with r = √
(t1 − γ /2)(t1 + γ /2) we can find the Hamiltonian

H̃ ′
SSH = W −1H̃SSHW of a Hermitian SSH model if t1 − γ /2 >

0 (which anyway does not affect our results) with intracell and

intercell hoppings c =
√

t2
1 − γ 2/4 and d = t2, respectively.

H̃ ′
SSH and H̃SSH are isospectral, and the right (left) eigenstates

|ψR
k 〉 (〈ψL

k |) of H̃SSH are given by |ψR
k 〉 = W |ϕk〉 (〈ψL

k | =
〈ϕk|W −1) where |ϕk〉’s are the eigenstates of the Hermitian
Hamiltonian H̃ ′

SSH. The spectrum and eigenstates of H̃ ′
SSH are

given by [65] Ẽ0 = 0 and

Ẽ±(k/2) = ±
√

c2 + d2 + 2cd cos(k/2), (B2)

k ≡ kq = 2πq/N, q = 1, . . . , N − 1 as in the main text and

|ϕ0〉 =
N∑

n=1

(
− c

d

)n
|n, A〉 , (B3)

and

|ϕk〉 =
N∑

n=1

αn,k |n, A〉 +
N−1∑
n=1

Ẽ±(k/2)βn,k |n, B〉 , (B4)

where

αn,k = d

c
sin

[
(n − 1)k

2

]
+ sin

[
nk

2

]
, (B5)

βn,k = 1

c
sin

[
nk

2

]
, (B6)

therefore, the right and left eigenstates of H̃SSH are

|ψR
0 〉 =

N∑
n=1

(
− c

d

)n
rn−1 |n, A〉 , (B7)

〈ψL
0 | =

N∑
n=1

(
− c

d

)n
r1−n 〈n, A| , (B8)

and

|ψR
k 〉 =

N∑
n=1

αn,krn−1 |n, A〉 +
N−1∑
n=1

Ẽ±(k/2)βn,krn |n, B〉 ,

〈ψL
k | =

N∑
n=1

αn,kr1−n 〈n, A| +
N−1∑
n=1

Ẽ±(k/2)βn,kr−n 〈n, B| .

As discussed in the main text, the eigenstates of H̃SSH are also
given by Eqs. (21) and (22). Being the spectrum nondegener-
ate, we have that these eigenstates calculated through different
procedures need to be proportional,

|�̃R(0)〉 = K0(r) |ψR
0 〉 , (B9)

|�̃R(Ẽ±(k/2))〉 = K (r, k) |ψR
k 〉 , (B10)

where K0(r) and K (r, k) are proportionality constants and the
same relations hold for left eigenstates replacing r → 1/r into
the proportionality constants.

1. Edge states

Regarding the edge state we have that Eq. (B9) yields

1

N

∑
k

eikn
∑
s=±

fab(k)

−2E2
s (k)

= K0(r)
(
− c

d

)n
rn−1. (B11)

Applying discrete Fourier transform to both sides and per-
forming the sum on the right-hand side we get

K0(r) =
[
c − c

(
−cr

d

)N]−1

, (B12)

which proves Eqs. (25).

2. Bulk states

Considering the bulk states, Eq. (B10) yields for the A
components (the same holds for B components),

1

2N

∑
k′

∑
s=±

fab(k′)
Es(k′)

eik′n

Ẽ±(k/2) − Es(k′)
= K (r, k)αn,k .

Applying again discrete Fourier transform and performing the
sum on the right-hand side we get

K (r, kq/2) =
[

d[−1 + (−1)qrN ] sin
kq

2

]−1

, (B13)

which proves Eqs. (23) and (24).
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