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Investigating the quench dynamics of the bound states in a spin-orbital-coupling
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The quantum walk, as the quantum analog of the classical random walk, provides a feasible platform to study
the topological phenomenon and nonequilibrium dynamics. Here we propose a scheme to realize the quantum
walk with a single trapped ion where the Fock states provides the walk space and the zero-phonon state |n = 0〉
serves as its natural boundary. Thus, our scheme offers an opportunity to investigate the dynamics of the bound
states of the corresponding topological systems. In particular, the quench dynamics of the bound states can be
extensively studied by tuning the bulk parameters and the local boundary operator, which are experimentally
accessible. Our proposal not only offers an alternative approach to exploring the character of the bound states of
the topological systems, but also offers a way to determine different phases through the dynamical processes.
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I. INTRODUCTION

Topological matter has been studied extensively on dif-
ferent platforms [1–13]. One of the interesting features is
that topological matter is protected by topology against local
perturbations, such as the quantization of Hall conduct under
impurity [1–4]. Other unique characteristics of topological
matter are the appearance of the bound state at the boundary
of the sample, for example, the open Su-Schrieffer-Heeger
chain in the one-dimensional system [14,15], and the robust
chiral edge state moving in one direction at the boundary of
the two-dimensional system [16–20]. The bulk topological
invariants and the number of bound states can be connected
by the bulk-edge correspondence [2,3,21].

Though the equilibrium properties have been widely
explored, the nonequilibrium dynamics of the topological sys-
tem is still under investigation [22–35]. The quench process is
the typical nonequilibrium process that has been studied in
different topological systems [27,28,36,37]. The bulk topo-
logical invariants, such as Chern number, defined in quantum
states, are known to be unchanged under unitary dynam-
ics [26,38–40]; thus it is a constant during the quench process.
However, the nonunitary processes, such as the dissipation or
decoherence process, will change the bulk topological invari-
ants of the states during the quench process [39–41]. Since
the bulk-edge correspondence is only valid for the equilib-
rium situation [40,42–44], the dynamics of the bound states
at the boundary of the topological system during nonequilib-
rium processes is still elusive. For example, Ref. [39] studied
quench between topological and nontopological phases in the
Haldane model while observing the presence or absence of
edge modes. The dynamics of the bound states has attracted
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a great deal of attention [38]. In addition, how to experimen-
tally observe the dynamics of the bound state is still an open
question.

The quantum walk (QW) [45], which can be used to
construct universal quantum computation [46–48], has been
shown to be a powerful platform to study the equilibrium
and nonequilibrium topological properties of spin-orbital-
coupling systems [49–63]. In particular, it has been used
to observe the bound states [64–66]. Different QWs have
been experimentally realized on different platforms, such as
photonics [36,37,61,64,65,67,68], neutral atoms [69,70], su-
perconductors [58,71,72], and trapped ions [73,74].

The trapped ion system, which can be accurately controlled
and manipulated [75,76], is one of the most ideal platforms for
investigating quantum information processing and simulating
nonequilibrium dynamics of many-body systems [77–79]. In
particular, the QW has been realized in one or two trapped
40Ca+ ions in the phase space [73,74]. Here we propose to
encode the QW onto the Fock states, which is similar to
the result in Ref. [80]. The zero-phonon state |n = 0〉 acts
as the natural boundary of the QW. With carefully designed
laser sequences, the dynamics of the bound state can be
experimentally investigated. We analyze the quench dynam-
ics of the bound state by tuning different parameters in this
system.

The paper is organized as follows. In Sec. II we briefly
introduce the background of the QW. In Sec. III we discuss
how to realize the QW with a boundary in a trapped ion.
In Sec. IV the correspondence between boundary operators
and the virtual bulk system is introduced. The main results
are given in Sec. V. We simulate the formation of the bound
state with a scheme to verify the type of bound state. Starting
from the built bound state (if any), we study the dynamics of
the bound state with quenched QW parameters and how the
quench rate affects the edge population. We summarize the
results in Sec. VI.
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II. QUANTUM-WALK BACKGROUND

A. Introduction to QWs

Quantum walks are quantum versions of the classical
random walks. In this paper we focus on the discrete-time
quantum walk, which is defined through two operators: the
coin-state-dependent shift operation S, which couples the coin
state (denoted by |↑〉 and |↓〉) and the position state (labeled
as |n〉) of the walker, and the coin operation R(θn) (θn is the
control parameter, which may depend on the position of the
walker n). They are defined as

S =
N−1∑
n=0

|n + 1〉〈n| ⊗ |↑〉〈↑| + |n〉〈n + 1| ⊗ |↓〉〈↓|,

R(θ, n) =
N−1∑
n=0

|n〉〈n| ⊗ e−iσyθn/2, (1)

where N is the length of the lattice and σ = (σx, σy, σz ), with
σk (k = x, y, z) the Pauli matrix. The evolution of the QW is
governed by the periodic unitary operator U = SR; the num-
ber of steps of the QW is defined as the number of U operating
on the walker. Therefore, the quantum state of the QW after
m steps can be obtained by |�〉m = (SR)m|�〉0, where |�〉0 is
the initial state.

When the coin operator R is independent of the position n
and has periodic boundary conditions, the system has transla-
tional symmetry. Thus, we can apply the Fourier transform on
the position space, that is,

|n〉 =
∑

k

e−ikn|k〉,
(2)

S =
∑

k

|k〉〈k| ⊗ e−ikσz ,

where k = 2π i/N (i = 0, . . . , N − 1) and |k〉 is the quantum
state with momentum k. It is clear that the operation S couples
the spin and the momentum of the system.

For a general QW with a periodic unitary operator (Flo-
quet operator) U , with the expression of the operators in the
momentum space, we can obtain its effective Hamilton as

U = e−iHeff ,

Heff =
∑

k

E (k)|k〉〈k| ⊗ n(k) · σ. (3)

Here we assume that t, h̄ = 1. In addition, E (k) gives the
energy dispersion relationship of the system while n(k) =
(nx(k), ny(k), nz(k)) is the Bloch vector. The effective Hamil-
tonian is a typical spin-orbital-coupling Hamiltonian, which
can display rich topological properties by carefully designing
the Floquet operator U .

B. Chiral symmetry and topological phase in one-dimensional
split-step QWs

To demonstrate the topological character of the QWs, we
focus on the split-step quantum walk [50–54] (SSQW) whose
one-step Floquet operator U (θ1, θ2) is defined as

U (θ1, θ2) = S+R(θ2)S−R(θ1), (4)

where

S+ =
N−1∑
n=0

|n + 1〉〈n| ⊗ |↑〉〈↑| + |n〉〈n| ⊗ |↓〉〈↓|,

S− =
N−1∑
n=0

|n〉〈n| ⊗ |↑〉〈↑| + |n〉〈n + 1| ⊗ |↓〉〈↓|,

R(θk ) =
N−1∑
n=0

|n〉〈n| ⊗ e−iσyθk/2 (k = 1, 2). (5)

All operators are independent of the position n. Different from
the QW in Eq. (1), the shift operator S is split into two shift
operators S+ and S−, which denote that the walker moves from
|n〉 to |n + 1〉 and |n − 1〉 when the spin is in states |↑〉 and
|↓〉 and stays at the same position when the spin is in states
|↓〉 and |↑〉, respectively, and two rotation operators, including
two parameters θ1 and θ2, which are introduced in one step of
the QW. Similarly, the quantum state of the SSQW after m
steps can be obtained by |�〉m = U m(θ1, θ2)|�〉0. Generally,
we begin the evolution of the system with a localized product
state. The dispersion relation E (k) and the component of
the Bloch vector n(k) in its effective Hamiltonian Heff [see
Eq. (3)] are calculated as

cos E (k) = cos

(
θ2

2

)
cos

(
θ1

2

)
cos k − sin

(
θ1

2

)
sin

(
θ2

2

)
,

nx(k) =cos
(

θ2
2

)
sin

(
θ1
2

)
sin k

sin E (k)
,

ny(k) = sin
(

θ2
2

)
cos

(
θ1
2

) + cos
(

θ2
2

)
sin

(
θ1
2

)
cos k

sin E (k)
,

nz(k) = − cos
(

θ2
2

)
cos

(
θ1
2

)
sin k

sin E (k)
. (6)

It can be found that the Bloch vectors are rotating along the
( cos( θ1

2 ), 0, sin( θ1
2 )) axis in this system when the momentum

k ranges from 0 to 2π .
Actually, the quasiequilibrium topology of the QW is

strongly related to the symmetry of the system. Chiral sym-
metry, which is defined as the existence of a unitary operator
� to satisfy �2 = 1 and �U� = U −1 (thus �Heff� = −Heff),
is the symmetry in QWs with carefully designed orders of
operators. The chiral symmetry defined in the QWs is up-
dated with the development of the QWs. Initially, the chiral
symmetry was defined by Kitagaw et al. [50] for the Flo-
quet operator in Eq. (5) as �−1

θ U (θ )�θ = U −1(θ ) [which is
equal to �−1

θ Heff(θ )�θ = −Heff(θ )]. However, the parameter
θ dependence of �θ = e−iπAθ ·σ/2 is not satisfied and the chiral
symmetry of the QWs is later updated to the parameter-
independent form [53]. The phase diagram of such a SSQW
modified by Eq. (5) can be determined in two different time
frames with chiral symmetry (CS) [53] as

U1(θ1, θ2) = R

(
θ1

2

)
S+R(θ2)S−R

(
θ1

2

)
,

(7)

U2(θ1, θ2) = R

(
θ2

2

)
S−R(θ1)S+R

(
θ2

2

)
,
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FIG. 1. Split-step quantum walk with the parameters θ1 = π

2 and θ2 = 0. (a) Dispersion relationship, which is independent of the time
frame. (b) and (c) Two time frames with CS to obtain the Z2 × Z2 topological invariants. In this case, ν ′ = 1 and ν ′′ = 0, and thus ν0 = 1 and
νπ = 1 based on Eq. (8)

where � = σx (independent of the parameters θ1 and θ2),
which means that the Bloch vector n(k) of the effective Hamil-
tonian Heff in U1 and U2 rotates along the x axis [51] (see
Fig. 1). Strictly, the SSQW defined in Eq. (4) is not chiral
symmetrical because its rotation axis is dependent on the
parameter θ1; however, its phase diagram can also be defined
through the topological invariants based on Ref. [53]. Actu-
ally, the different phases of the SSQW can be identified by a
pair of Z2 × Z2 topological invariants [53], where

ν0 = 1
2 + 1

2 (ν ′ + ν ′′),
(8)

νπ = 1
2 + 1

2 (ν ′ − ν ′′),

where ν0 (νπ ) is defined as the number of bound states with
eigenenergy 0 (π ) in the finite-size system and ν ′ (ν ′′) is a
bulk invariant which is defined as the winding number of the
system in the first (second) time frame [37] (see Fig. 1). Thus,
Eq. (8) clearly demonstrates the bulk-edge correspondence in
the one-dimensional QW system.

According to the bulk-edge correspondence, the bound
states will appear at the boundary of the phases with differ-
ent topologies. Furthermore, the system exhibits particle-hole
symmetry (PHS): PHeffP−1 = −Heff. Here P is the com-
plex conjugation operator. One can easily test the property
PUP−1 = U for all the evolution operators Ry where S± are
real. The bound state will be protected by PHS [52] and robust
against small perturbation. In particular, the vacuum can be
viewed as a special phase and the bound states may appear at
the boundary of a semifinite (finite) QW system.

III. EXPERIMENTAL PROPOSAL

Trapped ion systems have been proved to be a powerful
platform for quantum simulation [76]. Here we propose a way
to realize the QW with a boundary by a single 171Yb+ ion in a
three-dimensional harmonic trap. In this system, the coin state
of the QW is encoded in the |F = 1, mF = 0〉 := |↑〉 and |F =
0, mF = 0〉 := |↓〉 levels of the 2S1/2 hyperfine manifold of the
171Yb+ ion with splitting ωhpf = 2π × 12.6 GHz; the lattice
sites of the QW are encoded in the number of phonons, where
the zero-phonon state |n = 0〉 provides the natural boundary
of the QW. In order to realize the QW operation as in Eq. (4),
the auxiliary Zeeman energy level |F = 1, mF = 1〉 := |a〉

will also be introduced to provide a temporary shelving state.
See Fig. 2 for experimental sketches of the proposal.

To realize the QW, we need to implement two different
types of basic operators: the rotation operator R(θ ) and the
shifting operator S±. The rotation operator R(θ ) of the coin
in the QW is easy to realize by manipulating the hyperfine
states (|↑〉 and |↓〉) by microwaves [75,81] or by the stimu-
lated Raman process [75,82]. Implementing the operator S±
in the Fock states needs more work and is a bit complicated.
Below we will first focus on how to implement S± and then

FIG. 2. Experimental sketches. (a) Energy-level diagram of a
single trapped 171Yb+ ion. Perpendicular Raman beams are used
to excite the axial motional mode. Here |↑, n〉, |↓, n〉, and |a, n〉
represent |n〉 ⊗ |↑〉, |n〉 ⊗ |↓〉, and |n〉 ⊗ |a〉. The auxiliary level
|F = 1, mF = 1〉 := |a〉 works for temporal state shelving and it
has no occupation after the whole operation. When changing the
detuning between the Raman beams, a phonon operation between
|↑〉 and |↓〉 (blue solid line) or |a〉 and |↓〉 (blue dashed line) could
be selected. Here ωZm � ωphon is assumed; thus the motional side-
band for different Zeeman levels can be exactly driven. (b) Effective
two-level system described by the anti-Jaynes-Cummings model,
where |↑, n + 1〉 and |↓, n〉 are coupled. In our proposal, the Jaynes-
Cummings model between |a, n〉 and |↓, n + 1〉 is also required, but
we do not draw it here.
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summarize the pulse sequence to realize the whole QW in the
phonon space.

To implement S±, interaction between the hyperfine states
(|↑〉 and |↓〉) with energy splitting ωhpf and the phonons
with frequency ωphon is necessary. Generally, this interaction
can be realized by a pair of properly selected stimulated
Raman beams with frequencies ωRaman1 and ωRaman2 [where
ωRaman1 − ωRaman2 = ωhpf ± ωphon + δ, − (+) denotes the red
(blue) sideband, and δ is the two-photon detuning]. Under the
rotating-wave approximation, the induced interaction can be
described by the effective two-level Jaynes-Cummings (JC)
and anti-Jaynes-Cummings (AJC) Hamiltonians [83,84]

HJC = η
�

2
a†σ−eiδt + H.c.,

(9)

HAJC = η
�

2
aσ−eiδt + H.c.,

where � = �Raman1�Raman2
2�

is the effective Rabi frequency, with
�Raman1 and �Raman2 denoting the Rabi frequencies which
are proportional to the laser intensity of the corresponding
Raman beams and � the single-photon detuning from the
upper 2P1/2 excited state; a† = ∑

n=0

√
n + 1|n + 1〉〈n| is the

creation operation of phonon; σ+ (σ−) is the flipping operation
|↑〉〈↓| (|↓〉〈↑|) of spin; and η is the Lamb-Dicke parameter,
which is always much smaller than 1.

With this integration, the phonon states |n〉 (the Fock
state with n phonon) can be manipulated. The red sideband
beam induces the transition |n〉 ⊗ |↓〉 ↔ |n − 1〉 ⊗ |↑〉, with
Rabi frequency �n,n−1 = η

√
n�. We note that |n〉 ⊗ |↓〉 and

|n − 1〉 ⊗ |↑〉 span the nth closed subspace of the JC model.
Similarly, the blue sideband beam induces the transition
|n〉 ⊗ |↓〉 ↔ |n + 1〉 ⊗ |↑〉, with Rabi frequency �n+1,n =
η
√

n + 1�. The states |n〉 ⊗ |↓〉 and |n + 1〉 ⊗ |↑〉 span the
nth closed subspace of the AJC model. Unfortunately, the
Rabi frequency �n+1,n is phonon-number dependent, which
indicates that we cannot shift all the phonon states (corre-
sponding to the lattice site of the QW) simultaneously. As a
result, to implement the hopping operators S± homogeneously
needs additional effort and is the main obstacle to realizing the
QW.

Actually, the homogeneous hopping operator S± can be
further realized by adiabatic passage, which has already been
used to cool the motional state [85–87], and stimulated Ra-
man passage (STIRAP) for phonon arithmetic [88]. Both of
the passages are based on the adiabatic theorem [89]: If the
beginning state of a quantum system is the ground state of
its initial Hamiltonian H (0), when the Hamiltonian of this
system changes slowly enough [86] and the ground state of
H (t ) is well isolated from the others by energy gaps, the
system will stay in the ground state of H (t ) all the time.
In the STIRAP, the time-dependent frequency difference be-
tween Raman beams is introduced as ωRaman1 − ωRaman2 =
ωhpf + ωphon + δ(t ) to adiabatically drive the blue sideband
transition between |↓〉 and |↑〉, where δ(t ) = δ0 cos( πt

τ
) [88]

(δ0 is the detuning at the initial time and τ is the total evolution
time). The effective Rabi frequency is modulated to the time-
dependent form �(t ) = �0 sin( πt

τ
) (also t ∈ [0, τ ]) in the JC

and AJC models. Initially [t = 0, δ(t ) = δ0, and �(t ) = 0],
the state |n〉 ⊗ |↓〉 is the ground state of the nth subspace
of the initial Hamiltonian of the JC (AJC) model; finally

[t = τ , δ(τ ) = −δ0, and �(τ ) = 0], the state |n − 1〉 ⊗ |↑〉
(|n + 1〉 ⊗ |↑〉) is the ground state of the nth subspace of the
final Hamiltonian H (τ ) of the JC (AJC) model. According
to the adiabatic theorem, the initial states with different n
can adiabatically evolve to their corresponding final states
simultaneously and the homogeneous hopping can be realized
by this adiabatic process carefully designed above.

According to Ref. [88], to make the previous adiabatic
theorem work, the parameters should be selected to satisfy
the adiabatic condition; in particular, the minimal gap during
the evolution [denoted by gmin(t )] for any n should satisfy
gmin(t ) � 1/τ . Actually, the eigenenergy spectrum can be
calculated by gap(t ) = 2

√
η2(n + 1)�(t )2/4 + δ(t )2 for each

phonon number n, which is plotted in Fig. 3(b) with τ =
20π/η�0 and δ0 = 2η�0. Given a maximal phonon number
nm, δ0 should be set as η

√
nm + 1�/2 (which is the Rabi

frequency for the |nm〉 ⊗ |↓〉 ↔ |nm + 1〉 ⊗ |↑〉 transition).
With the previous method, for the blue sideband operation

s+ (to distinguish from S± in QWs), |n〉 ⊗ |↓〉 → |n + 1〉 ⊗
|↑〉 can be realized simultaneously for all the phonon states
if the initial state is |�〉 = ∑

n cn|n〉 ⊗ |↓〉, where only spin
state |↓〉 appears. However, when the rotation operator R(θ )
is applied in the system (some terms with spin state |↑〉 will
appear), the initial-state requirement cannot be guaranteed. To
solve this problem, we introduce an auxiliary level |a〉 for state
shelving.

When the coin state is mixed by the rotation operation and
the auxiliary level is empty (which always can be realized, as
detailed in the sixth step of the proposal in the following), the
red sideband operation s− (see the second step) adiabatically
shelves the quantum state from |↓〉 to |a〉. Followed by spin
flipping between |↓〉 and |↑〉 (see the third step), the phonon
state leaves |↓〉 and |a〉 in a product state, which satisfies
the initial-state requirement of the homogeneous transition
s+ |n〉 ⊗ |↓〉 → |n + 1〉 ⊗ |↑〉. In fact, for the red sideband
operation s− (between the spin level |↓〉 and auxiliary level
|a〉), |n〉 ⊗ |↓〉 → |n − 1〉 ⊗ |a〉 can be realized by tuning the
frequency difference as ωRaman1 − ωRaman2 = ωhpf + ωZm −
ωphon + δ(t ), where ωZm is Zeeman splitting under a magnetic
field. In addition, the sideband operation (red and blue) should
satisfy the condition ωZm � ωphon to address the motional
sidebands of |a〉 while not exciting the motional sidebands of
other levels when operating them.

In order to speed up the adiabatic process and suppress the
nonadiabatic excitation, the additional counterdiabatic terms
in the control are suggested [88]. Further methods to reshape
the waveform for shortcut Raman passage have been proposed
and realized in experiments [90–93]. With these shortcut
methods, the phonon shift speeds up to τ = 5π/η�0 (with
η = 0.1 and �0 = 2π × 500 kHz) and we have τ = 50 μs.
In the whole six-step proposal, steps 2 and 5 require the
STIRAP, which takes up most of the time in the whole six-
step procedure. As a result, it is reasonable to estimate the
τ = 100 μs operation time for the whole procedure. Thus
more than ten steps can be realized during the coherence
time with the current technology (as shown in Sec. IV, the
number of steps is enough to observe many important physical
phenomena).

In our proposal, the Zeeman sublevel is needed for tem-
poral state shelving. By stabilizing the magnetic field, the
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FIG. 3. (a) Pulse sequences to realize a QW within a boundary. Six steps are required to construct U (θ1, θ2) along the black arrow direction.
The first and fourth steps are coin operations which mix the spin states; the other steps are for spin-dependent phonon-number shifting. Here
|0〉 ⊗ |↓〉 is blocked in the second step for the phonon reduction and then flips to |0〉 ⊗ |↑〉 in the third step. Thus it simulates the spin-flipping
operation at the boundary as in Eq. (18). The first four phonon states with the corresponding internal states |↓〉, |↑〉, and |a〉 are shown. Note
that there is zero probability to find the ion on the |a〉 level at the end of the sixth step. (b) Instantaneous eigenenergies of the modulated
anti-Jaynes-Cummings model H (t ) in the subspace |n〉 ⊗ |↓〉 ↔ |n + 1〉 ⊗ |↑〉 (in units of η�0). The usable motional quantum number nm

is set equal to 10 and δ0 = 2η�0. The operation time τ = 20π/η�0 to satisfy the adiabatic condition (the evolution is much slower than
the timescale set by the energy gap). The whole process then adiabatically transforms the quantum state from |↓〉 ⊗ |n〉 to |↑〉 ⊗ |n + 1〉 (or
|a〉 ⊗ |n − 1〉) for all n. (c) Virtual bulk topological invariant defined with the boundary operation. By introducing the virtual site at the n = −1
lattice, we can define the boundary cut link operator C−1,0 as mentioned in Eq. (22). Furthermore, the parameter for the virtual bulk phase is
also determined.

decoherence due from this source can be ignored. The main
limit of the steps should be the phonon coherence time. In
the experiment, the phonons are inevitably coupled with the
external thermal reservoir and introduce noise, as well as the
initial-state preparation error, which is well described by
the master equation

ρ̇(t ) = γ

2
n̄[2â†ρ(t )â − ρ(t )ââ† − ââ†ρ(t )]

+ γ

2
(n̄ + 1)[2âρ(t )â† − ρ(t )ââ† − â†âρ(t )].

Here γ denotes the coupling between the phonon and ther-
mal reservoir and n̄ denotes the average phonon number for
the thermal reservoir. In the experiment of Ref. [88], γ n̄ ≈
150 Hz. The main source of the noise is the electric-field
noise from the trapped electrodes. These heating effects could
be reduced by operating at low temperatures or cleaning the
electrodes.

To complete and help understanding, we provide the uni-
tary operation for each step of the SSQW and give an example
of quantum state evolution with the initial state |�〉0 = |0〉 ⊗
|↓〉. Note that we use s± to represent adiabatic sideband

operations (to distinguish from S± in the SSQW) and define
�ω = ωRaman1 − ωRaman2.

Step 1. Apply rotation Ry(θ1) in the spin-state space
(spanned by |↑〉 and |↓〉), which can be easily realized by
two Raman lasers with �ω = ωhpf. The evolution operator
R↓,↑

y (θ1) and the evolution of the state |�〉0 are

R↓,↑
y (θ1) =

∞∑
n=0

|n〉〈n| ⊗
[

cos

(
θ1

2

)
(|↑〉〈↑| + |↓〉〈↓|)

− sin

(
θ1

2

)
(|↑〉〈↓| − |↓〉〈↑|) + |a〉〈a|

]
,

|�〉1 = |0〉 ⊗
[

cos

(
θ1

2

)
|↓〉 − sin

(
θ1

2

)
|↑〉

]
. (10)

They are independent of the number of phonons and the ro-
tation angle θ1 can be controlled precisely by pulse duration.
Note that this operation only mixes |n〉 ⊗ |↓〉 and |n〉 ⊗ |↑〉
and leaves |a〉 ⊗ |↓〉 empty since the population of the auxil-
iary level |a〉 is zero in the initial state.

Step 2. Apply the STIRAP for the first red sideband
(spanned by |a〉 and |↓〉), with the frequency of the two
Raman lasers chosen as �ω = ωhpf + ωZm − ωphon + δ(t ).
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The evolution operator can be effectively written as

s− = −
∞∑

n=1

(|n − 1〉〈n| ⊗ |a〉〈↓| + |n〉〈n − 1| ⊗ |↓〉〈a|)

+
∞∑

n=0

|n〉〈n| ⊗ |↑〉〈↑| + |0〉〈0| ⊗ (|↓〉〈↓| + |a〉〈a|)

(11)

and the state of the system evolves to

|�〉2 = |�〉1 = |0〉 ⊗
[

cos

(
θ1

2

)
|↓〉 − sin

(
θ1

2

)
|↑〉

]
.

Note that |0〉 ⊗ |↓〉 cannot be driven at this step. The quantum
state of |↓〉 is temporarily stored on |a〉 and then flips back to
|↓〉 at step 6.

Step 3. Similar to step 1, apply Ry(π ) in the spin space
(spanned by |↑〉 and |↓〉). The evolution operator is

R↑→↓
y (π ) =

∞∑
n=0

|n〉〈n| ⊗ (|↓〉〈↑| − |↑〉〈↓| + |a〉〈a|) (12)

and the state evolves to

|�〉3 = −|0〉 ⊗
[

cos

(
θ1

2

)
|↑〉 + sin

(
θ1

2

)
|↓〉

]
.

The quantum state |↑〉 flips to |↓〉 and it will flip back at step
5 with the blue sideband operation s+.

Step 4. Apply Ry(θ2) in the space spanned by |a〉 and
|↓〉. Similar to step 1, �ω = ωhpf + ωZm and the evolution
operator is

Ra,↓
y (θ2) =

∞∑
n=0

|n〉〈n| ⊗
[

cos

(
θ2

2

)
(|↓〉〈↓| + |a〉〈a|)

− sin

(
θ2

2

)
(|↓〉〈a| − |a〉〈↓|) + |↑〉〈↑|

]
. (13)

The quantum state evolves to

|�〉4 = − |0〉 ⊗
[

cos

(
θ1

2

)
|↑〉 + sin

(
θ1

2

)
cos

(
θ2

2

)
|↓〉

+ sin

(
θ1

2

)
sin

(
θ2

2

)
|a〉

]
.

Note here that the rotation operations are between |↓〉 and |a〉.
Step 5. Apply the STIRAP for the first blue sideband

(spanned by |↓〉 and |↑〉) with �ω = ωhpf + ωZm + ωphon +
δ(t ). The effective evolution operator is

s+ = −
∞∑

n=0

(|n + 1〉〈n| ⊗ |↑〉〈↓| + |n〉〈n + 1| ⊗ |↓〉〈↑|)

+ |n〉〈n| ⊗ |a〉〈a| (14)

and the state evolves to

|�〉5 = |0〉 ⊗
[

− cos

(
θ1

2

)
|↑〉 + sin

(
θ1

2

)
sin

(
θ2

2

)
|a〉

]

+ sin

(
θ1

2

)
cos

(
θ2

2

)
|1〉 ⊗ |↑〉.

At this step, all the quantum states on |n〉 ⊗ |a〉 and |0〉 ⊗ |↑〉
remain unchanged.

Step 6. Apply Ry(π ) (spanned by |a〉 and |↓〉) with �ω =
ωhpf + ωZm. The evolution operator is

Ra→↓
y (π ) =

∞∑
n=0

|n〉〈n| ⊗ (−|↓〉〈a| + |a〉〈↓| + |↑〉〈↑|) (15)

and the state evolves to

|�〉6 = − |0〉 ⊗
[

cos

(
θ1

2

)
|↑〉 + sin

(
θ1

2

)
sin

(
θ2

2

)
|↓〉

]

+ sin

(
θ1

2

)
cos

(
θ2

2

)
|1〉 ⊗ |↑〉.

The quantum state on the auxiliary level |a〉 will flip back to
|↓〉 at the end of this step, which leaves |a〉 empty before the
next step. This means there is no probability to detect the ion
at the state |a〉 and no information is leaked after this step.

The whole process is shown clearly in Fig. 3(a). To com-
plete the QW and observe the physical phenomenon, we need
to repeat all the steps many times. Obviously, the zero-phonon
state |n = 0〉 which provides the boundary in the QW is spe-
cial (see step 2 above). We can rewrite the evolution operators
U (θ1, θ2) to distinguish the boundary site from the others
(note that a minus sign appears because|↓〉 → |↑〉 → |↓〉
gains an additional sign) by multiplying the six steps above
and simplifying to

Ux>0(θ1, θ2) = S+
x>0e−iθ2σy/2S−

x>0e−iθ1σy/2, (16)

where

S+
x>0 =

∞∑
n=0

|n〉〈n| ⊗ |↓〉〈↓| − |n + 1〉〈n| ⊗ |↑〉〈↑|,

S−
x>0 =

∞∑
n=0

|n〉〈n| ⊗ |↑〉〈↑| − |n〉〈n + 1| ⊗ |↓〉〈↓|; (17)

the boundary operator

Ux=0(θ1) = eiφ |0〉〈0| ⊗ |↑〉〈↓|e−iθ1σy/2. (18)

The parameter φ could be controlled after the second step
in our experimental proposal: Only the |0〉 ⊗ |↓〉 state has
nonzero occupation among all |↓〉 states. Thus the σz oper-
ation between |↓〉 and other energy levels (except |↑〉 and |a〉)
gives a relative phase for |n〉 ⊗ |↑〉 compared with other sites.
Due to the chiral symmetry and the PHS requirement of the
QW, φ can only be 0 or π .

We further discuss how to realize a two-dimensional
QW [50,65,71,94,95], which could be associated with non-
trivial Chern numbers and the more complex Floquet band
structure. A single step with two coin operations and two walk
operations is

U = SyR(θ2)SxR(θ1), (19)

where Sx = ∑
x,y |x + 1, y〉〈x, y| ⊗ |↑〉〈↑| + |x − 1, y〉〈x, y|

⊗ |↓〉〈↓| and Sy = ∑
x,y |x, y + 1〉〈x, y| ⊗ |↑〉〈↑| + |x, y −

1〉〈x, y| ⊗ |↓〉〈↓|, with x and y independent freedoms. In
our proposal, two dimensions of the particle propagation
can be encoded in two different motional modes of the ion,
for example, the axial and radial motional modes with the
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resolved frequencies ωz and ωr . Additional Raman beams
are required to excite the motional modes. Of course, this
two-dimensional model has two reflecting boundaries for
x, y � 0. A higher-dimensional QW is also possible with
more resolved motional modes involved. With this setup,
we can investigate the dynamics of the bound state in the
topological system.

IV. BOUNDARY AND VIRTUAL BULK PHASE

Based on the bulk-edge correspondence theory, some
bound states will appear at the interface of two topologically
different bulk phases. In particular, the bound state may ap-
pear at the boundary of a finite or semi-infinite topological
system, which can be viewed as the interface of the real bulk
topological phase and some virtual bulk phase. Interestingly,
the virtual bulk phase is only dependent on the local operator
of the boundary. To clearly establish the relations among the
bound states, the bulk topological invariants, and the boundary
condition, we need to define the correspondence between the
virtual bulk phases and the local boundary operators.

To establish the correspondence, we map our semi-infinite
model to the cut link model suggested in [53]. In the cut
link model, the shift operators of the uncut link (Sn,n+1) and
cut link operation (Cn,n+1) between the sites n and n + 1 are
introduced as

Sn,n+1 =|n〉〈n + 1| ⊗ |↓〉〈↓| + |n + 1〉〈n| ⊗ |↑〉〈↑|,
Cn,n+1 =|n + 1〉〈n + 1| ⊗ |↑〉〈↓| − |n〉〈n| ⊗ |↓〉〈↑|. (20)

The standard SSQW in Eq. (4) (−∞ � n � ∞) could be
decomposed with these operators as

U (θ1, θ2) =
∑ [

cos

(
θ2

2

)
Sn,n+1 + sin

(
θ2

2

)
Cn,n+1

]
R(θ1).

(21)

In particular, in the semi-infinite system, the lattice space
stops at the n = 0 site; however, for convenience, we can
still introduce an additional virtual site n = −1 as shown in
Fig. 3(c). The cut link operator C−1,0 serves as the boundary
condition and does not affect the evolution of our system. In
the following we can see that the operator C−1,0, which can be
experimentally controlled, plays a key role in the emergence
of the bound state.

Similar to Eq. (21) in the standard SSQW model, we can
rewrite Eqs. (17) and (18) in the semi-infinite model of our
proposal with uncut link and cut link operators. Take φ = 0
as an example:

Ub(x>0)(θ1, θ2) = −
∑
n=0

[
cos

(
θ2

2

)
Sn,n+1 + sin

(
θ2

2

)
Cn,n+1

]

× R(θ1),

Ux=0(θ1) = C−1,0R(θ1). (22)

Obviously, Ux=0(θ1) is directly connected by the operation
C−1,0.

Comparing the bulk operator Ub(θ1, θ2) and the boundary
operator Ux=0(θ1), we find that Ub(θ1, θ2 = −π ) = Ux=0(θ1).
As a result, the boundary (n = 0) can be viewed as the inter-
face of two bulks: One is the real bulk system with the bulk

operator Ub(θ1, θ2) and the other is the virtual bulk system
with the bulk operator Ub(θ1,−π ).

With the correspondence of the boundary operator and the
virtual bulk operator, we can obtain the phase diagram of the
virtual bulk system. The parameter θ2 has only two values, −π

(corresponding to φ = 0 in the boundary operator Ux=0) and
π (corresponding to φ = π in the boundary operator Ux=0),
due to the CS requirement. Consequently, the phase diagram
of the virtual bulk system includes two lines in Fig. 4(a).

If and only if the virtual bulk system and the real bulk
system have different topologies, the bound states can appear.
To clearly verify the statement, we prepare the QW system in
the state |0〉 ⊗ |↓〉 and take φ = 0 as an example. The semi-
finite system subsequently evolves under the unitary operator
U (θ1, θ2). We first consider the special case with θ1 = π/2
and θ2 = −π [red star in the phase (0,1) in Fig. 4(a)], where
the system evolves as

|0〉 ⊗ |↓〉 1→ − 1√
2

(|0〉 ⊗ |↑〉 + |1〉 ⊗ |↓〉)
2→ −|0〉 ⊗ |↓〉.

(23)

It is clear that after two steps the particle returns to its
initial state with an additional minus sign, which indicates
that the bound state is the eigenstate with eigenvalue E =
±π/2 [51,52] [the same E = ±π/2 bound state for the pink
star in the phase (1,0) and orange square in the phase (0,0)].
In contrast, for the parameters θ1 = π/2 and θ2 = π [yellow
square in the phase (1,1)], similar analyses conclude that the
other bound state (eigenstate) with E = 0, π exists, i.e.,

|0〉 ⊗ |↓〉 1→ |0〉 ⊗ 1√
2

(|↑〉 + |↓〉)
2→ |0〉 ⊗ |↓〉. (24)

For more general cases, we use the localization probabil-
ity at the boundary, Pedge = p0 + p1, where p0 and p1 are
the probabilities at n = 0, 1 sites, respectively [56], as the
indicator of the emergence of the bound state. When bound
states appear, the probability Pedge will be stabilized with a
nonzero value along the evolution steps and the stable on-site
probability Pn =N 〈�|n|�〉N (N → ∞) will exponentially de-
cay along with n for the left finite sites, which means that
Pn ∝ e−n/λ and λ is the localization length.

The localization probability Pedge after 100 steps vs dif-
ferent parameters is shown in Fig. 4(b). In the left panel
of Fig. 4(b), the parameter θ2 of the virtual bulk system is
chosen as θ2 = −π (we set the control parameter φ = 0 in
our experimental proposal), the parameter θ2 in the real bulk
system is set equal to π/2, and the parameter θ1 is the same
in the virtual and the real bulk system. The results are shown
as the cyan curve in Fig. 4(b). We scan the parameter θ1 in
one period. We study in the time frame R( θ1

2 )S+R(θ2)S−R( θ1
2 ),

which preserves CS. In this case, the topologies of the real
bulk system and the virtual bulk system are always different
and subsequently the bound state always exists. We also set
θ1 = π/2 (in the real and the virtual bulk system) and scan θ2

in the real bulk system (θ2 = −π in the virtual bulk system);
the results are shown as the blue curve in Fig. 4(b), from
which we can see that there are no bound states in the region
θ2 ∈ [−3π/2,−π/2] for the topology of the real and the
virtual bulk system, which are the same. The similar results
when we set the parameter θ2 in the virtual bulk system equal
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FIG. 4. Phase diagram of the SSQW within a boundary and
simulated localization probability at the boundary for different pa-
rameters. Here the doublet corresponds to (ν0, νπ ) in Eq. (8), which
characterizes the Z2 × Z2 topological phase. (a). Phase diagrams of
φ = 0 and π (left and right, respectively). The virtual bulk phase
(0,0) is defined by the cut link operation C−1,0, which corresponds
to the region θ2 = −π (π ) for φ = 0 (π ) as shown by the black
solid line. In the phase diagram, the dashed green lines mean that
the gap closes at E = 0 and the red solid lines mean that the gap
closes at E = π . The whole diagram is divided into four different
phases. (b) Simulation results after 100 steps with φ = 0 and π (left
and right diagrams, respectively). The initial state is prepared as
|0〉 ⊗ |↓〉. The appearance of bound states is represented by Pedge.
The cyan and blue curves correspond to scans over fixed θ1 = π/2
and θ2 = π/2, respectively. A sharp boundary between different
regions could be observed for the changing number of bound states
E = 0, π . (c) Real-space energy spectrum E (θ ) with φ = 0 and π

(left and right diagrams, respectively), calculated with 100 sites in
the system with the boundary operator in Eq. (18). The gray region
corresponds to bulk quasienergies and the gaps close at the phase
transition points. The cyan solid line corresponds to calculated bound
states with fixed θ1 = π/2 and a scan over θ2; the blue dashed line
is for fixed θ2 = π/2 and a scan over θ1. The appearance of bound
states with quasienergy 0 or π coincides with the phase diagram.
Note the unique pattern of the Floquet system: The shifting time
frame will give the same quasienergy spectrum but a different topo-
logical property.

to π are shown on the right-hand side of Fig. 4 (we set the
control parameter φ = π in our experimental proposal).

All the calculations are consistent with our observation that
the bound states appear if and only if the topology of the
virtual bulk is different from that of the real bulk system.

V. DYNAMICS OF BOUND STATES

In the preceding section we verified the existence of bound
states when the topologies of the virtual bulk system and the
real bulk system are different. In this section we study the dy-
namics of the bound states. The dynamics of the bound states
includes two different situations: One is the dynamics of the
formation of the bound states from a local initial state during
the evolution; the other is the dynamics of the bound states
after the quench of the QW (include quenching parameters
of the virtual and the real bulk system). Note that, during
the quench process which is unitary, the bulk topological
invariant [38,39], such as the winding number [41] or the
Chern number [26,38–40], of the quantum state is unchanged.
However, we can see that the number of bound states can be
changed during the quench.

Unlike the investigation of the quenches in [37], in which
the system is prepared as the ground state of Hamiltonian
H0, here the state before the quench is the steady state of a
given U (θ1, θ2) (with or without the boundary state). Actu-
ally, in the semi-infinite system, we focus only on the left
finite Fock states. The existence of the steady state is jus-
tified by the probability P(x < N0) (N0 is a given number),
particularly Pedge = p0 + p1. We focus on the time frame
R( θ1

2 )S+R(θ2)S−R( θ1
2 ) which preserves CS. When studying

the quench of the real bulk system parameters, we control the
parameter φ = 0 while changing the rotation angles θ1 and
θ2 in the experiment. The initial state is always prepared as
|0〉 ⊗ |↓〉.

Here, based on our experimental proposal, we carefully
investigate the dynamics of the bound states at the bound-
ary of the semi-infinite QW system. The investigation gives
more information about the bulk-edge correspondence in the
nonequilibrium process.

A. Formation of the bound state in the semi-infinite QW

We first study the buildup of the bound state when the
initial state is prepared as |0〉 ⊗ |↓〉. We study the dynamics
of the system, with the fixed parameter θ2 = −π (φ = 0) in
the virtual bulk system and the selected rotation angle (θ1, θ2)
as (π/2, 0) [in the phase (1,0)], (π/2,−2π/3) [in the phase
(0,0)] and (π/2, 2π/3) [in the phase (1,1)] in the real bulk
system. To observe the establishment of the bound states, we
monitor the evolution of the phonon-state population of the
walker in our experimental setup. In Fig. 5(a) the edge popu-
lation Pedge is depicted: It is clear that when the topologies of
the real bulk system (θ1 = π/2, θ2 = −2π/3) and the virtual
bulk system (θ1 = π/2, θ2 = −π ) are in the same phase (0,0),
the population will soon decay to zero (about ten steps in
our setup). When there exists a 0-energy (or π -energy) bound
state between the virtual and the real bulk system [such as
the parameter (π/2, 0) shown in Fig. 5(a)], the population
will decay and stabilize to about 0.5 in the current situation.
However, when there exist two bound states (0 energy and π

energy) at the boundary, the edge population will also decay
and stabilize to a nonzero value which is bigger than the
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FIG. 5. Existence of a bound state in different regions. We study
points in different topologies, (π/2, 0) (blue), (π/2,−2π/3) (cyan),
and (π/2, 2π/3) (green), for the rotation angle in the real bulk
system, while in the fixed the virtual bulk system θ2 = −π . The
particle is prepared as |0〉 ⊗ |↓〉. (a) Edge population Pedge vs steps. It
can be seen that Pedge decays to nearly zero after about ten steps when
the real bulk system is in the trivial phase. Also shown are plots of the
phonon number Pn vs steps in the real bulk system in phases (b) (0,1),
(c) (0,0), and (d) (1,1), with the same parameters as in (a). The clear
bound states are found at the boundary when the real bulk system is
in the nontrivial phase, as expected.

situation where only one edge mode exists [see in Fig. 5(a)].
From the plot here, we find that the steady bound state is
built after ten steps; the different behaviors of Pedge are clearly
observed for different topological phases. So it is reasonable
to observe the formulation of the bound state according to the
present experimental ability.

We further fit the stable value of the population distribution
of the phonon state in Fig. 6; it can be well described by
the exponential decay. The topology of the real bulk system
(θ1 = π/2, θ2 = 0) [blue curve in Fig. 5(a)] in the phase
(1,0) is different from that of the virtual bulk system (θ1 =
π/2, θ2 = −π ). For this condition, we solve for the eigenstate
of evolution operator [51] and analytically find the localiza-
tion length as λ = 1/log(

√
2 − 1). The simulation results are

given in Figs. 6(a) and 6(b) for the evolution after 30 and 50
steps, respectively. The orange curve shows the exponential
decay with the localization length λ mentioned above. We find
that the fitting is pretty good. In particular, p1/p0 and p2/p1

are exactly equal to e−2/λ during the evolution. We notice that
the right-moving bulk state contributes to the increase of the
mean and variation of the phonon distribution after each step
as in Fig. 6(c).

FIG. 6. Simulation result of the phonon-state distribution after
(a) 30 and (b) 50 steps, with θ1 = π/2, θ2 = 0, and φ = 0. A single
E = 0 bound state appears, as predicted for the real bulk system in
the phase (1,0), that has a different topology from the virtual bulk
system. The histogram shows the phonon distribution and the orange
line is the analytical solution of the eigenstate. (c) Mean and variance
of the QW vs steps. The features of the quadratic increment of the
deviation and the linear increment of the mean are the patterns of
acceleration of the classical random walk.

Here we would like to discuss how to experimentally verify
different bound states appearing in the previous situations.
Without loss of generality, we set φ = 0 in our simulation
and suppose that the bound state |ψb〉 is the eigenstate of the
evolution operator Ux�0, i.e.,

Ux�0|ψ〉 = e−iE |ψ〉, (25)

with eigenenergy E . Generally, the quantum state of the sys-
tem after m steps can be written as |ψ〉m = ∑

n[an(m)|↑〉 +
bn(m)|↓〉] ⊗ |n〉, where both an(m) and bn(m) are real due to
PHS. When the bound state is built, it is stable, that is, |ψ〉m =
|ψ〉m+1 for E = 0, while |ψ〉m = −|ψ〉m+1 for E = π , where
|ψ〉m is the wave function after m steps (m is large enough).
We focus only on the evolution of the parameters a0 and b0

located on the boundary, i.e.,

U (θ1, θ2)

(
a0(N )

b0(N )

)
→ R

(
θ1

2

)(
sin

(
θ1
2

)
a0(N ) + cos

(
θ1
2

)
b0(N )

sin
(

θ2
2

)[
cos

(
θ1
2

)
a0(N ) − sin

(
θ1
2

)
b0(N )

] − cos
(

θ2
2

)[
sin

(
θ1
2

)
a1(N ) + cos

(
θ1
2

)
b1(N )

]
)

=
(

a0(N + 1)

b0(N + 1)

)
. (26)
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With the stable conditions a0(N ) = a0(N + 1) and b0(N ) =
b0(N + 1), we obtain

a0 =
{

b0 for E = 0

−b0 for E = π,
(27)

which is independent of the parameters θ1 and θ2 (however,
the existence, the type of bound states, and the localization
length are dependent on the parameters). As a result, when
the bound state is the 0-energy (π -energy) type, the spin state
of the walker at the boundary is |+〉 = 1√

2
(|↑〉 + |↓〉) [|−〉 =

1√
2
(|↑〉 − |↓〉)] or 〈σx〉 = 1 (〈σx〉 = −1). Consequently, the 0-

and π -energy bound states are orthogonal and can be directly
verified by measuring the operator σx. The expectation values
of σx are easy to measure in trapped ions, by first applying the
Hadamard transform of the spin state and then measuring the
ion fluorescence.

In Fig. 7 we simulate the evolution of the spin state (at
n = 0, 1 sites) in the different real bulk systems with the stable
bound state. In Fig. 7(a) the rotation angles of the real bulk
systems (π/2, π/4) [in the phase (1,0)] and (−π/2, π/4) [in
the phase (0,1)] have topologies different from those of the
virtual bulk system [(π/2,−π ) and (−π/2,−π )]. The red
(blue) line for the 0-energy (π -energy) bound state stabilizes
to |+〉 (|−〉). In contrast, for (π/4, 3π/8) [in the phase (1,1)],
we find instead of stabilizing to a fixed state, the spin state
oscillates between two spin states (a|+〉 + b|−〉 and a|+〉 −
b|−〉 for the two adjacent steps), which corresponds to a fixed
〈σx〉 between −1 and 1 as in Fig. 7(b).

FIG. 7. Verified phases with the spin state of the quantum state
|ψ〉N . The particle is prepared as |0〉 ⊗ |↓〉 and evolves after 100
steps. (a) Spin-state space evolution for the system with a single
bound state (E = 0, π ) and n = 0, 1 sites. Red (blue) lines corre-
spond to a single 0-energy (π -energy) bound state. The average value
of σx stabilizes to 1 (−1). (b) Spin-state space evolution for the
(1,1) system as the superposition of 0- and π -energy bound states.
The average value of σx stabilizes to a value between 1 and −1, as
expected, which is different for n = 0, 1 sites

In conclusion, we can easily verify the existence of the
bound states by the edge population of the Fock states and
further determine the type of bound states by the average
value of σx in the spin-state space: 〈σx〉 = 1 for the 0-energy
bound state, 〈σx〉 = −1 for the π -energy bound state, and
−1 < 〈σx〉 < 1 for the superposition of the 0-energy and π -
energy bound states. The 0- and π -energy bound states are
product state |φs〉 ⊗ |φp〉, where |φs〉 is the quantum state in
the spin-state space and |φp〉 is the quantum state with an ex-
ponential decay population distribution in the position space.
Furthermore, it can be seen clearly in Fig. 7 that 〈σx〉 tends to
be steady after ten steps and different behavior is associated
with topological properties of the bulk system. Thus it is
reasonably observed based on current experimental ability.

B. Dynamics of bound states in quenches of QWs

Now we turn to study the dynamics of the bound state in
the quench processes. We study the sudden quench of rota-
tion angles in the experiment and thus the real bulk system.
The control parameter is set as φ = 0. Initially, the real bulk
system is chosen as (θ i

1, θ
i
2) and the parameters of the virtual

bulk system are (θ i
1,−π ). As mentioned before, if the real

and virtual bulk systems have different topologies, the bound
states will appear. After establishing the bound state by the
N0-step evolution from the initial state |0〉 ⊗ |↓〉, the rotation
angle in the experiment changes at the N + 1 step, which
means the real bulk system suddenly quenches to (θ f

1 , θ
f

2 ) [the
parameter of the virtual bulk system quenches to (θ f

1 ,−π )
simultaneously]. Then the whole system evolves with these
new parameters. Obviously, the existence of the new bound
states is strongly dependent on the parameters θ

f
1 and θ

f
2 . Here

we focus only on the dynamics of the bound states by moni-
toring their edge population Pedge still with the left finite Fock
states and the expectation value 〈σx〉 with the zero-phonon
state |n = 0〉.

First, the initial rotation parameters of the real bulk system
are (3π/4, π/4) [in the phase (1,0)] and those of the virtual
bulk system are (3π/4,−π ) [in the phase (0,0)], as shown
in Fig. 8(a). Because the real and virtual bulk systems have
different topologies, after evolving N0 = 20 steps, a 0-energy
bound state appears and becomes stable. Then we change
the rotation angles at 21 steps and thus the real bulk system
suddenly quenches to different phases and the virtual bulk
system stays in the phase (0,0). In Fig. 8(b) the real bulk
system quenches to (π/2, π/4), which is still in the phase
(1,0) (a 0-energy bound state exists in the corresponding static
system), and the virtual bulk system quenches to (π/2,−π ).
As a result, the bound state will be preserved without oscilla-
tion and decay. In Fig. 8(c) the real bulk system quenches to
(π/8, π/4), which is in the phase (1,1), and the virtual bulk
system quenches to (π/8,−π ). We can see in Fig. 8(b) that
the edge population Pedge will oscillate, decay, and stabilize
to a new value in the end, which indicates the survival of the
0-energy bound state.

To clarify, we further monitor the spin dynamics of the
zero-phonon state to determine the type of bound state (0
energy or π energy). As in Fig. 8(f), after stabilization of the
edge population, 〈σx〉 = 1 (0-energy bound state), i.e., the spin
state of the bound state tends to be |+〉, indicating that the
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(a)

(b) (c)

(d) (e)

(f) (g)

FIG. 8. Quench dynamics starting from the (1,0) phase. The
particle is prepared as |0〉 ⊗ |↓〉. After the first N0 = 20 steps for
building the bound state, the real bulk system suddenly quenches to
another phase. (a) Parameters we study before and after the quench
for the real bulk system. Also shown is the edge population Pedge vs
evolution steps with the final real bulk system in the phases (b) (1,0),
(c) (1,1), (d) (0,1), and (e) (0,0). We note that in all these cases, only
the parameters after the quench in the phases (1,1) and (1,0) have the
nonzero bound state preserved. (f) Spin-state dynamics at the n = 0
site with the same parameters as in (c): First a single 0-energy bound
state with 〈σx〉 = 1 is built at N0 = 20 steps, then it oscillates, and
finally it stabilizes to 〈σx〉 = 1. (g) Expectation value 〈σx〉 and edge
population Pedge vs θ

f
1 ∈ [−π/4, π/4] and fixed θ

f
2 = π/4, which

ensures that the system is in the phase (1,1) after the quench.

bound state is 0 energy. After the real bulk system quenches
to the phase (1,1), the expectation value 〈σx〉 is still equal to
1, which indicates that the bound state is 0 energy. Figure 8(g)
shows 〈σx〉 (red curve) and Pedge (blue curve) vs the parameters
(θ1, π/4) after quench. Here θ1 ∈ [−π/4, π/4] to ensure that
the real bulk system after quench is in the phase (1,1).

In Fig. 8(d) the real bulk system quenches to
(−3π/4, π/4), which is in the phase (0,1), and the virtual
bulk system is in the phase (−3π/4,−π ). A single π -energy
bound state will exist with the same parameters after the
quench. In contrast, in Fig. 8(e) the real bulk system quenches
to (0, π/4), which is in the phase (0,0), and the virtual bulk

FIG. 9. Quench dynamics starting from the (1,1) phase. The
particle is prepared as |0〉 ⊗ |↓〉. After the first N0 = 20 steps for
building the bound state the real bulk system suddenly quenches to
another phase. (a) Parameters we study before and after the quench
for the real bulk system. Also shown is the edge population Pedge vs
evolution steps with the final real bulk system in the phases (b) (1,1),
(c) (0,0), (d) (1,0), and (e) (0,1). The bound can be preserved except
for the system in the phase (0,0) after the quench. (e) and (f) Spin-
state dynamics at the n = 0 site with the same parameters after the
quench as in (c) and (d), respectively. The spin state stabilizes to |+〉
(|−〉), which shows a single 0-energy (π -energy) bound state.

system is in the phase (0,−π ). Under these two conditions
mentioned above, we see that the edge population Pedge will
oscillate and finally decay to zero.

Second, we study the quench process starting from the
establishment of the bound state with the real bulk system
(−π/8, π/4) [in the phase (1,1)] and the virtual bulk system
(−π/8,−π ). Both the 0-energy and π -energy bound states
can exist before the quench. The superposition of the 0-energy
and π -energy bound states can be verified by 〈σx〉 �= 1 in
Figs. 9(e) and 9(f). Then the real bulk system quenches to
a different phase, while the virtual bulk system is still in
the phase (0,0). In Fig. 9(a) the parameter of the real bulk
system quenches to (π/8, π/4) [also in the phase (1,1)] and
the virtual bulk system is in (π/8,−π ). The bound state will
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be preserved after the quench dynamics and the population
Pedge are almost the same.

In Fig. 9(b) the parameter of the real bulk system quenches
to (−π/8,−π/4), which is in the phase (0,0), and the virtual
bulk system is in the phase (−π/8,−π ). Generally, there is
no bound state in the quenched static system since the real
and virtual bulk systems have the same topology. We can see
that the bound state will quickly decay and disappear (the edge
population soon decays to zero). In Figs. 9(c) and 9(d) the real
bulk system quenches to (−π/2, π/4) [in the phase (0,1)] and
(π/2, π/4) [in the phase (1,0)] and the virtual bulk system
is in the phases (−π/2,−π ) and (π/2,−π ), respectively.
We can see the survival of the bound state for the above
conditions.

To see the details of the surviving bound states, we monitor
their spin dynamics [see Figs. 9(e) and 9(f)]. We find that
the expectation value 〈σx〉 approaches 1 and −1 in Figs. 9(e)
and 9(f), which indicates that only the 0-energy and π -energy
bound states survive, respectively, and the other bound state
decays in this situation.

Third, we study the initial real bulk system in the phase
(0,0) with (0,−π/4) and the virtual bulk system also in the
phase (0,0) with (0,−π ). There is no bound state in this
system and the edge population will approach 0 after the
system evolves N0 = 20 steps. The real bulk system quenches
to a different phase and the virtual bulk system stays in the
phase (0,0): In Fig. 10(a) the real bulk system quenches to
the phase (0,0) with the parameters (0,−π/8), in Fig. 10(b)
the real bulk system quenches to the phase (1,0) with the
parameters (π/2,−π/4), in Fig. 10(c) the real bulk system
quenches the phase (0,1) with the parameters (−π/2,−π/4),
and in Fig. 10(d) the real bulk system quenches to the phase
(1,1) with the parameters (0, π/4). For all the cases above, the
bound state can be established.

Finally, we consider the quench of the virtual bulk sys-
tem and keep the real bulk system parameters unchanged.
As mentioned before, when the real bulk system is set as
(θ1, θ2), the virtual bulk system also can be controlled (tuned
by the parameter φ). As shown in Fig. 11(a), the parameter
φ in the virtual bulk system before quench is set equal to
0. The system supports the nontrivial bound state if the real
bulk system (θ1, θ2) has a topology different from that of the
virtual bulk system. After stabilization of the edge population
(with enough evolution steps, N0 = 20 in our simulation), the
parameter φ of the virtual bulk system suddenly quenches
to π . Then the system evolves with the parameter after the
quench. We notice that with fixed (θ1, θ2) and a quench control
parameter φ from 0 to π , the original phases (1,0) and (0,1)
quench to (0,1) and (1,0), respectively, and the original phases
(1,1) and (0,0) quench to (0,0) and (1,1), respectively.

In Fig. 11(b) [Fig. 11(c)] the real bulk system is chosen in
the phase (1,0) with the parameters (3π/4, π/4) [in the phase
(0,1) with the parameters (−3π/4, π/4)] and the virtual bulk
system is initially in the phase (0,0). There is a 0-energy (π -
energy) bound state located between these two bulk systems.
After the quench, the real bulk system is in the phase (0,1)
[(1,0)] and the quenched virtual bulk system is in (3π/4, 0)
[(−3π/4, 0)]. The quenched real and virtual bulk systems still
have different topologies. The edge population Pedge further
evolves to a stable value.

FIG. 10. Quench dynamics starting from the (0,0) phase. The
particle is prepared as |0〉 ⊗ |↓〉. After the first N0 = 20 steps, the
real bulk system suddenly quenches to another phase. (a) Parameters
we study before and after the quench for the real bulk system. Also
shown is the edge population Pedge vs evolution steps with the final
real bulk system in the phases (b) (1,1), (c) (0,0), (d) (1,0), and (e)
(0,1). We note that no bound state can be built when the system is in
the phase (0,0) before the quench.

Similarly, we monitor the spin dynamics in Fig. 11(e)
[Fig. 11(f)] to see the details of the surviving bound states
in Fig. 11(a) [Fig. 11(b)]. We find that the 〈σx〉 keep 1 (−1)
in Fig. 9(e) [Fig. 9(f)] unchanged. That is because the single
0-energy (π -energy) bound state for φ = 0 before the quench
becomes a π -energy (0-energy) bound state for φ = π after
the quench, which can be maintained in the system all the
time.

In Fig. 11(d) the real bulk system is in the phase (1,1)
with the parameters (−π/8, π/4) and the virtual bulk sys-
tem is also initially in the phase (0,0) with the parameters
(−π/8,−π ). The 0- and π -energy bound states will be sta-
ble at the boundary. The virtual bulk system will quench to
the original phase (1,1) with the parameters (−π/8, 0). The
quenched virtual and the real bulk systems have the same
topology and there is no bound state. Therefore, the bound
state is quickly decays and disappears. In Fig. 11(e) the real
bulk system is in the phase (0,0) with the parameters (0, π/4)
and the virtual bulk system is also in the phase (0,0) with the
parameters (0,−π ). They have the same topology and there
is no bound state stable at the boundary. Similarly, the virtual
bulk system will quench to the original phase (1,1) and has a
topology different from that of the real bulk system; however,
the bound state cannot be established in this situation.
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FIG. 11. Quench dynamics of the virtual bulk system. The par-
ticle is prepared as |0〉 ⊗ |↓〉. (a) Diagram of quench in the virtual
bulk system. The system first evolves under the control parameter
φ = 0 for N0 = 20 steps and then suddenly quenches φ to π and
thus quenches the virtual bulk system. Also shown is the edge popu-
lation Pedge vs evolution step system before the quench in the phases
(b) (1,0), (c) (0,1), (d) (1,1), and (e) (0,0) and the system after the
quench in the phases (b) (0,1), (c) (1,0), (d) (0,0), and (e) (1,1). We
note that in (b) and (c) the bound states are preserved, and further
study spin-state dynamics under these two conditions in (e) and (f).

With the previous simulation results, we find that only
when both systems, before and after the quench, support the
same type of bound state, the bound state can exist after the
quench.

In addition, we find that the 0-energy and π -energy bound
states have similar Fock state distributions; however, they have
different spin states when they are located at the boundary.
Consequently, we can transfer the bound state with a very
simple operation: implementing σz on site 0. As shown in
Fig. 12(a), the blue curve with the σz operation has a non-
vanishing edge population Pedge compared with the purple
curve. The spin dynamics in Fig. 12(b) further enhances our

FIG. 12. Recovery of the bound state when the quench is be-
tween (1,0) and (0,1) with the same parameters as in Fig. 8(d).
(a) Edge population Pedge vs evolution steps with and without σz

operation at the end of step N0, which transfers |+〉 to |−〉 and
thus helps recover the bound state. (b) Spin-state dynamics with the
additional σz operation. We note how a π -energy bound state is built
starting from a 0-energy bound state.

argument. First, the spin state of the bound state tends to be
|+〉, which indicates that the 0-energy bound state is built,
and then with σz the operation swaps 〈σx〉 with −1 (thus |−〉).
Then the bound state can further evolve and becomes stable in
the phase (0,1).

C. Edge population with different quench rates

We further investigate the relation between the value of
Pedge and the quench rate. To clearly describe the effect of
the quench rate, the initial parameter θ i quenches to the final
parameter θ f by step Nq and the time-dependent parameter θ i

has the form

θ (t ) =

⎧⎪⎨
⎪⎩

θ i, t < N0

θ i + θ f −θ i

Nq
(t − N0), N0 � t � N0 + Nq

θ f , t > N0 + Nq.

(28)

The first N0 steps are used to build the bound state (if any)
between the real bulk system with the parameters (θ i

1, θ
i
2) and

the virtual bulk system with the parameters (θ i
1,−π ). Then Nq

steps are used to quench the real bulk system and the quench
speed v = θ f −θ i

Nq
. Obviously, the larger Nq is, the slower the

quench dynamics happen. Finally, additional steps (after N0 +
Nq steps) are used to build the bound state (if any) between the
real bulk system with the parameters (θ f

1 , θ
f

2 ) and the virtual
bulk system with the parameters (θ f

1 ,−π ). In this case, we
investigate only the relation between Pedge and the quench rate.
All the proposals mentioned above can be realized precisely
in the experiment by changing the rotation angles during each
cycle.

In Fig. 13 we study the quench dynamics with different
quench steps Nq. All of the quenches are from the real bulk
system in the phase (1,0) with the parameters (π/8, π/4)
to the phase (1,1) with the parameters (3π/4, π/4), and the
virtual bulk system is in the phase (0,0). We thus have quench
speed vq = 5π

8Nq
. In the initial system, a single 0-energy bound

state can be stabilized after N0 = 20 steps since the topolo-
gies of the real and virtual bulk systems are different. In
Fig. 13(b) we study the edge population vs evolution steps.
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FIG. 13. Quench dynamics starting from the (1,0) phase with
different quench steps Nq. The particle is prepared as |0〉 ⊗ |↓〉.
(a) Parameters we study before and after the quench for the real
bulk system [same as in Fig. 8(c)]. The inset shows the calculated
real-space energy spectrum, with 50 lattice sites under the boundary
condition in Eq. (18). The red dot is for the E = 0 bound state and
the green dot is for the E = π bound state. The energy gap �π at
E = π sets the quench step scale jumping to the π -energy bound
state. (b) Edge population Pedge vs evolution steps with different Nq.
(c) Stable state edge population Pedge after the quench. Blue points
show the numerical calculation, while the blue dashed line shows the
result with the Landau-Zener (LZ) formula, which has the form e−βNq

in our condition. Here β is set equal to 1.3.

Blue curves are for the sudden quench (Nq = 1), cyan curves
are for Nq = 4, green curves are for Nq = 6, red curves are
for Nq = 8, and purple curves are for Nq = 10. We can see
that the population Pedge is bigger when the quench is slower.
When the quench is slow enough, Pedge is almost the same as
the Pedge before the quench, which indicates that there is no

transport happening. However, when the quench is quick, the
population decays. This phenomenon can be well understood
by the Landau process [96]. The bound state is isolated from
the transport modes with a gap as shown in the Fig. 11(a)
inset. If the quench is fast, the isolated bound state has some
probability of jumping to the transport modes; however, if
the quench is slow enough, the process is almost adiabatic
and the bound mode cannot jump to the transport modes. To
further understand this process, we fit the population Pedge vs
Nq, which can be well described by the Landau process as
e−α�2

π /vq (thus e−βN ) in Fig. 13(a). Intuitively, when vq < �π ,
there will be a limited possibility of jumping to the π -energy
bound state. Here vq = 5π

8Nq
= �π gives Nq ≈ 10, which coin-

cides with Fig. 13(c); for Nq > 10, Pedge is almost the same as
the Pedge before the quench.

VI. CONCLUSION

In this paper we have presented a proposal to realize QWs
in the Fock state with a carefully designed laser sequence in a
trapped ion. In this proposal, the properties and the dynamics
of the bound states can be experimentally observed with a
natural boundary. In particular, the quench dynamics of the
bound states with energy 0 or π can be monitored by the
population of the phonon states and the expectation value of
the operator 〈σx〉 of the selected internal level of the ion.

Different quench dynamics have been comprehensively
discussed. With the development of the manipulation of the
phonons [88] in a trapped ion, all the required techniques
are available. Actually, all the phenomena associated with
the formulation of the bound states can be observed in the
experiment based on the analysis in the text. Furthermore, the
detection method we proposed does not require any density
of state reconstruction, which does not set a limit when more
steps can be realized. However, for the quench dynamics we
discussed, first steady bound states should be discussed and
then the parameters of the system are tuned. The steady-state
behavior can be observed at around 20 steps, but the results are
still promising with a further increase of the phonon coherence
time and phonon operation ability.
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(2014).
[8] L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Phys. 12, 626
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