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Formal aspects of quantum decay
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The Fock-Krylov formalism for the calculation of survival probabilities of unstable states is revisited paying
particular attention to the mathematical constraints on the density of states, the Fourier transform of which
gives the survival amplitude. We show that it is not possible to construct a density of states corresponding to
a purely exponential survival amplitude. The survival probability P(t ) and the autocorrelation function of the
density of states are shown to form a pair of cosine Fourier transforms. This result is a particular case of the
Wiener-Khinchin theorem and forces P(t ) to be an even function of time which in turn forces the density of
states to contain a form factor which vanishes at large energies. Subtle features of the transition regions from the
nonexponential to the exponential at small times and the exponential to the power-law decay at large times are
discussed by expressing P(t ) as a function of the number of oscillations n performed by it. The transition at short
times is shown to occur when the survival probability has completed one oscillation. The number of oscillations
depends on the properties of the resonant state and a complete description of the evolution of the unstable state
is provided by determining the limits on the number of oscillations in each region.
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I. INTRODUCTION

Spontaneous decay is an inherently quantum mechanical
process. The likelihood for the existence of a decaying (un-
stable) state at a given point of time is known as the survival
probability and must be calculated within the framework of
quantum mechanics. The most intriguing fact that followed
from the theoretical studies is that the survival probability
cannot at all times follow the exponential decay law [1] mostly
observed in the laboratory. The decay law is expected to be
quadratic at small times [2–5] and a power law at large times
[6–9]. The theoretical claims led experimental nuclear and
particle physicists to perform experiments (see [10] and refer-
ences therein) with nuclei such as 222Rn, 60Co, and 56Mn with
half-lives ranging from hours to days. In spite of performing
observations for several half-lives only an exponential decay
law was measured at all times. The unique experiment where
the nonexponential behavior at large times was confirmed in-
volved the measurement of the luminescence decays of many
dissolved organic materials after pulsed laser excitation [11].
Experimental evidence for short time nonexponential decay
was found in a quantum tunneling experiment [12] where
ultracold sodium atoms were trapped in an accelerating pe-
riodic optical potential created by a standing wave of light.
On the theoretical side, the decay law has been investigated
using various different formalisms in literature (see [13] for a
comparison of approaches). Of great interest is the calculation
of the critical time for the transition from the quadratic to
the exponential at small times and the exponential to the
power law at large times. Predictions of the critical times are
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useful in deciding the feasibility of experimentally observing
a nonexponential decay [13].

One of the most commonly used formalisms for the calcu-
lation of survival probabilities of unstable states is the method
introduced by Fock and Krylov (FK) [14]. In this method,
the survival amplitude (modulus squared of which gives the
survival probability) is evaluated as a Fourier transform of
the density of states (DOS) in the resonance. Thus, the DOS
is indeed the crucial quantity required in the calculation and
must satisfy certain conditions [6] for the correct physical
behavior of the survival probability. The DOS can in principle
be constructed using the poles and residues of the resonances,
in a model-independent way as was shown in [15]. An es-
sential feature of the DOS is the existence of a threshold
factor which ensures the correct power law at large times.
In [13], the present authors obtained the expressions for the
DOS using formalisms other than the FK. In this work, we
revisit the calculation of the survival probability with the FK
framework to discover some subtle features of the survival
probability and constraints on the density of states. One of the
main observations is the fact that the survival probability can
only be an even function of time. The result has consequences
for the standard determination of the critical transition time
at small times by expanding an exponential in all powers of
t [2,3]. In fact, the result we obtain is a particular case of
the Wiener-Khinchin theorem which tells us that the survival
probability and the autocorrelation function (constructed from
the density of states) are cosine Fourier transforms of each
other. Following this result, we investigate the behavior of the
survival probability at small times with realistic examples of
resonances from nuclear physics. Constructing a functional
form of the DOS with the desired physical features we notice
that the absence of an energy-dependent form factor (which
is usually included in a model-dependent way) in the DOS
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can lead to unphysical results. Finally, the theoretical results
obtained are demonstrated in a more visual way by applying
the expressions obtained to realistic resonances.

We shall begin by very briefly introducing the Fock-Krylov
(FK) method which can in principle be used to describe the
decay of any resonant state, whose density of states as a func-
tion of energy is known. The formalism has been a common
tool for investigating the behavior of survival probabilities in
literature. This includes the 1958 paper of Khalfin [1,2] on the
Zeno effect [3] on the short time behavior of P(t ), a review
[6], and more recently Ref. [16] where the authors discuss
the “true face” of quantum decay. There exist approaches in
literature which do not use the FK method but rely on a po-
tential based formalism which is useful in studying tunneling
decays (see [17] and references therein) and some interesting
aspects of the latter [18,19] (we refer the reader to [20] for a
pedagogical review).

In the next section, using the FK formalism, we show that it
is not possible to find a density of states (DOS) corresponding
to a purely exponential decay. Section III derives the rela-
tion between the survival probability and the autocorrelation
function of the DOS which leads to a particular case of the
Wiener-Khinchin theorem. Section IV derives the expression
for the survival probability of a system at small times. Here
we emphasize that a consequence of the particular form of
the Wiener-Khinchin theorem derived earlier is the evenness
of the survival probability. A functional form of the density
of states is considered in Sec. V and the dependence of the
results on the choice of the form factor appearing in the den-
sity of states is discussed in Sec. VI. Expressing the survival
probability P(t ) as a function of the number of oscillations
performed n, we discover interesting features of P(n) with
one of them being that the transition time from the small
time nonexponential to the intermediate time exponential de-
cay law happens at a time when the survival probability has
completed one oscillation. These results are compared with
those obtained from other approaches in literature. In Sec. VII,
we present results for the critical times and behavior of the
transition regions from the nonexponential to the exponential
at small times and the exponential to the power-law behavior
at large times.

II. DENSITY OF STATES ASSOCIATED WITH THE
EXPONENTIAL COMPONENT OF THE SURVIVAL

PROBABILITY

The Fock-Krylov (FK) method has been widely used in
literature for the analysis of unstable states [5,16,21–24]. We
refer the reader to [13] for details of the derivation and begin
here with the survival amplitude given by

A(t ) =
∫ ∞

Emin

dE ρ(E )e−iEt , (1)

where ρ(E ) is the density of states (DOS) in the resonance
and is a real positive function. In the FK method, one con-
structs ρ(E ) by rewriting the initial state in terms of the
energy eigenstates of the decay products [see Eqs. (4)– (10)
in [13]]. The commonly used Breit-Wigner distribution is an
example of such a DOS. Although the FK method with an
energy-dependent DOS has been extensively used in literature
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FIG. 1. Contour of integration for the survival amplitude.

([1,2] to quote a few), there exist other approaches for the
evaluation of survival probabilities. We refer the reader to [13]
for a comparison between different approaches such as the
Green’s function method, Jost function based formalism, and
the Fock-Krylov formalism. In [13], the survival amplitude
within the Green’s function approach was rewritten in a form
similar to that of the Fock-Krylov method to obtain

A(t ) =
∫ ∞

0

[
1

2π i

∑
n

Cn(kn)C̄n(kn)

√
E

kn
(
k2

n − E
)]

e−itE dE ,

where the sum over n is over all poles. Given the form of
the above amplitude, one may identify the quantity in the
square brackets as a density of states as in Eq. (1). The
DOS standardly used in the FK method is different from the
quantity in the square brackets. The authors in [13] showed
that restricting the sum to only fourth quadrant poles and
further considering one isolated resonance, the above density
(referred to as ρGC there) is a sum of two terms [see Eqs. (69)
to (72) in [13]]. The first term is an energy derivative of the
phase shift and the second term is negligible for narrow reso-
nances. Thus, the Fock-Krylov and Green’s function method
[25] agree for isolated narrow resonances.

The survival amplitude allows us to compute the so-called
the survival probability P(t ), which measures the probability
that the state of a system is in its initial state at a time t > 0:

P(t ) = |A(t )|2. (2)

As a natural manifestation of the normalization condition, we
have A(0) = 1 and P(0) = 1. It is known that the survival
probability is split in three well-defined regions: the small
time region where P(t ) follows a quadratic law, the interme-
diate time region where P(t ) is dominantly exponential, and
the large time region where P(t ) is dominated by a power
law [1,6,26,27]. Since some systems have long intermediate
exponential regions (for instance, nuclear decays), it would be
suitable to describe those decays such that the density of states
gives an exponential survival probability only. However, in the
following, we shall show that such a density of states does not
exist. We start from the complex integral∮

C
ρ(z)e−itz dz, (3)

where C is the contour of integration shown in Fig. 1.
The exponential function (or sum of exponential ones) is

obtained when the density of states has simple poles in the
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fourth quadrant. Since ρ(z) must be a positive real function for
positive real z, its poles have to be complex-conjugate pairs on
the right semiplane, i.e., ρ(z) has simple poles at

z = zs ≡ σs − iωssgn(s)/2, (4)

where s = ±1,±2, . . . , σs > 0, and ωs > 0 for all s. For s >

0 the poles are in the fourth quadrant, and for s < 0 they are
in the first quadrant. Let also R(zs) be the residue of ρ(z) at
the pole z = zs. As a result of these conventions, we get the
following relations:

zs<0 = z∗
s>0, (5)

R(zs<0) = R∗(zs>0). (6)

In Appendix A, we show from the integral (3) that

A(t ) = −2π i
∑
s>0

e−izst R(zs) −
∫ 0

−i∞
ρ(z)e−izt dz. (A5)

The integral (A5) lets us easily separate the exponential
and the nonexponential component of the survival amplitude.
Calling these respective components Ae(t ) and Ane(t ) from the
integral (A5) we get

Ae(t ) = −2π i
∑
s>0

e−izst R(zs), (7)

Ane(t ) = −
∫ 0

−i∞
ρ(z)e−izt dz = −i

∫ ∞

0
ρ(−iy)e−ty dy. (8)

If the survival amplitude were purely exponential, Eq. (8)
would be zero, and therefore the density of states would
vanish along the negative imaginary axis. Since an analytic
function in a region is zero when the function vanishes along a
continuous curve in this region [28], we deduce that ρ(z) = 0
for all points of a domain on the z plane which contains some
segment of the negative imaginary axis. Since this domain is
arbitrary, the density of states would be zero over the complex
z plane and, then, the survival amplitude would be zero for all
t . However, this is impossible because the density of states has
to be different from zero over the real positive axis and has to
have simple poles for Re z > 0. In addition to that, the survival
amplitude could not be zero for all t because the normalization
condition would no longer be satisfied (apart from such an
amplitude losing the meaning of a survival amplitude). Hence,
there does not exist a density of states such that the survival
amplitude (taken as a Fourier transform of this density of
states) and the corresponding survival probability are purely
exponential.

A few words to put this result in context with the well-
known seminal result of Khalfin [1] are due. Using the
Paley-Wiener theorem, Khalfin showed that a survival ampli-
tude given as the Fourier transform of a semifinite density is
not attainable for arbitrary functions M(t ), where the survival
amplitude is given by A(t ) = M(t ) exp( iφt ). The result ob-
tained in this section is in some sense a reverse statement of
what Khalfin states. We show that assuming a purely expo-
nential survival probability |A(t )|2, it is not possible to find
a density of states, the Fourier transform of which gives the
survival amplitude as in our Eq. (1). The result is relevant
since most observed decays are exponential and it would be
desirable to look for such a density of states. Apart from this,

it has consequences for the calculation of the autocorrelation
function which we shall see later in Sec. III. It is worth noting
that the above result is based on a simple argument of analytic
continuation and does not rely on the Paley-Wiener theorem.

Equation (A5) lets us decompose the survival probability
P(t ) in a suitable way. Therefore, from the definition of P(t )
and Eq. (A5), we can write

P(t ) = |A(t )|2 = |Ae(t )|2 + |Ane(t )|2 + 2 Re [A∗
e (t )Ane(t )].

(9)
If we do not focus on the nonexponential behavior at very
small times, we can see that the survival probability is split
into three terms: the first one comes from the exponential
component of A(t ), the second one comes from the nonexpo-
nential component of A(t ) (at large times), and the last one
is nothing but the interference between the components of
A(t ). These terms are denoted, respectively, as Pe(t ), Pne(t ),
and Pi(t ) and are called (in the same order) the exponential,
nonexponential, and interference survival probability. From
Eqs. (7) and (8), those terms are given by

Pe(t ) ≡ |Ae(t )|2 = 4π2

∣∣∣∣∑
s>0

e−izst R(zs)

∣∣∣∣
2

, (10)

Pne(t ) ≡ |Ane(t )|2 =
∣∣∣∣∣
∫ 0

−i∞
ρ(z)e−izt dz

∣∣∣∣∣
2

, (11)

Pi(t ) ≡ 2 Re [A∗
e (t )Ane(t )]

= −4π
∑
s>0

Re

[
iR∗(zs)

∫ 0

−i∞
ρ(z)e−i(z−z∗

s )t dz

]
. (12)

This particular decomposition of the survival probability is
useful for analyzing the transition of the decay law from the
exponential to the power law at large times. The analysis of
the latter transition using this splitting can be seen in [13].
In Sec. VII we shall study the small time transition region.
Although the above division of regions is in general valid,
there exist exceptions where the decay law is nonexponential
at all times. This happens in the case of broad resonances, of
which the σ meson is a good example [8]. Other examples can
be found in [29,30].

III. SURVIVAL PROBABILITY IN TERMS OF THE
AUTOCORRELATION OF THE DENSITY OF STATES

Although it is easier to compute the survival probability
simply as the modulus squared of the survival amplitude,
it would be desirable to get an expression involving some
function of the density of states. We shall show that this
function is the autocorrelation function of the density of states.
Furthermore, the expression will be a particular case of the
Wiener-Khinchin theorem.1 Using (2),

P(t ) = A(t )A∗(t ) =
∫ ∞

Emin

∫ ∞

Emin

ρ(E )ρ(E ′)ei(E ′−E )t dE dE ′.

(13)
Making the change of variables E = x and E ′ − E = y, the
new region of integration S is given by S = {(x, y) ∈ R2 : x �

1For details about this theorem, see [31] and [32].
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Emin, x + y � Emin}. Integrating first over x and then over y,
the integral (13) is split in two integrals:

P(t ) =
∫ ∞

0
dy e iyt

∫ ∞

Emin

dx ρ(x)ρ(x + y)

+
∫ 0

−∞
dy e iyt

∫ ∞

Emin−y
dx ρ(x)ρ(x + y). (14)

Making in the second double integral another change of vari-
ables, i.e., y′ = −y and x′ = x + y, the region of integration is
transformed to one given by x′ � Emin and y′ � 0. Thus,

P(t ) =
∫ ∞

0
dy e iyt

∫ ∞

Emin

dx ρ(x)ρ(x + y)

+
∫ ∞

0
dy′ e−iy′t

∫ ∞

Emin

dx′ ρ(x′ + y′)ρ(x′). (15)

Now, the integrals can be added. Therefore,

P(t ) =
∫ ∞

0
dy 2 cos yt

∫ ∞

Emin

dx ρ(x)ρ(x + y). (16)

The survival probability is then the cosine Fourier transform
of the function

R(y) = 2
∫ ∞

Emin

dx ρ(x)ρ(x + y). (17)

R(y) is the autocorrelation function of the density of states.
In order to obtain the autocorrelation function as an inverse
cosine Fourier transform of P(t ), we multiply Eq. (16) by
cos y′t and then we integrate with respect to t between t = 0
and ∞ so that∫ ∞

0
P(t ) cos y′t dt

=
∫ ∞

0
dy

[ ∫ ∞

0
cos yt cos y′t dt

]
2

∫ ∞

Emin

dx ρ(x)ρ(x + y)

=
∫ ∞

0
dy

π

2
[δ(y − y′)+δ(y + y′)]2

∫ ∞

Emin

dx ρ(x)ρ(x + y)

= π

∫ ∞

Emin

dx ρ(x)ρ(x + y) = π

2
R(y). (18)

To summarize, the survival probability and the autocorrelation
function of the density of states are a pair of cosine Fourier
transforms given by

P(t ) =
∫ ∞

0
R(y) cos yt dy, (19)

R(y) = 2

π

∫ ∞

0
P(t ) cos yt dt . (20)

A word of caution about the lower limit of integration of the
autocorrelation function of the density of states is in order
here. Without loss of generality, we take its value as Emin = 0.
This is equivalent to shifting the origin of the energy scale at
the threshold of the system and is translated in a change of
variable in the integral (17) such that

R(y) = 2
∫ ∞

0
dx ρ(x)ρ(y + x). (21)

Equations (19) and (20) still remain valid.

Although the aim of this work is to study the characteristic
features of the survival probability of an unstable quantum
system, some applications of the autocorrelation function are
worth mentioning. In the case of a system with a discrete
spectrum, it is simple to compute the autocorrelation function
by taking the Fourier transform of the survival probability. Let
{|n〉} be a discrete eigenstate of a system with Hamiltonian
H and initial state |i〉,2 and let {En} be their corresponding
eigenenergies: H |n〉 = En|n〉, where n = 0, 1, 2, . . . and the
discrete energies are labeled such that E0 < E1 < E2 . . . . The
survival amplitude and probability are then given as

A(t ) = 〈i|e−iHt |i〉 =
∞∑

n=0

|〈i|n〉|2e−iEnt , (22)

P(t ) = |A(t )|2 =
∞∑

n=0

∞∑
m=0

|〈i|n〉|2 |〈i|m〉|2 e−i(En−Em )t

=
∞∑

n=0

|〈i|n〉|2+2
∞∑

n=1

n−1∑
m=0

|〈i|n〉|2 |〈i|m〉|2 cos (En− Em)t .

(23)

The corresponding autocorrelation function can be computed
by inspection: Eq. (23) is obtained from Eq. (19) by multiply-
ing the first sum on the right-hand side of (23) by δ(y) and
substituting cos (En − Em)t by δ[y − (En − Em)t]. Therefore,

R(y) = δ(y)
∞∑

n=0

|〈i|n〉|2

+ 2
∞∑

n=1

n−1∑
m=0

|〈i|n〉|2 |〈i|m〉|2 δ[y − (En − Em)t]. (24)

Since the autocorrelation function is a convolutionlike func-
tion, the authors in [33–35] use Eq. (24) together with random
matrix theory for finding signatures of classical chaos in quan-
tum systems. They do so by comparing numerical results with
experiment.

We pointed out in Sec. II about the impossibility of deriv-
ing a density of states corresponding to a purely exponential
survival probability. This implies that we would not be able
to use the autocorrelation function of the density of states
given by Eq. (21) if we wanted to identify the exponential
contribution of the survival probability. Even if we showed
that it is impossible to find a density of states corresponding to
a purely exponential survival probability, one can always find
a density of states which leads to a survival probability with
an exponential component in addition to the nonexponential
ones as given in Eqs. (7) and (10). In spite of having found
a functional form for the density of states, the general case
of the exponential component of a sum consisting of several
poles is difficult to work with. Let us therefore consider the
simpler case of a narrow isolated resonance with a long inter-
mediate region of exponential decay. In this case, P(t ) can be
approximated roughly by its exponential component. Using

2In order to avoid any confusion related to the notation for the initial
state used at the beginning of this article, this state is denoted as |i〉
only in this section.
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zs as given by (4), Ae(t ) and Pe(t ) from (7) and (10) can be
written as

Ae(t ) = −2π ie−izst R(zs), (25)

Pe(t ) = 4π2|R(zs)|2e−2 Im zst = 4π2|R(zs)|2e−ωst , (26)

and Eq. (20) gives us the approximate autocorrelation function

R(y) = 2

π

∫ ∞

0
P(t ) cos yt dt ≈ 8πωs

|R(zs)|2
y2 + ω2

s

. (27)

If we wish to take other resonances into account, we can
improve the approximation of the autocorrelation function.
From Eq. (10),

P(t ) ≈ Pe(t ) = 4π2
∑
s>0

∑
s′>0

R(zs)R∗(zs′ ) e−i(zs−z∗
s′ )t . (28)

Using Eq. (20), the autocorrelation function is approximately
equal to

R(y) = 2

π
Re

∫ ∞

0
P(t )e−iyt dt ≈ 8π Im

∑
s>0

∑
s′>0

R(zs)R∗(zs′ )

y + zs − z∗
s′

= 8π
∑
s>0

|R(zs)|2 ωs

y2 + ω2
s

+ 16π Im
∑
s>0

∑
s′>s

R(zs)R∗(zs′ )

y + σs − σs′ − i(ωs + ωs′ )/2
.

(29)

IV. SURVIVAL PROBABILITY OF A SYSTEM
FOR SMALL TIMES

A consequence of Eq. (19) is the evenness of P(t ). This
property can be checked directly from the definition of the
survival probability:

P(t ) = A(t )A∗(t ) = 〈0|e−iHt |0〉〈0|e−iHt |0〉∗

= 〈0|e−iHt |0〉〈0|eiHt |0〉. (30)

Expanding the temporal evolution operators in a Taylor series,

P(t ) =
[ ∞∑

n=0

(−i)n

n!
〈0|Hn|0〉t n

][ ∞∑
m=0

im

m!
〈0|Hm|0〉tm

]

=
∞∑

n=0

(it )n

n!

n∑
m=0

(−1)m

(
n

m

)
〈0|Hm|0〉〈0|Hn−m|0〉

=
∞∑

n=0

in

n!
pn(H )t n, (31)

where pn(H ) is given by

pn(H ) =
n∑

m=0

(−1)m

(
n

m

)
〈0|Hm|0〉〈0|Hn−m|0〉. (32)

The sum given by (32) has the form
∑n

m=0 (−1)mAmAn−m,
with Am given by

Am =
√(

n

m

)
〈0|Hm|0〉. (33)

Since the above sum is zero for n odd, pn(H ) is zero for n odd.
Thus,

P(t ) = 1 +
∞∑

q=1

(−1)q

(2q)!
p2q(H ) t2q. (34)

Summarizing the above, we can say that not only is the
survival probability an even function, but also its Taylor ex-
pansion around t = 0 contains even powers of t only. As a
consequence, P′(0) = 0 and

P′′(0) = −p2(H ) = −2〈(�H )2〉0 < 0, (35)

where 〈(�H )2〉0 = 〈H2〉0 − 〈H〉2
0. Furthermore, Eq. (34) im-

plies that the survival probability must follow a quadratic law
for small times, meaning

P(t ) = 1 − t2〈(�H )2〉0 + O(t4). (36)

Another implication of the above result is that it is not possi-
ble to have a purely exponential survival probability because
the Taylor expansion of the exponential survival probability
around t = 0 has both even and odd powers of t . We can see
this fact if we expand Eq. (7) in Taylor series:

Ae(t ) = −2π i
∑
s>0

R(zs)
∞∑

n=0

(−izst )n

n!

=
∞∑

n=0

(−it )n

n!

∑
s>0

(−2π i)zn
s R(zs) =

∞∑
n=0

(−it )n

n!
Bn, (37)

where Bn = −2π i
∑

s>0 zn
s R(zs). Therefore, the correspond-

ing Taylor expansion for Pe(t ) will be

Pe(t ) = |Ae(t )|2 =
∞∑

n=0

(it )n

n!

n∑
m=0

(−1)m

(
n

m

)
BmB∗

n−m

= |B0|2 − 2t Im (B0B∗
1 ) − t2Re (B0B∗

2 − |B1|2) + · · · .

(38)

Equation (38) lets us interpret the role of the nonexponential
and interference terms of the survival probability. Adding the
Taylor expansion of both functions to the expansion of Pe(t ),
the normalization condition and the evenness of the survival
probability should be ensured. We shall see that this actually
happens. Since the Taylor expansion of the nonexponential
and interference terms of the survival probability depend on
the Taylor expansion of the nonexponential survival ampli-
tude, we can expand A(t ) = 〈0|e−iHt |0〉 and use Eq. (37).
Thus, we get the required expansion, i.e.,

Ane(t ) = A(t ) − Ae(t ) =
∞∑

n=0

(−it )n

n!
(〈Hn〉0 − Bn). (39)

Therefore, the Taylor expansion of the nonexponential sur-
vival probability is

Pne(t ) = |Ane(t )|2 =
∞∑

n=0

(it )n

n!

n∑
m=0

(−1)m

(
n

m

)

× (〈Hm〉0 − Bm)(〈Hn−m〉0 − B∗
n−m)

= |1 − B0|2 − 2t Im [(1 − B0)(〈H〉0 − B∗
1 )]

− t2 Re [(1−B0)(〈H2〉0 − B∗
2 )−|〈H〉0−B1|2]+ · · · .

(40)

022214-5



RAMÍREZ JIMÉNEZ AND KELKAR PHYSICAL REVIEW A 104, 022214 (2021)

In addition, the Taylor expansion of the interference part of
the survival probability is

Pi(t ) = 2 Re [Ae(t )A∗
ne(t )]

= 2 Re
∞∑

n=0

(it )n

n!

n∑
m=0

(−1)m

(
n

m

)
Bm(〈Hn−m〉0 − B∗

n−m)

= 2 Re [B0(1 − B∗
0 )] − 2t Im [B0(〈H〉0 − B∗

1 )

− B1(1 − B∗
0 )]

− t2 Re [B2 − 2 Re (B0B∗
2 ) + B0〈H2〉0

− 2B1(〈H〉0 − B∗
1 )] + · · · . (41)

It is gratifying to find that adding Eqs. (38), (40), and (41),
we obtain after some algebra the Taylor expansion (34). Note
that the expansions (40) and (41) are given in terms of the
poles and residues of the DOS and the expectation values of
the integer powers of the Hamiltonian at the initial state.

Finally, owing to the condition that the coefficients pn(H )
have to be finite, some restrictions must be taken into account
when the Fock-Krylov formalism is used. The coefficients
pn(H ) are finite if the expectation value of Hn at the initial
state exists for all n = 0, 1, 2, . . . :

〈Hn〉0 = 〈0|Hn|0〉 = 〈0|Hn
∫ ∞

0
dE

∫
db |E , b〉〈E , b |0〉

=
∫ ∞

0
Enρ(E ) dE < ∞, n = 0, 1, . . . . (42)

The conditions (42) claim that the density of states is such that
these integrals must converge for each value of n, and hence
we infer that the convergence of the integrals will be possible
if there exists a real and positive function g(E ) such that it
is part of the density of states. This function is indeed the
form factor introduced often in literature. Since there are no
analytic methods for obtaining the form factor, it is common
to see phenomenological procedures in the literature (see, for
instance, [6–8,14,15,36]). We note that the existence of the
form factor is a consequence of the evenness of the survival
probability.

A word of caution regarding the moments of H is in order
before ending this section. Assuming a general short time
dependence of the form A ∼ 1 + btc, where b and c are finite
constants and requiring the finiteness of the moments of H , it
was noted in [37] that the derivatives

dA

dt

∣∣∣∣
t=0

= − i

h̄
〈	|H |	〉 = bctc−1|t=0,

d2A

dt2

∣∣∣∣
t=0

= − i

h̄2 〈	|H2|	〉 = bc(c − 1)t c−1|t=0

rule out the possibility of the short time t1/2 behavior (some-
times found in literature such as [2] and [38]) of A(t ) since
it implies an infinite time derivative of A at t = 0. For the
derivatives to be finite, c � 1. We also note that studies of the
short time behavior within a quantum field-theoretic (QFT)
approach as in [39,40] find that the energy uncertainty which
depends on the first two moments of H is infinite. In a more
recent QFT-based calculation, however, the author introduces
a cutoff parameter 
 such that there is no divergence for

times t � 1/
. This timescale determines the renormalization
of the bare state and formation of the quasiparticle state. In
connection with the anti-Zeno effect, the author also deter-
mines the energy uncertainty at a given time. A discussion
of the finiteness of the moments and the short time behavior
within solvable models can be found in [41], where the au-
thors found that the expansion of the survival probability in
terms of resonant states predicts the possibility of a t3/2 short
time behavior, which follows from the fact that in general the
energy moments of the Hamiltonian may diverge. The authors
considered the expression P(t ) = 1 − (t/τ ∗)θ , with parame-
ters θ and τ ∗, to adjust the short time behavior of calculations
using experiment. Two sets, θ = 2, τ ∗ = 12.55 μs and θ = 3

2
and τ ∗ = 23.15 μs were found to agree with the data at small
times [12].

V. DENSITY OF STATES FOR CONTINUUM SPECTRA

All the results obtained so far in this work indicate that
knowing the poles and residues of the density of states and its
form factor as well is necessary if we wish to construct ρ(E )
through the Mittag-Leffler theorem. The latter affirms that
a meromorphic function can be constructed by knowing its
poles and residues. Since the calculation of the survival ampli-
tude involves a Fourier transform which must be performed by
going over to the complex energy plane, we must consider the
behavior of the density of states in the complex energy plane.
Theoretical evidence suggests that the large time behavior of
the survival probability follows a power law that comes from
a branch point of ρ(E ) at E = 0 such that |ArgE | < π . This
can be established by supposing that the density of states has
an asymptotic expansion around E = 0 in the form

ρ(E ) ∼ E ν

∞∑
n=0

βnEn, E → 0+. (43)

Substituting Eq. (43) in (A5) and applying the Watson’s
lemma [42], we find that the survival amplitude and proba-
bility have, for large times, the asymptotic expansions

A(t ) ∼ 1

i

∞∑
n=0

(−i)ν+nβn
�(ν + n + 1)

tν+n+1
, (44)

P(t ) = |β0|2 |�(ν + 1)|2
t2ν+2

+ O(t−2ν−3). (45)

It is known from scattering theory that at large times P(t ) ∝
t−(2l+3) [6] for a resonance in the lth partial wave. This would
imply ν = l + 1

2 which as we will see later is consistent
with conditions imposed on ν. In Sec. III we noted that the
evenness of P(t ) follows from the Wiener-Khinchin theorem
and indeed the small time behavior was consistent with this
requirement. However, the large time P(t ) ∝ t−(2l+3) cannot
be an even function. Such a strange behavior is, however, com-
mon in many asymptotic expansions of even functions. As a
first example, consider the function f (z) = (z6 + z2 + 1)−1/2,
which, for large values of |z|, behaves as f (z) ∼ z−3. A second
example is provided by the Bessel function of the first kind of
order 2n, J2n(x) whose asymptotic expression for large x is
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√
2

π x cos (x − π
4 − nπ ) [43]. Finally, the integral

g(u) =
∫ ∞

u2

e it

t1/2
dt

has the asymptotic form g(u) ∼ ie iu2
/u for large u [44]. It is

like these functions forget how they were raised in t = 0 and
change completely as t → ∞. We must note that in spite of
the above, there is in general no contradiction with the result
following from the Wiener-Khinchin theorem since it is the
total survival probability (and not just a nonexponential part)
which must be an even function.

Equation (45) shows that the nature of the branch point is
determined by the exponent of the power law and this feature
must be included if we want to obtain an expression for the
density of states. In summary, the density of states can be built
if we know (i) its poles and corresponding residues, (ii) its
form factor, and (iii) the threshold factor ν which also defines
the exponent 2ν + 2 of the survival probability for large times.

Since the density of states can be decomposed into the
product of E ν , with ν > 0, an analytic form factor g(E ) with
g(0) �= 0, and a meromorphic function whose poles are the
same as those of the density of states, the deduction of a
generic expression for the density of states starts from the
function

F (z) = z−ν

g(z)

ρ(z)

z − E
, (46)

which is the meromorphic component of the density of states,
is analytic at the origin and has simple poles at z = zs and
E . Let CN be the circle |z| = RN such that |zs| < RN for s =
1, 2, . . . , N and contains the pole z = E . From the residue
theorem

1

2π i

∮
CN

z−ν

g(z)

ρ(z)

z − E
dz = E−ν

g(E )
ρ(E ) −

∑
|s|�N

1

zν
s g(zs)

R(zs)

E − zs
.

(47)
If z−νρ(z)/g(z) = O(|z|−δ ) for |z| → ∞ and δ > 0, the inte-
gral vanishes when N tends to infinity. Hence,

ρ(E ) = E ν g(E )
∑

s

[
−R(zs)

g(zs)

]
1

zν
s

1

zs − E
. (48)

Since the density of states has to be a real function, the form
factor must have the following property in the complex z
plane: g(zs<0) = g∗(zs>0). Using this property with Eqs. (5)
and (6), we can write an alternative form for ρ(E ):

ρ(E ) = 1

2
E ν g(E )

∑
s

γ (zs)

zν
s

1

zs − E

= E ν g(E ) Re
∑
s>0

γ (zs)

zν
s

1

zs − E
, (49)

where γ (zs) is defined as

γ (zs) = −2
R(zs)

g(zs)
, (50)

and due to Eq. (5) and the property of the form factor, it sat-
isfies γ (zs<0) = γ ∗(zs>0). Since the density of states satisfies

the normalization condition, we have∫ ∞

0
ρ(E ) dE = Re

∑
s>0

γ (zs)

zν
s

∫ ∞

0

E ν

zs − E
g(E ) dE = 1.

(51)
The density of states is such that the integrals (42) will be
finite, i.e.,

Re
∑
s>0

γ (zs)

zν
s

∫ ∞

0

E ν+n

zs − E
g(E ) dE < ∞, n = 1, 2, . . . .

(52)
Since the nonexponential survival probability given by Eq. (8)
is proportional to the Laplace transform of the density of states
on the negative imaginary axis, by the existence theorem of
the Laplace transform, if there exist real constants M and α

such that ρ(−iy) has exponential order α, i.e., |ρ(−iy)| �
Meαy, the integral converges for t > α [45]. From Eq. (49),

1

2
|y|ν |g(−iy)|

∑
s

∣∣∣∣γ (zs)

zν
s

∣∣∣∣ 1

|zs + iy| � Meαy. (53)

Since t � 0, the integral (8) must be convergent for t � 0, and
this means that α = 0. Hence, the above inequality becomes

|y|ν |g(−iy)|
∑

s

∣∣∣∣γ (zs)

zν
s

∣∣∣∣ 1

|zs + iy| � M. (54)

There, the factor 1
2 was absorbed into the constant M. A

curious consequence of the condition (54) is that the form
factor cannot be a Gaussian function because if g(E ) = e−aE2

,
where a > 0, the left hand of Eq. (54) would be not bounded
over the negative imaginary axis. Finally, notice that the form
factor could be obtained by solving the integral equation (51)
subject to the conditions (52) and (54).

In many of the physical examples of unstable states such as
radioactive nuclei, the poles are such that their imaginary parts
are much less than their real parts, i.e., Im zs � Re zs. These
poles are referred to as narrow resonances. In such cases, the
coefficients γ (zs) do not depend on the residues of the density
of states and are a constant equal to i [13,15]. Thus, for narrow
resonances,

γ (zs) = −2
R(zs)

g(zs)
= −i, Im zs � Re zs, (55)

or

R(zs)

g(zs)
= i

2
, Im zs � Re zs. (56)

Using Eq. (55), Eq. (49) transforms to

ρ(E ) = E ν g(E ) Im
∑
s>0

1

zν
s

1

zs − E
, Im zs � Re zs. (57)

VI. SPECIFIC FORM FACTORS

We shall now discuss the advantages or disadvantages of
choosing some particular form of the form factor in the den-
sity of states to obtain the survival amplitude at small times.
Our two choices are the exponential form factor (commonly
used for particle and nuclear resonances) and a constant which
is used in a potential description of unstable states.
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A. Exponential form factor

This is one popular choice in the literature because it allows
closed expressions to be obtained easily. In this case the form
factor g(E ) takes the form

g(E ) = e−bE , b > 0. (58)

Even if there is no physical reason for choosing this particular
form, it satisfies the requirements imposed on the form factor,
i.e., it ensures the convergence of the integrals (42) and the
condition (54) will be satisfied if 0 < ν � 1. Substituting
Eq. (58) in (49), the density of states is given by

ρ(E ) = ρ(E ) = 1

2
E ν e−bE

∑
s

γ (zs)

zν
s

1

zs − E

= E ν e−bE Re
∑
s>0

γ (zs)

zν
s

1

zs − E
. (59)

We shall first calculate the expectation values of the powers of
the Hamiltonian at the initial state by substituting Eq. (49) in
(42):

〈Hn〉0 =
∫ ∞

0
Enρ(E ) dE

= Re
∑
s>0

γ (zs)

zν
s

∫ ∞

0

E ν+n

E − zs
e−bE dE . (60)

From the identity [46]∫ ∞

0

xν

x + σ
e−sx dx = �(ν + 1) e σ s σ ν �(−ν, σ s),

Re s > 0, Re ν > −1, |Argσ | < π,

(61)

where �(α, z) is the incomplete gamma function,3 we obtain

〈Hn〉0 =
∫ ∞

0
Enρ(E ) dE = (−1)n+1�(1 + ν + n)

× Re
∑
s>0

e iνπ zn
s γ (zs) e−bzs �(−ν − n,−bzs). (62)

Since 〈H0〉0 = 1, the residues of the density of states satisfy

−�(1 + ν)Re
∑
s>0

e iνπ γ (zs) e−bzs �(−ν,−bzs) = 1. (63)

Equation (62) must incorporate Eq. (63) in order to ensure the
normalization condition. Thus,

〈Hn〉0 = (−1)n �(1 + ν + n)

�(1 + ν)

× Re
∑

s>0 e iνπ zn
s γ (zs) e−bzs �(−ν − n,−bzs)

Re
∑

s>0 e iνπ γ (zs) e−bzs �(−ν,−bzs)
.

(64)

3Actually, there are two different incomplete gamma functions: the
lower and upper ones [43]. Here, we are using the latter one, which
is defined as

�(α, z) =
∫ ∞

z
tα−1e−t dt, Re α > 0.

In the case of narrow resonances, Eq. (55) gives us an ex-
pression for the residues of the density of states. Therefore,
Eq. (64) takes the following form:

〈Hn〉0 = (−1)n �(1 + ν + n)

�(1 + ν)

× Im
∑

s>0 e iνπ zn
s e−bzs �(−ν − n,−bzs)

Im
∑

s>0 e iνπ e−bzs �(−ν,−bzs)
,

Im zs � Re zs. (65)

On the other hand, we can calculate the survival amplitude
using the identity (61):

A(t ) =
∫ ∞

0
ρ(E )e−iEt dE

=
∑

s e iνπsgn(s)γ (zs) e−pzs �(−ν,−pzs)∑
s e iνπsgn(s) γ (zs) e−bzs �(−ν,−bzs)

, (66)

where p = b + it . Even though Eqs. (64) and (65) allow us to
compute the coefficients of the Taylor expansion, we have to
choose a suitable value for the parameter b. It must be chosen
such that the inequality (35) is satisfied, i.e., 〈(�H )2〉0 will
be positive. Since establishing the range of the values of b for
which 〈(�H )2〉0 > 0 analytically is almost impossible, it is
better to achieve this by employing numerical and graphical
methods. In order to illustrate this procedure, the following
example is worked out for one isolated, narrow resonance.
Introducing the parameters xs, the normalized pole ξs, and the
dimensionless variable for time τ as

xs ≡ Im zs

Re zs
, (67)

ξs ≡ zs

Re zs
= 1 − ixssgn(s), (68)

τ ≡ 2t Im zs, (69)

the terms bzs and pzs in Eqs. (64), (65), and (66) have to be
replaced by

bzs = (b Re zs)ξs = bsξs, (70)

pzs = (b + it )zs =
(

bs + i
τ

2xs

)
ξs, (71)

where bs = b Re zs. The parameter xs � 1 indicates that a
pole represents a narrow resonance, and it is related to the
oscillation frequency fs of the survival probability as well,
with fs given by [13,47] fs = 1

4πxs
. This frequency allows us

to measure the time of the decay in terms of the number of
oscillations n that the survival probability has performed:

n = τ

4πxs
, (72)

which is suitable for the description of the survival prob-
ability at small times. The choice of a suitable value of b
(or bs) depends on the sign of 〈(�H )2〉0. For xs = 0.1 and
ν = 1

2 , 〈(�H )2〉0 is negative if 3.51 × 10−4 < bs < 0.55. If
we choose a value of bs such that 〈(�H )2〉0 < 0, we would
expect the survival probability to take values greater than one.
We illustrate this feature in Fig. 2 by computing P(t ) with
bs = 0.1.
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FIG. 2. Survival probability for a system described by an isolated
resonance such that xs = 0.1, ν = 1

2 , and bs = 0.1 as a function
of the number of oscillations n, and the dimensionless variable for
time τ given by Eq. (69). The dashed line represents the exponential
component of the survival probability.

In this case, we can see that the survival probability is
greater than one approximately at the first one-fourth of the
oscillation. Since the survival probability is convex at t = 0,
the form factor with the value of bs chosen forces P(t ) to
increase until a maximum. This behavior makes no physical
sense.

This situation enables us to pick bs such that 〈(�H )2〉0 > 0
for two intervals. Moreover, the larger the value of bs, the
shorter the critical time that characterizes the transition from
the exponential to the power-law behavior. Such a sensitivity
of the critical time to the value of bs is, however, seen only
for large values of bs. If bs � 1 we do not face the problem
of a variable critical time since the effect of the form factor
over P(t ) is weak. However, the convergence of the survival
probability depends on the condition Re p > 0, and then, a
singularity is located at p = 0. Hence, we should expect that
the survival probability experiences strong variations when
both t and bs are close to zero. In Fig. 3 we plot the survival
probability for xs = 0.1 and a relatively large value of bs, i.e.,
bs = 1. Note that this value of bs ensures a survival probability
less than one for n � 0.

Figure 4 shows the survival probability for xs = 0.1 and
bs = 10−4. As expected, the survival probability is less than
one for n � 0, its critical time (for the transition from the
exponential to the power law) has changed with respect to the
previous example, i.e., it happens around 15 to 20 oscillations
and near t = 0, the survival probability decreases from 1 to
approximately e−2 in less than 2/1000 of a period of oscilla-
tion of P(t ).

Knowing how to choose a suitable value of the parame-
ter b (or bs), we shall now show what would happen with
the survival probability for small times for a realistic case,
namely, the decay of 8Be(0+) into two alpha particles for
S waves and assuming an exponential form factor. In this
case, the real part of the pole is Re zs = 92 keV and the
imaginary part is 5.6/2 = 2.8 eV. Thus, xs = 3 × 10−5, and
ν = 1

2 . The survival amplitude oscillates with a period of
4.6 × 10−4 mean lifetimes. Here, the sign of 〈(�H )2〉0 is
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FIG. 3. Survival probability for a system described by an isolated
resonance (with xs = 0.1, ν = 1

2 , and bs = 1) as a function of the
number of oscillations n, and the dimensionless variable for time τ

given by the Eq. (69). The dashed line represents the exponential
component of the survival probability.
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FIG. 4. Survival probability for a system described by an isolated
resonance (xs = 0.1, ν = 1

2 , and bs = 10−4) as a function of the
number of oscillations n, and the dimensionless variable for time τ

given by the Eq. (69). The upper plot shows P(n) for 30 oscillations,
and the lower one shows P(n) for one oscillation. The dashed line
represents the exponential component of the survival probability.
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FIG. 5. Survival probability for the decay of 8Be(0+) into two
alpha particles with bs = 1 as a function of the number of oscillations
n, and the dimensionless variable for time τ given by Eq. (69). The
dashed line represents the exponential component of the survival
probability.

negative if 4.8 × 10−11 < bs < 0.5. Since a tiny value of bs

does not describe the survival probability near t = 0 because
of the singularity at p = b + it = 0, the appropriate value of
bs should satisfy bs > 0.5. Hence, we choose bs = 1, or b =
bs/Re zs = 10.83 (MeV)−1. For this value of bs, the survival
probability can be seen in Fig. 5.

Let us look at the prominent features of this decay for
the parameters chosen above. The survival probability P(t )
is less than one for the value of bs that we chose, P(t ) reaches
the large time region after 150 000 oscillations approximately
(around 70 mean lifetimes), and the intermediate region starts
after the survival amplitude has completed one oscillation (in
4.6 × 10−4 mean lifetimes).

Both examples point to the fact that the exponential behav-
ior at small times is reached approximately after the survival
amplitude has completed one oscillation. Although this could
seem to be a coincidence, we shall show in Sec. VII that the
intermediate region indeed starts approximately after the first
oscillation is completed by the survival probability for narrow
isolated resonances.

B. Constant form factor

Even though a constant factor is the easiest and simplest
choice, we shall show that this option implies some contradic-
tions. The form factor g(E ) takes the form

g(E ) = 1, (73)

and the density of states is given by

ρ(E ) = E ν
∑

s

R(zs)

zν
s

1

E − zs
. (74)

From the normalization condition, the density of states must
satisfy∫ ∞

0
ρ(E ) dE =

∑
s

R(zs)

zν
s

∫ ∞

0

E ν

E − zn
dE = 1. (75)

From a mathematical point of view, the integral in Eq. (75)
converges if −1 < ν < 0, and we have ν > 0 because the
density of states must be analytic at E = 0. Assuming that
ν takes values in the range 0 < ν < 1, we can write Eq. (75)
as ∫ ∞

0
ρ(E ) dE = 1 =

∑
s

R(zs)

zν
s

∫ ∞

0
E ν−1 dE

+
∑

s

R(zs)

zν−1
s

∫ ∞

0

E ν−1

E − zn
dE , (76)

and we can see that the integral is not finite because of the
integral in the first term of the right side of Eq. (76) unless

∑
s

R(zs)

zν
s

= 0, 0 < ν < 1. (77)

From Eqs. (76) and (77), we have∫ ∞

0
ρ(E ) dE = 1 =

∑
s

R(zs)

zν−1
s

∫ ∞

0

E ν−1

E − zs
dE

= − π

sin πν

∑
s

R(zs) e iπνsgn(s). (78)

In conclusion, if 0 < ν < 1 and because of the normalization
condition, the residues and poles of the density of states have
to satisfy the conditions

∑
s

R(zs) e iπνsgn(s) = − sin πν

π
, (79)

∑
s

R(zs)

zν
s

= 0. (80)

Although the conditions (79) and (80) seem arbitrary, they
appear naturally in systems under the influence of a central
potential of finite range whose decay is calculated by either
resonant states or Jost functions [13]. Moreover, substituting
ρ(E ) given by Eq. (75) into Eq. (42), we get the expectation
values of the integer powers of the Hamiltonian:∫ ∞

0
Emρ(E ) dE

=
∑

s

R(zs)

zν
s

∫ ∞

0
E ν Em

E − zs
dE

=
∑

s

R(zs)

zν
s

∫ ∞

0
E ν−1

[
m∑

p=0

zp
s Em−p + zm+1

s

E − zs

]
dE

=
m∑

p=0

(∫ ∞

0
Em+ν−p−1 dE

)(∑
s

zp
s

R(zs)

zν
s

)

+
∑

s

zm+1
s

R(zs)

zν
s

∫ ∞

0

E ν−1

E − zs
dE . (81)

Equation (81) will be finite if

∑
s

zp
s

R(zs)

zν
s

= 0, p = 0, 1, . . . , m. (82)
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Since this condition should be valid for all positive m, it can
be written as

Re
∑
s>0

zp
s

R(zs)

zν
s

= 0, p = 0, 1, . . . , m, . . . . (83)

The expectation value of Hn at the initial state is therefore
given by

〈Hm〉0 =
∫ ∞

0
Emρ(E ) dE =

∑
s

zm+1−ν
s R(zs)

∫ ∞

0

E ν−1

E − zs
dE

=− π

sin πν

∑
s

zm
s R(zs)e iπνsgn(s), m = 0, 1, 2, . . . .

(84)

It is worth to point out that it is possible to ensure the con-
vergence of the integrals (42) by imposing conditions over the
poles and residues of the density of states given by Eqs. (82)
and (84). For p = 0, we get the condition (80) which was ob-
tained by the normalization condition. As a result, the survival
amplitude can be obtained from Eq. (A5) and the identity (61).
After a short algebra, we get

A(t ) = −2π i
∑
s>0

R(zs)e−izst − π

sin πν
e−iπν

×
∑

s

R(zs)e−itzs
�

(−ν,−izst
)

�
(−ν

) , 0 < ν < 1. (85)

There are some advantages to studying the decay of a system
using a density of states with a constant form factor. First,
it lets us separate the exponential behavior from both the
survival amplitude and probability. Second, it lets us deal with
isolated resonances because the conditions (79) and (80) give
us an expression for the residue in terms of its associated
pole only [see Eq. (88) below]. Lastly, the descriptions of the
survival probability in the intermediate and large time regions
are simpler and allow us to study in detail the transition from
the former to the latter region in a suitable way. However,
using this formalism for the description of P(t ) for small times
for one isolated resonance gives us a result that disagrees with
Eq. (34). Let us assume that the isolated resonance has the
pole zr = σr − iωr/2, associated with it. Thus, its residue is
obtained from the conditions (63) and (64) to be

R(zr )

zν
r

+ R∗(zr )

z∗
r
ν

= 0, (86)

R(zr )e iπν + R∗(zr )e−iπν = − sin πν

π
. (87)

Solving Eqs. (86) and (87), the residue is given by

R(zr ) = − 1

2π i

zν
r sin πν

Im
(
zν

r e iπν
) . (88)

Since R(zr ) has to satisfy the conditions (66), we get

Re
∑
s>0

zp−ν
s R(zs) = Re

[
zp−ν

r

sin πν

2π i

zν
r

Im
(
zν

r e iπν
)
]

= sin πν

2π Im
(
zν

r e iπν
) Im

(
zp

r

)
= 0, for all p = 0, 1, 2, . . . . (89)

This equation can be written as sin [p Argzr] = 0, for all p =
0, 1, 2, . . . . The only choice that satisfies this equation for all
values of p and for the range of values that Re zr and Im zr can
take is Argzr = 0, a result that implies Im zr = 0 and hence a
resonance without a width. If one would still insist to continue
with the description of such a resonance and examine the
residue, one would find

lim
Im zr→0

R(zr ) = − 1

2π i
, (90)

and the density of states would be given by

ρ(E ) = lim
Im zr→0

(
− 1

π

)
Im

(E/zr )ν

E − Re zr + iIm zr
. (91)

From the Plemelj-Dirac formula4

ρ(E ) = − 1

π

(
E

Re zr

)ν

lim
Im zr→0

Im

[
P

1

E − Re zr

− iπδ(E − Re zr )

]

=
(

E

Re zr

)ν

δ(E − Re zr ) = δ(E − Re zr ), (92)

the survival amplitude reduces to

A(t ) =
∫ ∞

0
δ(E − Re zr ) e−iEt dt = e−itRe zr , (93)

and the decay probability will be equal to one, implying no
decay. This means that it is not possible to obtain the survival
probability for small times starting with the energy density of
a system which is an isolated resonance.

VII. TRANSITION REGIONS AND CRITICAL TIMES

We mentioned before that the survival probability has three
well-defined regions: the small times region where P(t ) is
dominantly quadratic, the intermediate region where P(t ) is
approximately exponential, and the large time region where
P(t ) displays a power-law behavior. However, there is not
really a sharp separation between the three regions but rather
an oscillatory transition region from the quadratic to the expo-
nential and the exponential to the power law. Associated with
these regions are the critical times, which indicate when the
transition starts and ends or when the transition is happening.
In this section, we shall explore these aspects.

A. Critical time and the transition region from small
to intermediate times

In order to find the critical time of transition tcs from the
quadratic to the exponential region we begin by approximat-
ing P(t ) given by (36), at small times, as

P(t ) ≈ 1 − 〈(�H )2〉0t2. (94)

4The Plemelj-Dirac formula is

lim
ε→0

1

x′ − x ∓ iε
= P

1

x′ − x
± iπδ(x′ − x),

where P is the principal value [48].
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Focusing on the intermediate region, we note that from
Eqs. (7) and (28), we know the exponential component of both
the survival amplitude and probability. In order to simplify the
notation in what follows, we recall that R̄(zs) = −2π iR(zs);
and rewriting Eqs. (7) and (28) and expressing the poles in
terms of their real and imaginary parts, we get

Ae(t ) =
∑

s

R̄(zs)e−iσst eωst/2, (95)

Pe(t ) = |Ae(t )|2 =
∑
s,s′

R̄(zs)R̄∗(zs′ )e−i(σs−σs′ )t e−(ωs+ωs′ )t/2

=
∑

s

|R̄(zs)|2 e−ωst

+
∑
s �=s′

R̄(zs)R̄∗(zs′ )e−i(σs−σs′ )t e−(ωs+ωs′ )t/2. (96)

In order to study the transition, the simplest choice is to ap-
proximate Pe(t ) by taking the slowest decreasing term which
is associated with the fourth-quadrant pole of the density of
states having the smallest absolute value of the imaginary part.
We call this the decay’s dominant pole, zd = σd − iωd/2, so
that ωd must satisfy the following:

ωd = −2 min
s

{|Im zs|}. (97)

The intermediate time survival probability can now be written
approximately as

P(t ) ≈ |R̄(zd )|2 e−ωd t . (98)

The transition time t = tcs could be defined as the time for
which the probabilities given by Eqs. (94) and (98) are equal.
Thus, tcs satisfies the equation

1 − 〈(�H )2〉0t2
cs = |R̄(zd )|2 e−ωd tcs . (99)

It is convenient to define the dimensionless quantity τcs =
ωdtcs which, after some algebraic manipulations, allows us to
write Eq. (99) as

f (τcs) =
[

1 −
(

τcs

α

)2]
e τcs = |R̄(zd )|2, (100)

where we have introduced the parameter α defined as

α = ωd√
〈(�H )2〉0

. (101)

The problem is thus reduced to finding the values of τcs for
which f (τcs) is equal to |R̄(zd )|2. The next step is to study
under what conditions will Eq. (100) have a solution. There-
fore, we need to study some properties of this function in
the interval 0 � τcs � α where the survival probability for
small times is positive. One can easily check these properties
to be as follows: (i) For τcs = 0, f (0) = 1 for all values of
α and τcs = α, f (α) = 0. (ii) Since f ′(0) = 1, the straight
line which is tangent to f (τcs) at τ0 has a slope of 1 and
is independent of the value taken by α. (iii) f (τcs) has a
maximum in the interval (0, α) given by τ+ = √

1 + α2 − 1,
and the value of the function at that point is f (τ+) = f+ =
2τ+e τ+/α2. It is concave. But, for α �

√
2, it has an inflection

point at τcs ≡ τi = √
α2 + 2 − 2 and it is convex for τcs < τi

and concave for τcs > τi. The above features of f (τcs) in the
interval 0 � τcs � α are represented graphically in Fig. 6.

τcs

f(τcs)

ατ+

1

f+

R̄(zd) 2 > f+

R̄(zd) 2 = f+

1 < R̄(zd) 2 < f+

R̄(zd) 2 < f+ < 1

1

FIG. 6. Sketch of the function f (τcs ).

The maximum of f (τcs) allows us to deduce a criterion
for knowing how many solutions Eq. (100) can have: (i) If
|R̄(zd )|2 > f+, there is no solution. (ii) If f+ = |R̄(zd )|2, there
is one solution. (iii) If 1 < |R̄(zd )|2 < f+, there are two solu-
tions. (iv) If |R̄(zd )|2 < f+ < 1, there is one solution. These
cases are represented graphically in Fig. 6. The primary con-
clusion about this definition of the transition time is that there
exist different solutions that depend on the modulus squared
of the residue of the density of states evaluated at the dominant
pole. Unlike the definitions adopted for the transition time
from the exponential to the power-law behavior, there is no
physical criterion for choosing one particular solution in this
case. In other words, this definition of the critical time for the
transition from the small to the intermediate time region does
not provide a unique solution and it is not possible to choose
one of them from physical arguments.

At the end of Sec. VI A, we conjectured based on the ex-
amples developed there that the intermediate time region had
been reached once the survival probability completes its first
oscillation. This would mean that the modulus of the nonex-
ponential survival amplitude at small times would be smaller
than the modulus of the exponential survival amplitude once
the survival probability completes its first oscillation, and this
fact may give us a pointer to define the critical time. Further-
more, this pointer can be easily studied owing to the fact that
the frequency of oscillations of both the survival probability
and the survival amplitude are the same (which shall be shown
in the Sec. VII C), which permits us to introduce the number
of oscillations of the survival probability in order to analyze
the temporal behavior of the exponential and nonexponential
survival amplitudes. Let us then write Ane(t ) given by Eq. (8)
and use the expression (49) for the density of states for one
isolated resonance as

Ane(t ) = 1

2

∑
s=±d

γ (zs)

(izs)ν

∫ ∞

0

yν

izs − y
g(−iy) e−ty dy. (102)

Using the notation introduced by Eqs. (67), (68), and (69)
in Sec. VI A for writing the time in terms of the number of
oscillations and making the change of variable y → y Re zs,
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we get

Ane(n) = 1

2

∑
s=±d

γ (zs)

(iξs)ν

∫ ∞

0

yν

iξs − y
g(−iy Re zs) e−(2πn)y dy.

(103)
Considering the case of large n and writing the asymptotic
expansion of Ane(n) using Watson’s lemma, we get

Ane(n) ∼ (−i)ν+1 g(0) Re

(
γ (zd )

ξν+1
d

)
�(ν + 1)

(2πn)ν+1
, n → ∞.

(104)
Note that for n = 1, 2πn which is around 6.28 can be con-
sidered large and thus we could say that the above equation
is valid for n � 1. Although obtaining an analytic estimation
of the error in using the above expression for all n � 1 is
difficult, numerical tests validate this approximation. From
Eqs. (7), (67), (68), and (69), the exponential survival ampli-
tude can be written as

Ae(n) = −2π iR(zd ) exp (−2π iξd n). (105)

Hence,

Ane(n)

Ae(n)
= 1

C(xd , ν)

e2πxd n

nν+1
e i2πn, n � 1 (106)

where C(xd , ν) is defined as

C(xd , ν) = (2π )ν+2e iπν/2R(zd )

g(0)�(ν + 1) Re (γ (zd )/ξν+1
d )

. (107)

If n ∼ 1, e2πxd n � nν+1 and |Ane(n)| � |Ae(n)|. This observa-
tion gets better for narrow resonances where xs � 1. It allows
us to establish approximately when the small time region ter-
minates. Therefore, we define the critical time for the transition
from the quadratic small time behavior of the decay law to the
intermediate exponential one as the time for which the survival
amplitude has completed its first oscillation. From Eq. (72), the
critical time in the dimensionless units defined before is given
by

τcs = 4πxd . (108)

On the other hand, we shall now provide expressions for
describing not only the small time survival probability, but
also the transition from this region to the exponential regime.
We start by computing the ratio Ane(n)/Ae(n) once again from
Eqs. (103) and (105), i.e.,

Ane(n)

Ae(n)
= e2π in

2π i

∑
s=±d

γ (zs)

γ (zd )

1

(iξs)ν

×
∫ ∞

0
e 2πxd n g(−iy Re zs)

g(zd )

yν e−(2πn)y

iξs − y
dy

= e2π in

2π i

∫ ∞

0
e 2πxd n g(−iy Re zd )

g(zd )
yν e−(2πn)y

×
[

1

(iξd )ν
1

iξd − y
+ γ (z∗

d )

γ (zd )

1

(iξ ∗
d )ν

1

iξ ∗
d − y

]
dy.

(109)

Since we are dealing with narrow resonances (xd � 1) and
since n < 1, γ (zd ) ≈ −i, exp ( 2πxd n) ≈ 1, and ξd ≈ e−ixd .

0.0 0.5 1.0 1.5 2.0

n

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

ln
[P

(n
)]

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

ln
[P

(τ
)]

0.0 0.05 0.10 0.15 0.20 0.25
τ

FIG. 7. Survival probability for small times for a system with
xd = 0.01, and an exponential form factor with bs = 1 as a function
of the number of oscillations n, and the dimensionless variable for
time τ given by Eq. (69). The solid line represents the complete sur-
vival probability, the dashed line represents the survival probability
given by Eq. (113), and the dotted line represents the exponential
component of the survival probability.

Hence, Eq. (109) becomes

Ane(n)

Ae(n)
≈ e2π in

2π i

∫ ∞

0

g(−iy Re zd )

g(zd )
(−iy)ν e−(2πn)y

×
[

e−iνxd

y − ie ixd
− e iνxd

y − ie−ixd

]
dy. (110)

Without the knowledge of the specific form of the form factor,
we cannot make more approximations. However, as n goes
from 0 to 1, we could expect that the integral decreases be-
cause of the exponential factor e−2πny. Calling this integral
N (n), i.e.,

N (n) = 1

2π i

∫ ∞

0

g(−iy Re zd )

g(zd )
(−iy)ν e−(2πn)y

×
[

e−iνxd

y − ie ixd
− e iνxd

y − ie−ixd

]
dy, (111)

we have

Ane(n)

Ae(n)
≈ e2π inN (n), xs � 1, 0 < n < 1. (112)

Both the survival probability and the transition from small
to intermediate times can be described through Eq. (112).
Furthermore, the survival probability at small times will be
given by

P(t ) = |Ae(n) + Ane(n)|2

= 4π2|R(zd )|2e−4πxd n|1 + e2π inN (n)|2, (113)

an expression that shows the oscillatory nature of the tran-
sition. An example of how the transition from small to
intermediate time happens can be seen in Fig. 7 for xd = 0.01
and an exponential form factor with bd = 1. We can see that
the survival probability for small times given by the Eq. (111)
(dashed line) agrees with the survival probability calculated
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from Eqs. (103) and (105) (solid line). We also see that the
transition ends near n = 1 by comparing with the exponential
survival probability (dotted line).

In Sec. VII C, we shall use the asymptotic expansion of
Ane(n) once again and we shall deduce the conditions on
the number of oscillations n for the intermediate exponential
region and its transition to the power law at large times.
Apart from the above observations, we can also see that since
the survival probability is convex downward at n = 0 and it
becomes convex upward near n = 1

2 , the quadratic law will
be valid approximately in the first half-cycle of the survival
probability, and the transition from the small to the intermedi-
ate time region occurs in the second half-cycle.

B. Comparison with other approaches

Investigations of the small time behavior of the survival
probability have a long history with the interest being partic-
ularly enhanced by the possibility of the so-called quantum
Zeno effect [2]. Here we shall compare the results obtained in
this work with some of those in literature for the behavior of
the survival probability at short times and its transition to the
exponential behavior at intermediate times. Before perform-
ing such a comparison, we must emphasize that most of the
comparisons in literature do not take into account the fact that
the survival probability P(t ) must be an even function of t . For
example, in [2], on the basis of models, the authors propose
that as t → 0,

P(t ) → 1 − α

β
tβ, β �= 1. (114)

The critical time is typically determined by comparing the
expansion of the exponential e−γ t at small times, namely,
exp(−γ t ) = 1 − γ t + 1

2γ 2t2 + · · · with the quadratic be-
havior P(t ) = 1 − (�H )2t2. Performing such a comparison,
Ghirardi et al. obtained an expression [4] for the critical tran-
sition time from the quadratic to the exponential decay law as

tcs = 2γ

2(�E )2 + γ 2
, (115)

where �E is the uncertainty of the Hamiltonian evaluated
at the initial state and γ is the width of the resonance. The
authors in [4] initially obtained a result based on an inequality
deduced by Fleming [49] and showed that the above result
coincided with the first one in the case of �E � γ . We shall
briefly describe the derivation of this result and rewrite it in
order to compare it with the result of this work.

Fleming derived an inequality which provided a lower
bound for the survival probability such that

|A(t )| � cos (t�E ), 0 � t � π

2�E
. (116)

Assuming that the density of states is described as a nar-
row resonance and satisfies the Breit-Wigner form near the
resonance, the critical time τG

cs was defined in [4] as the inter-
section of the functions cos2 Dτ and e−τ . Hence, considering

cos2 DτG
cs = e−τG

cs , (117)

where D = �E/γ , the approximate solution to Eq. (117)
given in the paper is

τG
cs = 1

D2
. (118)

Translating Eq. (118) to our notation, γ = ωd , and �E =√
〈(�H )2〉0,

τG
cs =

(
γ

�E

)2

= ω2
d

〈(�H )2〉0
. (119)

The right side of the above equation is nothing but the square
of the parameter α introduced earlier. Thus,

τG
cs = ω2

d

〈(�H )2〉0
= α2. (120)

In the Fock-Krylov language, the uncertainty of the energy
depends on the density of states and hence depends on the
form factor too. Therefore, the critical time derived in [4] is
in principle form-factor dependent. Similarly, τcs defined by
(100) is also dependent on the form factor used. Our definition
(108) of the critical time, i.e., τcs = 4πxd , however, depends
only on the poles of the resonance and is hence independent
of the form factor in the density of states.

If we rewrite this critical time in terms of xd = ωd/2σd , we
get

τG
cs = 4x2

d

〈(�H )2〉0/σ
2
d

, (121)

and 〈(�H )2〉0 �= 0 because of the energy-time uncertainty. We
can deduce that τcs → 0 when xd → 0. Finally, the critical
time measured in terms of the number of oscillations is

nG
cs = τG

cs

4πxd
= xd/π

〈(�H )2〉0/σ
2
d

. (122)

Critical times of Ref. [4] and our Eq. (100) for different
values of xd = ωd/(2σd ), using an exponential form factor
with bs = 2 in the density of states for an isolated narrow
resonance, are compared with our form-factor-independent
definition (108) in Table I. From Table I, we can infer that
the critical times of Ref. [4] are one order of magnitude less
than the critical times given by (108) whereas several orders
of magnitude smaller than those of (100). The number of
oscillations seem to be constant as long as xd is small but
start increasing beyond xd = 0.1. Since the result of Ref. [4] is
expected to be valid for narrow resonances, a comparison with
the above results beyond xd = 0.1 may not be appropriate.
Considering only the cases below xd = 0.1, one can draw
a general conclusion that the survival probability completes
about half an oscillation (i.e., nG

cs ≈ 0.4) before going over to
the dominant exponential decay law in contrast to ncs = 1 of
(108). However, the value of nG

cs is form-factor dependent and
increases with decreasing value of bs. For the lowest allowed
value of bs = 0.65, for example, nG

cs ≈ 0.9. The results given
in the third and sixth columns, arising from Eq. (100), are
grossly different from those of (121) and (108). One should be
cautious while drawing conclusions from the results of (100)
since (i) values of τcs obtained using Eq. (100) are strongly
form-factor dependent (for example, there is no solution for
an exponential form factor with bs = 1 even if it falls in the
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TABLE I. Comparison of the critical transition times τcs from the nonexponential to the exponential decay law at small times within the
approach of Ref. [4] and that of this work [Eqs. (100) and (108)]. nG

cs [Eq. (122)] are the number of oscillations performed by the survival
probability before reaching the exponential region. The last column gives the number ncs corresponding to the solution of (100). The number
corresponding to τcs [Eq. (108)] is always ncs = 1.

Critical times Number of oscillations

xd τG
cs τcs (100) τcs (108) nG

cs ncs = τcs(100)/(4πxd )

10−12 4.824 × 10−12 1.988 × 10−6 1.257 × 10−11 0.384 1.582 × 105

10−11 4.825 × 10−11 6.287 × 10−6 1.257 × 10−10 0.384 5.003 × 104

10−10 4.825 × 10−10 1.988 × 10−5 1.257 × 10−9 0.384 1.582 × 104

10−9 4.825 × 10−9 6.287 × 10−5 1.257 × 10−8 0.384 5.003 × 103

10−8 4.825 × 10−8 1.988 × 10−4 1.257 × 10−7 0.384 1.582 × 103

10−7 4.825 × 10−7 6.287 × 10−4 1.257 × 10−6 0.384 5.003 × 102

10−6 4.825 × 10−6 1.989 × 10−3 1.257 × 10−5 0.384 1.582 × 102

10−5 4.825 × 10−5 6.291 × 10−3 1.257 × 10−4 0.384 50.065
10−4 4.826 × 10−4 1.993 × 10−2 1.257 × 10−3 0.384 15.858
10−3 4.840 × 10−3 6.339 × 10−2 1.257 × 10−2 0.385 5.0446
10−2 4.975 × 10−2 0.206 0.1257 0.396 1.639
10−1 0.639 0.765 1.257 0.509 0.609

allowed range of values of bs and gives reasonable results
for τG

cs) and (ii) the solution of (100) is not always unique
and there are cases as mentioned above when there exists no
solution at all. As a consequence, (108) which depends solely
on the pole value of the resonance should be considered as the
reliable estimate of τcs of this work.

A brief comment about the increase in the number of oscil-
lations as well as the existence of a bigger exponential region
in P(t ) with decreasing xd is in order here. These features
depend on the coupling constant in the decay (see [50] for a
demonstration with a nice model). Explicit examples of strong
and weak decays confirm the same [51]. Taking the ratio xd to
the extremes, a large value of xd implies no exponential decay
at all for the resonance (see, for example, [8] for the case of the
broad σ resonance) and a tiny xd implies an exponential decay
for a large region of t . Although one cannot use the idea of a
coupling constant for tunneling decays in nuclear physics such
as that of 8Be to two 4He nuclei, one can see in Fig. 5 that with
xd = 3 × 10−5, the survival probability displays an extremely
large exponential region and a huge number of oscillations as
expected.

To complete the comparison, we finally note that Fleming
[49] defined the lifetime of the resonance as τ = ∫ ∞

0 P(t )dt
which is the value of the autocorrelation function R(y) of this
work [see Eq. (21)] at y = 0.

C. Critical time and the transition region between intermediate
and large times

The intermediate time region is characterized by its dom-
inant exponential nature and, in the same way, the large time
region is ruled by a strong power law. One must, however, take
into account the oscillatory nature of the survival probability
too. The oscillatory nature has given rise to a lot of debate in
literature [13,47,52,53]. Our aim in this section is to obtain
expressions that incorporate the oscillatory feature into the
description of these regions for systems described by one
isolated resonance.

In order to do this, we will use the ideas and formalism
described in [13] for studying the transition from the inter-
mediate to the large time region. In Ref. [13], the survival
amplitude given by Eq. (9) is written as the product of the sum
of the exponential and nonexponential survival probabilities,
and a modulating function I (t ):

P(t ) = [Pe(t ) + Pne(t )]I (t ), (123)

where

I (t ) = 1 +
2 Re

[ Ae(t )
Ane(t )

]
1 + ∣∣ Ae(t )

Ane(t )

∣∣2 = 1 +
2 cos

[
Arg Ae(t )

Ane(t )

]
∣∣ Ae(t )

Ane(t )

∣∣ + ∣∣Ane(t )
Ae(t )

∣∣ . (124)

Defining the function I (t ) seems to be the appropriate path for
incorporating the oscillatory component in the intermediate
and large time regions. To begin with, notice that the oscilla-
tion of P(t ) comes from the term

cos

[
Arg

Ae(t )

Ane(t )

]
,

and, from Eqs. (7) and (8), that the oscillation of the last
terms comes from the exponential component of the survival
amplitude, mainly, from the term e−izd t = e−iτ/2xd e−τ/2. Thus,
the survival amplitude oscillates with a frequency equal to

fd = 1/2xd

2π
= 1

4πxd
,

and since

cos

[
Arg

Ae(t )

Ane(t )

]
∝ cos

(
1

2xd
τ + δ

)
,

where δ is a constant, I (t ) oscillates at the same fre-
quency as well, and so does the survival probability.
On the other hand, substituting Eq. (106) in (124),
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we get

I (n) = 1 + 2 cos [2πn − ArgC(xd , ν)]

|C(xd , ν)|nν+1 exp (−2πxd n) + |C(xd , ν)|−1n−ν−1 exp (2πxd n)
, n > 1. (125)

In Fig. 8 we show a plot of I (n) as a function of n with xd = 0.1, ν = 0.5, and using an exponential form factor
with bd = 1.

For the intermediate time region, the term |C(xd , ν)|−1n−ν−1 exp (2πxd n) can be negligible with respect to the term
|C(xd , ν)|nν+1 exp (−2πxd n) and Pe(n) � Pne(n), and, on the other hand, the large time region satisfies the opposite conditions.5

From Eqs. (123) and (125), the survival probability for the former region is given by

P(n) = 4π2|R(zs)|2 exp (−4πxd n)

{
1 + 2

|C(xd , ν)|
exp (2πxd n)

nν+1
cos [2πn − ArgC(xd , ν)]

}
, (126)

and the survival probability for the latter region is given by

P(n) = 4π2|R(zs)C(xd , ν)|2
n2ν+2

{
1 + 2|C(xd , ν)| nν+1

exp (2πxd n)
cos [2πn − ArgC(xd , ν)]

}
. (127)

Although Eqs. (126) and (127) incorporate the oscillatory nature of the survival probability, we do not have characteristic times
that allow us to say when the intermediate or large time region starts or ends, or when the transition is happening. The first
step for establishing these times is to define the critical time (in terms of the number of oscillations) ncl of the transition from
the intermediate to large times. This is given by the intersection of the exponential and nonexponential survival probability
[13,38,51]:

|Ae(ncl )|2 = |Ane(ncl )|2 ∴ n2ν+2
lc exp (−4πxd nlc) = 1

|C(xd , ν)|2 . (128)

This equation has two solutions and the critical time is defined as the largest one. Another property of this time is related with
the nature of the resonance, i.e., the narrower the resonance is, the larger is the critical time.6 The next step is to analyze the
critical points of the function

m(n) = 2

|C(xd , ν)|nν+1 exp (−2πxd n) + |C(xd , ν)|−1n−ν−1 exp (2πxd n)
. (129)

It is simple to verify that, for n > 1, m(n) has a maximum
at n = ncl , and has a minimum at n = ν+1

2πxd
, or in dimension-

less units, τ = 2(ν + 1). These two times let us define where
the intermediate, the transition, and the large time regions are.
The first interval 1 < n < ν+1

2πxd
corresponds to the intermedi-

ate time region. The second interval ν+1
2πxd

< n < 2ncl − ν+1
2πxd

corresponds to the transition region: it is defined such that the
critical time is the middle point of the interval. Finally, the
interval n > 2ncl − ν+1

2πxd
corresponds to the large time region.

Summarizing, note the following:
(i) The intermediate time region is defined in the inter-

val 1 < n < ν+1
2πxd

, and the survival probability is given by
Eq. (126).

5A demonstration of this property can be seen in Appendix B.
6Our aim is not to discuss the details or demonstrate the properties

of the critical time for the transition from the intermediate to the
large time region. In [13], the authors present a complete analysis
of this for the case ν = 1

2 , and these properties are similar for the
range of values that ν can take here, so that the generalization is
straightforward.

(ii) The transition region from the intermediate to
the large time region is defined in the interval ν+1

2πxd
<

n < 2ncl − ν+1
2πxd

, and the survival probability is given

5 10 15 20 25

n

0.0

0.5

1.0

1.5

2.0

I
(n

)

xd = 0.1, bd = 1

FIG. 8. Modulating function given by Eq. (125) as a function
of the number of oscillations n. Here, xd = 0.1, ν = 0.5, and an
exponential form factor with bd = 1 is used.
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FIG. 9. Survival probability with parameters xd = 0.1, ν = 0.5,
and an exponential form factor with bs = 1 as a function of the
number of oscillations n, and the dimensionless variable for time
τ given by Eq. (69). The dotted line is the small time region, the
dashed-dotted line is the intermediate time region, the solid line is the
transition from the intermediate to large time region, and the dashed
line is large time region.

by

P(n) = I (n)

[
4π2|R(zs)|2 exp (−4πxd n)

+ 4π2|R(zs)C(xd , ν)|2
n2ν+2

]
, (130)

where I (n) must be given by Eq. (125).
(iii) The large time region is defined in the interval n >

2ncl − ν+1
2πxd

, and the survival probability is given by Eq. (127).
In Fig. 9, we show a plot of P(n) as a function of n with

xd = 0.1, ν = 0.5, and using an exponential form factor with
bd = 1. The different regions have been identified by different
line styles.

VIII. SUMMARY AND CONCLUSIONS

The time evolution of an unstable state is investigated by
studying the properties and behavior of the survival proba-
bility P(t ) of a decaying state at all times. It is well known
that the quantum mechanical description of P(t ) leads to five
distinct regions, namely, the quadratic form at small times, the
dominant exponential decay at intermediate times, the power
law at large times and the two transition regions between
the exponential and nonexponential decay laws at small and
large times. Even though the topic as such has been studied
in quite detail over decades, digging deeper into the behavior
of P(t ) in the five regions allowed us to find some subtle
features as well as restrictions in the form of P(t ) and the input
density of states (DOS) used to calculate P(t ). Working within
the commonly used Fock-Krylov formalism and taking into
account the conditions derived, each of the above-mentioned
five regions of the survival probability are studied mathemati-
cally as well as numerically with physical examples. Some of
the main observations and conclusions are listed below:

(i) In the FK formalism, the survival amplitude A(t ) is
written as a Fourier transform of the DOS. Since the nonexpo-
nential decay regions are hard to observe and the exponential
decay law dominates the observations in the real world, it
would be useful to construct a DOS leading to a purely ex-
ponential decay. We show that the latter is not possible.

(ii) The survival probability and the autocorrelation func-
tion of the density of states are shown to be a pair of cosine
Fourier transforms. This is a particular case of the Wiener-
Khinchin theorem.

(iii) A consequence of the previous result is the evenness
of P(t ).

(iv) A functional form of the DOS which depends on the
pole values, a threshold factor, and an energy-dependent form
factor is provided. Consideration of particular form factors
with physical examples of resonances leads to the observa-
tions that (i) a constant form factor leads to unphysical values
of the energy uncertainty, (ii) the mathematical condition (54)
derived in this work does not allow the usage of a Gaussian
form factor, and (iii) the commonly used exponential form
factor can be used with restrictions on the parameter in the
exponential.

(v) Transition regions from the small time quadratic law
to the exponential decay law and from the exponential to
the large time power law are studied using the constructed
DOS and the mathematical conditions derived in this work.
Expressions for the critical times of transition are provided
and compared with existing literature.

(vi) An interesting feature introduced in this work is the
description of the survival amplitude and hence survival prob-
ability in terms of the number of oscillations performed. The
small time quadratic behavior is found to go over to the ex-
ponential decay when the survival probability has completed
one oscillation. Analytical expressions for the number of os-
cillations performed in each of the regions of P(t ) are given in
terms of the pole values and the threshold factor in the DOS.

An insight into the mathematical construction of the sur-
vival probability along with the different constraints and
implications of the conditions derived for the behavior of P(t )
over the entire region of its evolution from small to large
times is thus provided in this work within the Fock-Krylov
framework. Since the time evolution of an unstable state is
often studied in literature by focusing on a particular region
of P(t ) or even a particular aspect of its behavior, such a
complete mathematical evaluation should prove useful for the
focused studies in future.

APPENDIX A: DECOMPOSITION OF THE SURVIVAL
AMPLITUDE AS A SUM OF EXPONENTIAL FUNCTIONS

AND AN INTEGRAL

Consider the complex integral∮
C

ρ(z)e−ixt dz, (A1)

where C is the contour of integration shown in Fig. 1. Since
ρ(z) satisfies the Jordan’s lemma, using the residue theorem
we get ∫

AO
+

∫
OB

= 2π i
∑

s

e−izst R(zs). (A2)
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However, for AO, z = x. Therefore,∫
AO

= −
∫ ∞

0
ρ(x)e−ixt dx = −A(t ), (A3)

and for OB, ∫
OB

= −
∫ 0

−i∞
ρ(z)e−izt dz. (A4)

The survival amplitude can be written as

A(t ) = −2π i
∑

s

e−izst R(zs) −
∫ 0

−i∞
ρ(z)e−izt dz. (A5)

APPENDIX B: RATIO OF THE EXPONENTIAL
AND NONEXPONENTIAL SURVIVAL AMPLITUDE

Our aim is to show that |Ae(n)| � |Ane(n)| in the exponen-
tial region and |Ae(n)| � |Ane(n)| for large times. Let η(n) be
the function

η(n) =
∣∣∣∣ Ae(n)

Ane(n)

∣∣∣∣ = |C|nν+1e−2πxd n.

Taking the derivative with respect to n and calculating the
possible critical points,

η′(n) = η(n)

(
ν + 1

n
− 2πxd

)
= 0, ∴ n = ν + 1

2πxd
.

It is easy to show that this critical point is a maximum. Since
η(0) = 0 and η(∞) = 0, this function starts to rise up until a
maximum, and then starts falling down.

These properties allow us to study the function 1/η(n),

i.e., |Ane(n)
Ae(n) |. In this case, when n increases from zero, 1/η(n)

falls down until n = (ν + 1)/(2πxd ), and then it starts to rise
up indefinitely. There should be some values of n such that
η(n) = 1

η(n) . The values of n where this condition is valid
are nothing but the critical points for the transition from
the exponential to the power law. Since we are interested
in narrow resonances, we know that the second solution of
Eq. (128) goes to zero when xd goes to zero too. This implies
that even for n = 1, η(n) � 1

η(n) . In conclusion, η(n) > 1
η(n)

for 1 < n < ncl , and η(n) < 1
η(n) for n > ncl , where ncl is the

critical point for large time transition.
In Fig. 10, we plot η (solid line) and 1/η (dashed line) for

xd = 0.1 and bs = 1. Finally, in Fig. 11, we plot 1 + m(n),
where m(n) is given by Eq. (129) and written in terms of η(n)
as m(n) = 2/[η(n) + η(n)−1] where m(n) (black line) has
been computed using Eq. (129) and using the approximations
deduced for η. The dashed line is when m(n) ≈ 2/η in the
exponential region and the dotted line is when m(n) ≈ 2η in
the power-law region.

APPENDIX C: EFFECT OF OTHER POLES ON Pe(t )

An interesting and typical case is a system whose survival
probability can be written approximately as a sum of the expo-
nential terms only. After a certain time, this sum should reduce
to one term associated to the dominant isolated resonance. In
order to see how this reduction law happens, we write Eq. (96)
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η−1

FIG. 10. Ratio of the exponential and nonexponential survival
amplitudes η and its inverse as a function of the number of oscil-
lations n of the survival probability.

such that the dominant pole is explicit, i.e.,

Pe(t ) = |R̄(zd )|2e−ωd t

{
1 + 2

∑
s>d

Re

[
R̄(zs)

R̄(zd )
e−i(σs−σd )t

]

× exp

(
− ωs − ωd

2
t

)}

+
∑
s′ �=d

|R̄(z′
s)|2e−ωs′ t

{
1 + 2

∑
s>s′

Re

[
R̄(zs)

R̄(z′
s)

e−i(σs−σ ′
s )t

]

× exp

(
−ωs − ω′

s

2
t

)}
, (C1)
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FIG. 11. Modulating function as a function of the number of
oscillations n of the survival probability.
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and we can approximate the exponential survival amplitude
by taking all the terms associated to the dominant pole:

Pe(t ) ≈ |R̄(zd )|2e−ωd t

{
1 + 2

∑
s>d

Re

[
R̄(zs)

R̄(zd )
e−i(σs−σd )t

]

× exp

(
−ωs − ωd

2
t

)}
= |R̄(zd )|2e−ωd t M(t ), (C2)

where M(t ) is defined as the function

M(t )=1+2
∑
s>d

Re

[
R̄(zs)

R̄(zd )
e−i(σs−σd )t

]
exp

(
−ωs − ωd

2
t

)
.

(C3)
The modulating function M(t ) [which should not be confused
with the modulating function defined by Eq. (124)] contains
information about how the reduction occurs. As is expected,
this process does not depend on the dominant pole only but
it also requires the other poles of the density of states for its
description. If we use a “mean field approach” in the sense of
approximating the sum in Eq. (C3) by taking the nearest pole
to the dominant one, the modulating function takes the form

M(t ) ≈ 1+2 Re

[
R̄(zd+1)

R̄(zd )
e−i(σd+1−σd )t

]
exp

(
−ωd+1 − ωd

2
t

)
,

(C4)

or expressing the time in dimensionless (lifetime) units of
the dominant resonance, i.e., τ = ωdt , we have Pe(τ ) =

lnPe(τ)

τ

Transition region

Exponential

FIG. 12. Sketch of the transition of Pe(τ ) to the exponential law
of the dominant pole.

|R̄(zd )|2e−τ M(τ ), where

M(τ ) = 1 + 2 Re

[
R̄(zd+1)

R̄(zd )
exp

(
−i

σd+1 − σd

ωd
τ

)]

× exp

[
−

(
ωd+1

ωd
− 1

)
τ

2

]
. (C5)

From Eq. (C5), we infer that the survival probability exper-
iment an oscillation with a frequency ωt = (σd+1 − σd )/ωd ,
and the survival amplitude goes to the exponential term asso-
ciated to the dominant pole at a rate of 2(ωd+1/ωd − 1)−1 per
lifetime unit (see Fig. 12).
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