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We provide an interesting two-party parity-oblivious communication game whose success probability is solely
determined by the Bell expression. The parity-oblivious condition in an operational quantum theory implies the
preparation noncontextuality in an ontological model of it. We find that the aforementioned Bell expression has
two upper bounds in an ontological model: the usual local bound and a nontrivial preparation noncontextual
bound arising from the nontrivial parity-oblivious condition, which is smaller that the local bound. We first
demonstrate the communication game when both Alice and Bob perform three measurements of dichotomic
observables in their respective sites. The optimal quantum value of the Bell expression in this scenario enables
us to device-independently self-test the maximally entangled state and trine set of observables, three-outcome
qubit positive-operator-valued measures and 1.58 bits of local randomness. Further, we generalize the above
communication game in that both Alice and Bob perform the same but arbitrary (odd) number (n > 3) of
measurements. Based on the optimal quantum value of the relevant Bell expression for any arbitrary n, we
also demonstrate device-independent self-testing of the state and measurements.
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I. INTRODUCTION

The Bell theorem [1] is at the heart of quantum founda-
tions. This no-go proof asserts that every quantum statistics
cannot be accounted for by any ontological model satisfy-
ing locality. Later, it was found that Bell’s theorem certifies
the nonlocal correlation in a device-independent way in that
no characterization of devices needs to be assumed. Besides
the immense impact of Bell’s theorem on conceptual foun-
dations of quantum theory, the device-independent quantum
certification based on it has led to many potential practical
applications (for a review see [2]) in quantum information
processing tasks.

Another pertinent no-go proof in quantum foundations, the
Kochen-Specker (KS) [3] theorem, proves an inconsistency
between the quantum theory and noncontextual ontological
models. While the demonstration of Bell’s theorem requires
two or more spacelike separated systems, the KS theorem can
also be demonstrated for a single system having dimension of
the Hilbert space d � 3. However, the traditional KS notion
of noncontextuality is merely applicable to the deterministic
ontological models of quantum theory and the ontic states
strictly provide the values corresponding to the sharp projec-
tive measurements only. The notion of KS noncontextuality
was further generalized by Spekkens [4] for positive-operator-
valued measures (POVMs) in any arbitrary operational theory.
He also extended the formulation to the transformation and
preparation noncontextuality. In the present work, the notion
of preparation contextuality plays an important role.
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The communication games [5–27] are widely used tools
for studying the fundamental limiting features of an opera-
tional theory in terms of their ability to process information.
In such a game, two or more parties jointly perform a given
task with the highest possible efficiency despite the amount
and type of communication being constrained by some rules.
In terms of the nature of communication from sender to re-
ceiver, there are two major classes of games: one in which
the dimension of the communicated system in classical or
quantum theory is bounded and another in which the obliv-
iousness condition on the communication is imposed without
any restriction on the dimension of the system and/or on
the amount of communication. There is yet another class of
games using energy constraints [22] and information content
constraints [27]. Both classes of communication games can
be played either in the prepare-and-measure scenario or in
the entanglement-assisted scenario [17–21,23–26]. The well-
known parity-oblivious random access code [17–20,23] is one
such communication game.

In this work, we provide an interesting two-party oblivious
communication game in which the sender (Alice) is allowed
to communicate any amount of information but that should
not reveal the parity information of the inputs to the re-
ceiver (Bob). We demonstrate that the success probability of
this parity-oblivious communication game is solely dependent
on a suitable Bell expression. Note here that obliviousness
in an operational theory can equivalently be represented as
obliviousness at the level of ontic states if the ontological
model of that operational theory is preparation noncontextual
[17]. In this connection, it is also worthwhile to note that,
in two-input–two-output Bell scenario the preparation non-
contextuality assumption in an ontological model of quantum
theory can also be viewed as a locality condition [28,29].
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We call it a trivial preparation noncontextuality condition.
However, in a two-party Bell scenario beyond the two-input–
two-output one there could be certain forms of oblivious
condition which can lead to nontrivial restriction on the
choices of inputs. In such a case the upper bound of the
Bell expression may be reduced from the trivial case (the
local bound), which we term here a nontrivial preparation
noncontextual bound. Thus, for a specific choice of states and
measurements, it is possible that the optimal quantum value
of the Bell expression may not be large enough to exhibit
nonlocality, but the nonclassicality in the form of nontrivial
preparation contextuality may still be revealed. In quantum
theory, the optimal value of the Bell expressions enables one
to self-test the state and measurements.

Specifically, we propose an entanglement-assisted parity-
oblivious communication game in that both Alice and Bob
receive inputs x, y ∈ {1, 2, . . . , n} with odd n � 3 and ac-
cording to which they perform local measurements on their
respective sites. Each of the local measurements produces
dichotomic outputs a, b ∈ {0, 1}. The inputs of Alice satisfy
a parity-oblivious condition and this in turn provides that a
functional relationship between Alice’s observables has to
be satisfied. We show that the success probability of the
communication game is solely determined by the value of a
family of Bell expressions (say, Bn) which has a local bound
and a nontrivial preparation noncontextual bound. We demon-
strate that an optimal quantum value (Bn)opt

Q enables one to
device-independently self-test the entangled state and a set of
projective measurements.

We first demonstrate the communication game for n = 3,
which allows us to self-test a trine set of observables and
entangled state. We then show that a simple modification of
the aforementioned game can certify the three-outcome qubit
POVMs, which in turn can be used to certify 1.58 bits of
local randomness. Further, we generalize the aforementioned
three-input game to any (odd) arbitrary n input game and
optimal quantum success probability enables the self-testing
of a maximally entangled state and a set of observables. We
further discuss that such a generalization does not enable us
to certify the randomness.

The plan of the paper is the following. In Sec. II we pro-
vide the preliminaries of the oblivious communication game,
the notion of preparation noncontextuality in an ontological
model, the self-testing protocols, and the device-independent
randomness certification. In Sec. III we provide a specific
entanglement-assisted parity-oblivious game in which Alice
and Bob perform three measurements each and optimization
of the success probability of that game. In Sec. IV we provide
the self-testing protocol that certifies the entangled state and
the trine set of observables. The self-testing of three-outcome
POVMs and local randomness is provided in Sec. V. The
generalization of the communication game for any arbitrary
odd n is provided in Sec. VI. We summarize our results in
Sec. VII.

II. PRELIMINARIES

Before presenting the main results, we briefly summarize
the notion of preparation noncontextuality in an ontological

model, the parity-oblivious communication game, the device-
independent self-testing, and certifications randomness.

A. Operational theory and ontological model

We invoke an elegant framework of an ontological model
[4,30] of quantum theory to introduce the notion of noncon-
textuality from a modern perspective. Given a preparation
procedure P and a measurement procedure M, an operational
theory assigns a probability p(k|P, M ) of obtaining a partic-
ular outcome k. In quantum theory, a preparation procedure
P produces a density matrix ρ and a measurement procedure
M (in general described by POVMs Ek) provides the proba-
bility of a particular outcome k being given by p(k|P, M ) =
Tr[ρEk], the Born rule.

In an ontological model of quantum theory, it is assumed
that whenever ρ is prepared by P, a probability distribu-
tion μP(λ|ρ) in the ontic space � is prepared, satisfying∫
�

μP(λ|ρ)dλ = 1, where λ ∈ �. The probability of obtain-
ing an outcome k is given by a response function ξM (k|λ, Ek )
satisfying

∑
k ξM (k|λ, Ek ) = 1, where a measurement oper-

ator Ek is realized through M. A viable ontological model
should reproduce the Born rule, i.e., for all ρ, Ek , and k,∫
�

μP(λ|ρ)ξM (k|λ, Ek )dλ = Tr[ρEk].
An ontological model of an operational theory can be as-

sumed to be noncontextual in the following way [4]: If two
experimental procedures are equivalent in operational theory,
then they can be represented noncontextually in an ontolog-
ical model. Then an ontological model of quantum theory is
assumed to be preparation noncontextual for all M and k,

p(k|P, M ) = p(k|P′, M ) ⇒ μP(λ|ρ) = μP′ (λ|ρ), (1)

where ρ is prepared by two distinct preparation procedures P
and P′ [4,31,32]. We will shortly see that in a preparation non-
contextual ontological model the parity-oblivious constraint in
a communication game in operational quantum theory implies
an equivalent obliviousness condition at the level of ontic
states.

B. Oblivious communication games

Consider a scenario where two distant parties, Alice and
Bob, collaborate to perform a common task through a one-
way communication [5–10,12–16]. Alice (Bob) receives an
input x ∈ {1, . . . , nA} (y ∈ {1, . . . , nB}) with probability dis-
tribution pA(x) [pB(y)]. Bob’s task is to guess a function of
their interest f (x, y) with the help of Alice’s communication.
For this, he encodes his answer in an output variable, say,
b ∈ {0, 1}. Let p(b|x, y) represent the probability of obtaining
a binary output b given inputs x and y. The input may also
contain the output of Alice. The guessing probability of the
function f (x, y) is a linear function of the observed proba-
bilities {p(b|x, y)}. Thus, any linear figure of merit can be
expressed as

P =
∑
x,y

Cb
x,y pA(x)pB(y)p(b = f (x, y)|x, y), (2)

where Cb
x,y is the payoff function of the game which quantifies

the normalized weightage for guessing the correct f (x, y).
The quantum advantage of a communication game over clas-
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sical resources becomes trivial if Alice is allowed to send her
input x to Bob. However, if some constraints are imposed on
the communication from Alice to Bob, then the supremacy of
quantum resources may be exhibited. One such constraint can
be bounding the dimension of the input. Another one, in which
we are particularly interested here, is the parity-obliviousness
condition [17–21,23–26,33,34]. Such a condition implies that
there is no restriction on the number of communications,
but that should not covey the information about a particular
property of the inputs.

In an operational theory, Alice prepares the inputs x by
the preparation procedures Px and upon receiving the input
y, Bob performs the measurement of My. Consider that there
are L subsets having the same number of elements of the
input Pl ⊂ Px with l = 1, 2, 3, . . . , L. An oblivious condition
demands that an input is not distinguishable whether it has
come from Pl ⊂ Px or from Pl ′ ⊂ Px even when Alice’s com-
munication is not restricted. For our purpose it will be enough
to consider the input of Alice as being uniformly distributed
so that pA(x) = 1/|Px|, where |Px| is the cardinality of the set.
Then, for an oblivious game for all l , l ′, y, and b we can write

∑
Px∈Pl

p(Px|b, My) =
∑

Px∈Pl′

p(Px|b, My). (3)

Using the Bayes rule, one can write p(Px|b, My) =
p(b|Px, My)p(x, y)/p(b|My ). By noting that p(x, y) =
pA(x)pB(y), Eq. (3) can be written as

∑
Px∈Pl

p(b|Px, My) =
∑

Px∈Pl′

p(b|Px, My) (4)

for all l , l ′, y, and b. This means that the two input sets Pl

and P′
l cannot be distinguished by any outcome b and any

measurement My in an operational theory. This takes the form
of the premise of the notion of preparation noncontextuality
given in Eq. (1). Assuming preparation noncontextuality in
an ontological model of the above operational theory, we can
write ∑

Px∈Pl

μ(λ|Px ) =
∑

Px∈Pl′

μ(λ|Px ), (5)

where λ ∈ � is the ontic state and � is the ontic state space.
Using the Bayes rule once again, it can be shown that

∑
Px∈Pl

μ(Px|λ) =
∑

Px∈Pl′

μ(Px|λ), (6)

which implies that for preparation noncontextual models, the
satisfaction of the obliviousness condition in an operational
theory provides an equivalent representation at the level of
the ontic states. In other words, the obliviousness condition
must be satisfied at the level of ontic states λ too for the
preparation noncontextual model. In this work, we consider
a particular obliviousness condition, the parity-obliviousness
one, in which no parity information of the inputs will be
transmitted to Bob due to Alice’s communication. Similarly,
for preparation noncontextual ontological models, the ontic
state λ cannot contain any information about the parity.

C. Device-independent self-testing

Self-testing in its traditional form is a device-independent
protocol that aims to uniquely characterize the nature of
the target quantum state and measurements solely from the
correlations. Essentially, this requires finding a suitable Bell
inequality whose maximum violation is achieved uniquely
by the target state and measurements involved. Given the
communication game discussed above, the observed joint
probability in quantum theory can be obtained from the Born
rule and is given by p(ab|x, y) = Tr[ρAB(Aa|x ⊗ Bb|y)], where
ρAB = |ψAB〉〈ψAB| is an entangled state and {Aa|x} and {Bb|y}
are the sets of local measurements that belong to Alice and
Bob, respectively.

The aim of the self-testing is to find the suitable corre-
lations which can uniquely be realized by the target state
and measurements. The traditional self-testing scenario was
first proposed by Mayers and Yao [35]. Later, McKague and
Mosca [36] used this isometric embedding to develop a gen-
eralized Mayers-Yao test [37]. Since then, many works on
this topic have been reported [38–47]. Related works, such
as certification of binary outcomes, also have been reported
[48]. Another interesting proposal for device-independent
self-testing of Pauli observables was put forwarded in [44,45]
using three Clauser-Horne-Shimony-Holt inequalities. For a
recent review, see Ref. [49].

However, although device-independent scenario uses
minimal assumptions, conclusive experimental certification
are challenging. To circumvent this issue, semi-device-
independent self-testing protocols have been proposed
[50–58] where the entanglement is not required and the di-
mensions of the system are known. Such protocols are claimed
to be more appealing for experimentalists compared to fully
device-independent Bell tests. In this work, based on the opti-
mal quantum success probability of a suitable communication
game, we provide schemes to device-independently self-test
the entangled state, a specific set of projective measurements,
and the three-outcome extremal qubit POVMs.

D. Certification of randomness

Randomness is a powerful resource having a wide field
of applicability ranging from scientific research to daily life.
Classical algorithms, however powerful they may be, can only
produce a pseudorandom number, whose unpredictability re-
lies on the complexity of the generator [59]. In contrast,
quantum theory provides intrinsic randomness through the
unpredictability of the Born rule. Device-independent ran-
domness generation relies on a fundamental relation between
the nonlocality of quantum theory and its random character,
which is usually expressed in terms of a trade-off between
the probability of guessing correctly the outcomes of mea-
surements performed on quantum systems and the amount of
violation of a given Bell inequality [1,2,60].

Such a strategy of certifying device-independent random-
ness was first put forward by Colbeck [61]. Adopting a
strategy similar to that in [62], the relation between random-
ness and violation of Bell’s inequality is established through
nonlocal guessing games. The joint probability P(ab|x, y)
can be obtained when Alice and Bob perform measurements
according to the given inputs. In our case, we have inputs
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x, y ∈ 1, 2, . . . , n and outputs a, b ∈ {0, 1}. Then there will be
a number 2n2 of joint probabilities that can be viewed as a
component of a vector P = {p(a, b|x, y)}, which is referred
to as behavior which characterizes the systems of Alice and
Bob [63]. In our communication game, it is assumed that P is
given, which means it is a promise on the behavior. In the
nonlocal guessing game there is another party, Eve, whose
goal is to guess Alice’s outcome for a certain input (say, x∗)
with the highest possible probability. A strategy of Eve can be
that she prepares the quantum state |�ABE 〉 ∈ HA ⊗ HB ⊗ HE

for Alice and Bob so that |�AB〉 can be obtained by tracing out
her system. Given inputs x and y, Alice and Bob measure sets
of POVMs {Aa|x} and {Bb|y}, respectively. Thus, P(ab|x, y) =
Tr[(Aa|x ⊗ Bb|y ⊗ I)ρABE ]. Given a special input x∗, the local
guessing probability can be written as

G = max
F

P(a, a|Ax∗ , F ) = max
F

Tr[(Aa|x∗ ⊗ I ⊗ Fa)ρABE ],

(7)

where F = {Fa} is the POVM of Eve whose measurement
result provides her the best guess of Alice’s outcome. The
min-entropy can be used as a measure of randomness so that
an amount of randomness Hmin(a|x) = − log2 G is generated
by Alice.

Quite a number of works in this direction have been
reported [58,64–70] and verified experimentally [71–73].
Note that the device-independent randomness certification
faces practical challenges that arise with the loophole-free
violation of Bell’s inequality by lowering the bit rate. In
recent times, loophole-free Bell tests have been realized
[74–76] which in turn enable experimental demonstrations
of device-independent random number certification [71,72].
However, such implementation still remains a difficult task
to perform commonly. To tackle this practical issue, the
device-independent self-testing of a random number genera-
tor in a prepare-and-measure scenario was proposed in [77].
Semi-device-independent randomness certification protocols
[78–81] in a prepare-and-measure scenario have also been
proposed where the dimension of the quantum system is
known. Here we demonstrate the device-independent certifi-
cation of randomness using the optimal success probability of
our communication game.

III. PARITY-OBLIVIOUS COMMUNICATION GAME AND
RELEVANT BELL INEQUALITY

Equipped with preliminary ideas about the ontological
model and oblivious communication game, we are now in a
position to introduce a specific parity-oblivious communica-
tion game. We first provide a parity-oblivious communication
game where Alice and Bob have inputs x, y ∈ {1, 2, 3} and
outputs a, b ∈ {0, 1}. These correspond to the measurements
of dichotomic observables of Ax and By by Alice and Bob,
respectively. Using her output, Alice prepares six input states
xi ∈ (x, a) ≡ {10, 11, 20, 21, 30, 31}, where i = 1, 2, . . . , 6.
For our purpose we consider a uniform distribution of in-
puts of Alice and also for Bob, so pA(x) = pB(y) = 1

3 . The
winning rule of the game is that Bob’s output must be b =
δx,y ⊕2 a. In an operational theory the success probability of

this communication game is

P3 = 1

9

3∑
x,y=1

p(b = δx,y ⊕2 a)|x, y). (8)

When there is no restriction on the inputs, the success proba-
bility can be cast as

P3 = 1

2

(
1 + 〈B3〉

9

)
, (9)

where

B3 = A1 ⊗ (−B1 + B2 + B3)

+ A2 ⊗ (B1 − B2 + B3) + A3 ⊗ (B1 + B2 − B3).

(10)

The correlation 〈AxBx〉 = ∑
a,b(−1)a⊕2bP(ab|x, y). The local

bound of the Bell expression is (B)local � 5.
We now impose the parity-oblivious restriction on com-

munication. Consider an input set divided into two subsets
having equal numbers of elements; the even parity set Pl =
{xi : x ⊕2 a = 0} and the odd parity set Pl ′ = {xi : x ⊕2 a =
1}. The parity-obliviousness condition demands that∑

xi∈Pl

p(b|xi, y) =
∑
xi∈Pl′

p(b|xi, y). (11)

As already mentioned, the parity obliviousness in an oper-
ational theory implies a similar consequence at the level of
ontic states if the ontological model is preparation noncontex-
tual.

In quantum theory, Alice encodes her input string of xi

into pure quantum states ρxi prepared by a procedure Pxi .
Bob performs a two-outcome measurement By for every
y ∈ {1, 2, 3} and reports outcome b as his output. If Al-
ice and Bob share an entangled state |ψAB〉 then Alice can
steer the states xi to Bob by measuring three dichotomic
observables Ax on her particle corresponding to the input
x ∈ {1, 2, 3}. For example, ρ11 = TrA[(	+

A1
⊗ I)ρAB(	+

A1
⊗

I)]/Tr[ρAB(	+
A1

⊗ I)], where 	+
A1

= (I + A1)/2 is the pro-
jector of Alice’s observable A1. Also, ρ21 = TrA[(	−

A2
⊗

I)ρAB(	−
A2

⊗ I)]/Tr[ρAB(	−
A2

⊗ I)] and ρ31 = TrA[(	+
A3

⊗
I)ρAB(	+

A3
⊗ I)]/Tr[ρAB(	+

A3
⊗ I)]. Note that ρx1 + ρx0 = I

with x = 1, 2, 3. The parity-oblivious condition in quantum
theory reads ∑

xi|x⊕2a=0

ρxi =
∑

xi|x⊕2a=1

ρxi . (12)

This explicitly means that ρ11 + ρ20 + ρ31 = ρ10 + ρ21 +
ρ30. It is straightforward to see that the parity-oblivious condi-
tion given by Eq. (12) provides a nontrivial functional relation∑3

x=1 Ax = 0 between the observables that has to be satisfied
in quantum theory.

Equivalently, in an ontological model of quantum theory,
the preparation noncontextuality assumption provides∑

xi|x⊕2a=0

μ(λ|Pxi ) =
∑

xi|x⊕2a=1

μ(λ|Pxi ). (13)

In a preparation noncontextual ontological model the equiv-
alent condition of

∑3
x=1 Ax = 0 needs to be used to derive
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the upper bound of the Bell expression B3. Imposing this
nontrivial condition in an ontological model, the local bound
of B3 gets reduced to the nontrivial preparation noncontex-
tual bound (B3)pnc � 4. Importantly, the choice of Alice’s
observable optimizes the quantum value of (B3)Q = 6, which
satisfies the parity-oblivious condition in quantum theory.

In order to derive an optimal quantum value of the Bell
expression B3, we use a sum-of-square (SOS) approach [82]
so that (B3)Q � β3 for all possible quantum states and mea-
surement operators Ax and By, where β3 is the upper bound
on the quantum value of (B3)Q. This is equivalent to show-
ing that there is a positive-semidefinite operator γ3 � 0 that
can be expressed as 〈γ3〉Q = β3 − (B3)Q. This can be proved
by considering a set of suitable positive operators Ly, which
consists of polynomial functions of Ax and By, so that

γ3 = 1

2

3∑
y=1

ωyL†
y Ly, (14)

where the Ly are positive operators. For the Bell expression
given by Eq. (10), we choose the operators Ly as

Ly|ψ〉 = 1

ωy

(
3∑

x=1

α
x,y
3 Ax

)
|ψ〉 − By|ψ〉, (15)

where α
x,y
3 = 1 (−1) when x �= y (x = y). Also,

ωy =
∥∥∥∥∥

3∑
x=1

α
x,y
3 Ax|ψ〉

∥∥∥∥∥, (16)

where ‖ · ‖ is the Euclidean norm of a vector. Plugging
Eq. (15) into Eq. (14) and by noting that A†

xAx = B†
yBy = I

we get

〈γ3〉Q = −(B3)Q +
3∑

y=1

ωy, (17)

which can be rewritten as

(B3)Q =
3∑

y=1

ωy − 〈γ3〉Q. (18)

In order to maximize (B3)Q, we write

max[(B3)Q] � max

(
3∑

y=1

ωy

)
+ max(−〈γ3〉Q). (19)

We separately derive max(
∑3

y=1 ωy) and

max(−〈γ3〉Q)∀ψ, Ax, By. To maximize
∑3

y=1 ωy, we use

the concavity inequality [83]
∑3

y=1 ωy �
√

3
∑3

y=1(ωy)2.
From the definition of ωy in Eq. (16) we can write
(ω1)2 = 〈ψ |(−A1 + A2 + A3)2|ψ〉 = 3 + 〈ψ |(−{A1, A2} +
{A2, A3} − {A1, A3})|ψ〉. The quantities (ω2)2 and (ω3)2 can
also be written in a similar manner. Using them, we have

3∑
y=1

ωy �
√

3(9 − 〈�3〉), (20)

where the quantity �3 is explicitly written as

�3 = {A1, A2} + {A2, A3} + {A1, A3}. (21)

Here { } denotes anticommutation. This means that minimiz-
ing 〈�3〉 provides max(

∑3
y=1 ωy).

For dichotomic observables satisfying A2
x = I, by con-

sidering |ψ ′〉 = (A1 + A2 + A3)|ψ〉 (where |ψ〉 is a nonzero
vector), we can write

〈�3〉 = −3 + 〈ψ ′|ψ ′〉. (22)

Note that the inner product 〈ψ ′|ψ ′〉 is in general non-negative.
It becomes zero only when |ψ ′〉 is a zero vector. The min-
imum value of 〈�3〉 is obtained when the inner product is
zero; however, since |ψ〉 is nonzero then A1 + A2 + A3 = 0
needs to be satisfied. We obtain max(

∑3
y=1 ωy) = 6. This also

ensures that each of the ωy is equal to 2, thereby implying
〈{Ax, A′

x}〉 = −1 for x �= x′.
We now consider max(−〈γ3〉Q)∀ψ, Ax, By. Since γ3 is a

positive operator, max(−〈γ3〉Q) = 0 for any |ψ〉. This means
that 〈ψL†

y Ly|ψ〉 = 0, and consequently Ly|ψ〉 = 0, i.e.,

3∑
x=1

α
x,y
3 Ax|ψ〉 = ωyBy|ψ〉. (23)

Altogether, from Eq. (19) we thus have the optimal value
(B3)opt

Q = 6. It can be found from Eq. (23) that Bob’s observ-
ables satisfy the relation By = −Ax when x = y. This in turn
provides the success probability (P3)opt

Q = 5
6 compared to the

nontrivial preparation noncontextual bound (P3)pnc = 13
18 .

One of Alice’s choices of observables can even be found
for a qubit system is given by

A1 = σz, A2 =
√

3

2
σx − 1

2
σz, A3 = −

√
3

2
σx − 1

2
σz,

which are the trine-spin axes satisfying �ax�ax′ = − 1
2 , for x �=

x′, where �ax is the Bloch vector. As already mentioned, from
Eq. (23) one finds By = −Ax if x = y. This provides 〈Ax ⊗
By〉 = −1 ( 1

2 ) when x = y (x �= y) and the state required for
obtaining the optimal value is

|φ+〉 = 1√
2

(|00〉 + |11〉). (24)

The optimal quantum value of the Bell expression B3

enables us to self-test the entangled state and projective mea-
surements of the trine set of observables from the observed
statistics. In the following, we provide the device-independent
self-testing protocols based on Bopt

3 .

IV. SELF-TESTING OF STATE AND TRINE SET OF
OBSERVABLES

As mentioned earlier, for self-testing of the state and mea-
surements, one requires correlations p(ab|x, y) which can be
reproduced uniquely by the state and measurements (up to
a certain equivalence class). Hence the target state and mea-
surements can be certified from the correlation alone. In other
words, the self-testing technique implies the existence of local
unitaries along with axillary systems so that the target state
and measurements can be inferred from the physical state and
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FIG. 1. Circuit based on Bell’s inequality in Eq. (10) for self-
testing a two-qubit maximally entangled state and trine set of
measurements. The operations ZA, ZB, X̃B, and X̃B are defined in
the text and H is the Hadamard gate. A detailed derivation is in
Appendix A.

measurements. In our scenario when Alice and Bob perform
three measurements each, we can find that the measurements
can be expressed using only real numbers. However, we will
see when Alice and Bob perform more than three measure-
ments each, the observables required to achieve a optimum
quantum value of the Bell expressions cannot be expressed
using the real numbers only. In such a case the correla-
tions are invariant under complex conjugation or transposition
[36,45,49]. Since a transpose is not a valid unitary map, the
self-testing protocol needs to be suitably modified in this case
[36,45,49], which is provided in Sec. VI.

Let us first provide the self-testing protocol based on the
optimal value (B3)opt

Q . The measurement can be considered
projective as according to the Naimark dilation theorem any
nonprojective measurement can be considered a projective
measurement over a dilated Hilbert space. For our purpose,
we invoke the SWAP circuit scheme [35–37] to demonstrate
that the optimal quantum value (B3)opt

Q implies the existence of
an isometry � so that � : HA ⊗ HB → (HA ⊗ HA′ ) ⊗ (HB ⊗
HB′ ) and |ψ〉AB → |χ〉AB ⊗ |φ+〉A′B′ . Here primed and non-
primed symbols denote the reference and physical systems,
respectively.

In order to find the self-testing properties, let us define
the observables ZA = A1, XA = A3 − A2, ZB = −B1, and XB =
B2 − B3. Further we define X̃A = XA/‖XA‖ = (A3 − A2)/

√
3

and X̃B = XB/‖XB‖ = (B2 − B3)/
√

3. We derive the proper-
ties

ZA|ψ〉AB = ZB|ψ〉AB, X̃A|ψ〉AB = X̃B|ψ〉AB, (25)

{ZA, X̃A}|ψ〉AB = {ZB, X̃B}|ψ〉AB = 0. (26)

Details of the derivation of Eqs. (25) and (26) can be found in
Appendix A.

If |ψ〉AB ∈ HA ⊗ HB is the state and Ax ∈ HA and By ∈ HB

(where x, y = 1, 2, 3) are the observables providing the opti-
mal value of B3, then from the circuit given in Fig. 1 it can be
proved that there exist a local unitary operation � and ancilla
state |00〉A′B′ such that

�(|ψ〉AB ⊗ |00〉A′B′ ) = |χ〉AB ⊗ |φ+〉A′B′ , (27)

where |χ〉AB = 1+ZA√
2

|ψ〉AB is the so-called junk state. This is
obtained by using the self-testing properties given by Eqs. (25)
and (26). Corresponding to the measurements using the SWAP

circuit, one gets

�(By|ψ〉AB ⊗ |00〉A′B′ ) = |χ〉 ⊗ (I ⊗ B′
y)|φ+〉A′B′ , (28)

�(Ax|ψ〉AB ⊗ |00〉A′B′ ) = |χ〉 ⊗ (A′
x ⊗ I)|φ+〉A′B′ , (29)

�(AxBy|ψ〉AB ⊗ |00〉A′B′ ) = |χ〉 ⊗ (A′
x ⊗ B′

y)|φ+〉A′B′ . (30)

Details of the calculation are given in Appendix A. This thus
demonstrates that the self-testing protocol based on the Bell
expression B3 given in Eq. (10) provides the equivalence
between the reference and physical experiments. This in turn
device-independently certifies the maximally entangled state
and trine set of observables.

V. CERTIFYING THREE-OUTCOME POVMS AND
RANDOMNESS

In this section we first argue how a simple modification of
the earlier game and an optimal quantum value in that case
certify a three-outcome extremal qubit POVM and more than
one bit of local randomness. For this we keep the original
game as it is but introduce an additional input x = 4 to Alice.
This can be used to certify the three-outcome POVMs. Let us
first explain the scenario. Alice receives an additional input
x = 4 according to which she performs the measurement of
a three-outcome extremal POVMs, say, A4 = {Ak|4}, where
k = 1, 2, 3. This means that each of the Ak|4 is a projector sat-
isfying

∑
k Ak|4 = I. Let Alice’s measurement on her system

produce the outcomes with the same probability and having
no pattern. The question is whether such an unpredictability
of the outcomes is genuine or someone (say, an adversary
Eve) may be able to guess Alice’s outcomes. To examine
the presence of Eve, the unpredictability of Alice’s outcomes
has to be certified in a device-independent way. Alice then
performs certain tests for the device-independent certification
of Eve’s guessing probabilities of her outcomes. This in turn
requires the certification of three-outcome POVMs and in that
case the upper bound of Eve’s guessing probability needs to
be 1

3 . The first test is the maximization of the Bell expression
B3, which has already been shown, and the second test is the
minimization of the probability of other events.

We first show that a modified Bell expression of B3 can be
used to self-test three-outcome POVMs without invoking the
role of Eve. However, while demonstrating the certification
of randomness, we explicitly consider Eve’s role. Following
Acín et al. [68], let us define a modified Bell expression B′

3 as

B′
3 = B3 − α

3∑
k=1

P(k,+|x = 4, y = k), (31)

where α is strictly positive. As the last term on the right-hand
side is always negative, both B′

3 and B3 have the same classi-
cal upper bound. Equivalently, (B′

3)Q cannot be larger than
(B3)opt

Q = 6 and there is only way to obtain equality when
the probability P(k,+|x = 4, y = k) = Tr[(Ak|4 ⊗ 	+

Bk
)ρAB]

equals zero for every k. Here 	+
Bk

is the projector correspond-
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ing to Bob’s observables. This is possible when the POVM
elements {Ak|4} are antialigned with three 	+

Bk
of Bob. Since

	+
Bk

are certified by the optimal value of (B3)opt
Q = 6 and they

are positive projectors of the trine set of observables, we can
then have Ak|4 = 2

3	−
Ak

= 1
3 (I − Ak ), with k = 1, 2, 3. Thus

the modified Bell expression (B′
3)opt

Q = 6 certifies the three-
outcome POVMs. If Alice performs the POVM A4 = {Ak|4} on
her subsystem, then the probability of each outcome provides
the same probability 1

3 and generates the log2 3 bit of local
randomness.

However, in general, in randomness certification protocols
Eve’s role is crucial. Her strategy may be to use a POVM
F = {Fk} so that she can model her measurement in a way that
whenever Alice obtains the outcome k Eve perfectly guesses
that outcome. Then Eve’s probability of perfectly guessing
Alice’s outcome is given by [68]

G = max
F

∑
k

P(k, k|Ak|3, F ). (32)

If Eve’s guessing probability is found to be G = 1
3 , then

the unpredictability of Alice’s outcomes is certified. In order
to certify this in a device-independent way, in general one can
write a family of qubit POVMs operators A4 = {Ak|4} as

Ak|4 = γ 0
k I + γ 1

k σz + γ 2
k σy + γ 4

k σx, (33)

where σx, σz, and σy are the Pauli operators. It can be readily
checked that to satisfy Ak|4 = 2

3	−
Ak

the coefficients γ
j

k with
j = 0, 1, 2, 3 take the form

γ 0
k = P(k|Ak|4), γ 1

k = Ek|3,1, γ 2
k =

3∑
j=1

Eb|3, j, (34)

γ 3
k = 1√

3
(Ek|3,2 − Ek|3,3), (35)

where Ek|x,y = ∑
k kP(k, b|x, y).

Let us now consider the action of Eve here. In a nonlo-
cal guessing game, Eve tries to guess Alice’s output with
the highest possible accuracy, as summarized in Sec. II.
Thus the inclusion of Eve’s system modifies the isom-
etry as � : HA ⊗ HB ⊗ HE → (HA ⊗ HA′ ) ⊗ (HB ⊗ HB′ ) ⊗
HE so that �(|ψABE 〉 ⊗ |00〉A′B′ ) = |χ〉ABE ⊗ |ψ+〉A′B′ . Now,
on the support of HA ⊗ HA′ , each element {Ak|4} of A4 can be
represented by an operator Ãk|4 ∈ HA ⊗ HA′ so that

Ãk|4 =
3∑

j=0

Ã j
k|4 ⊗ σ j, (36)

where σ0 = I and j = 1, 2, 3 correspond to Pauli operators.
From the self-testing relations given by Eq. (28) we have

γ 0
k = 〈ψ |Ãk|4 ⊗ I|ψ〉 = 〈χ |Ã0

k|4|χ〉,
γ 1

k = 〈ψ |Ãk|4 ⊗ B1|ψ〉 = 〈χ |Ã1
k|4|χ〉,

γ 2
k = 〈ψ |Ãk|4 ⊗ (B1 + B2 + B3)|ψ〉 = 〈χ |Ã2

k|4|χ〉,
γ 3

k = 1
3 〈ψ |Ãk|4 ⊗ ⊗B2 − B3|ψ〉 = 〈χ |Ã3

k|4|χ〉. (37)

Here |ψ〉 ≡ |χ〉ABE ⊗ |ψ+〉A′B′ . This thus self-tests the three-
outcome extremal qubit POVMs Ak|4 = 2

3	−
Ak

with k =
1, 2, 3.

We now proceed to generate the certified randomness of
more than one bit, building upon the work of Acín et al. [68].
This is to show that for a quantum state |ψ〉ABE shared by
Alice, Bob, and Eve and for Ax and By (x, y = 1, 2, 3) local to
Alice and Bob, respectively, a POVM {Fk} is local to Eve. If
the optimal violation of B3 is obtained, this then certifies the
local guessing probability G = 1

3 . In order to show this, by
assuming a normalized state |φk

A′ 〉 = Fk|χ〉/√qk and without
loss of generality, by taking Eve’s measurement Fk as projec-
tive, we can write

γ
j

k =
∑

k′
〈χ |Fk′ Ã j

k|4Fk′ |χ〉 (38)

=
∑

k′
qk′

〈
φk′

A′
∣∣Ã j

k|4
∣∣φk′

A′
〉 =

∑
k′

qk′β
j;k′
k , (39)

where k = 1, 2, 3. This can be interpreted as a convex combi-
nation of original POVMs {Ak|4} in terms of the POVMs {Ãk|4}
with respective weight qk so that Ak|4 = ∑

k′
∑

j qk′β
j,k′
k σ j ;

however, since Ak|4 is extremal, we have β
j,k′
k = γ

j
k for all k′.

This then implies that β0,k
k = γ 0

k = 1
3 for all k. We then have

the local guessing probability

G =
∑

k

P(k, k|Ak|4, Fk ) =
∑

k

〈ψ |Ãk|4Fk|ψ〉

=
∑

k

〈χ |Ã0
k|4Fk|χ〉 =

∑
k

qkβ
0,k
k = 1

3
. (40)

This then certifies H∞ = log2 3 bits of randomness from
one entanglement bit. It was proved by D’Ariano et al. [84]
that there exist d2 extremal POVMs for d-dimensional space.
Using this fact, Acín et al. [68] argued that at most 2 log2 d
(4 log2 d) bits of local (global) randomness can be certified
from an entangled state of dimension Cd ⊗ Cd . For the case
of a qubit system, Acín et al. [68] demonstrated an interesting
protocol to certify two bits of local randomness based on a
simultaneous maximal quantum violation of three Clauser-
Horne-Shimony-Holt inequalities. They [68] had conjectured
that the maximum quantum violation of Gisin’s elegant Bell
inequality [85] can also be used to certify two bits of ran-
domness in a device-independent way, which was proved by
Andersson et al. [70] by providing the self-testing properties
of elegant Bell inequality [41]. Here we use fewer observables
for Alice and Bob and device-independently certify log2 3 bits
of local randomness.

VI. GENERALIZATION OF THE GAME FOR ANY
ARBITRARY ODD n

We now generalize the parity-oblivious communication
game where Alice and Bob have inputs x, y ∈ {1, 2, . . . , n}
and outputs a, b ∈ {0, 1}. Alice prepares 2n input states xi ∈
(x, a) ≡ {1, 2, . . . , n} × {0, 1} and sends to Bob. We consider
a uniform distribution of inputs of Alice and also for Bob, so
that pA(x) = pB(y) = 1/n. The condition of winning the game
remains the same as before, i.e., b = δx,y ⊕2 a. In such a case
the success probability is given by

Pn = 1

2
+ 〈Bn〉

2n2
, (41)
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where Bn is the Bell expression given by

Bn =
n∑

x,y=1x �=y

An,x ⊗ Bn,y −
n∑

x,y=1;x=y

An,x ⊗ Bn,y. (42)

In order to find the quantum upper bound of the Bell expres-
sion Bn, we again use the SOS approach. This is equivalent to
showing that there is a positive-semidefinite operator γn � 0,
where

γn = 1

2

3∑
y=1

ωn,yL†
n,yLn,y, (43)

where the Ln,y are positive operators and polynomial functions
of An,x and Bn,y. For the Bell expression given by Eq. (42), the
operators Ln,y can be written as

Ln,y|ψ〉 = 1

ωn,y

n∑
x=1

αx,y
n An,x|ψ〉 − Bn,y|ψ〉, (44)

where α
x,y
n = 1 (−1) when x �= y (x = y) and ωn,y =

‖∑n
x=1 α

x,y
n An,x|ψ〉‖. Plugging Eq. (44) into Eq. (43) and not-

ing that A†
n,xAn,x = B†

n,yBn,y = I, we get 〈γn〉Q = −(Bn)Q +∑n
y=1 ωn,y. To obtain a maximum value of (Bn)Q we can write

max[(Bn)Q] � max

(
n∑

y=1

ωn,y

)
+ max(−〈γn〉Q). (45)

To maximize
∑n

y=1 ωn,y we again use the concavity in-

equality
∑n

y=1 ωn,y �
√

n
∑n

y=1 ω2
n,y, where

n∑
y=1

ω2
n,y = n2 +

n∑
y=1

〈[{
α1,y

n An,1,

n∑
x=2

αx,y
n An,x

}

+
{

α2,y
n An,2,

n∑
x �=2;x=1

αx,y
n An,x

}
+ · · ·

+
{

αn,y
n An,n,

n−1∑
x=1

αx,y
n An,x

}]〉
, (46)

which can be written in a simplified form as
n∑

y=1

ω2
n,y = n2 + (n − 4)〈�n〉, (47)

where

�n =
{

An,1,

n∑
x=2

An,x

}
+

{
An,2,

n∑
x=3

An,x

}
+ · · ·

+ {An,n−2, (An,n−1 + An,n)} + {An,n−1, An,n}. (48)

By considering (
∑n

x=1 An,x )2 = nI + �n for dichotomic ob-
servables that satisfy the parity-oblivious condition, the
optimal quantum value of 〈�n〉 = −n. This in turn provides
max(

∑n
y=1 ωn,y) = 2n.

Since γn is a positive operator, max(−〈γn〉Q) = 0 for every
|ψ〉, provided for all y, Ln,y|ψ〉 = 0, i.e.,

n∑
x=1

αx,y
n An,x|ψ〉 = ωn,yBn,y|ψ〉 (49)

Altogether, from Eq. (45) we have

(B)opt
Q = 2n. (50)

One of the choices of the observables can be found for the
qubit system,

An,1 = σz, {An,i}i=2,...,(n+1)/2 = νn,iσx − βn,iσy − σz

(n − 1)
,

{An, j} j=(n+3)/2,...,n = −νn, jσx+βn, jσy− σz

(n − 1)
,

(51)

with ν2
n,i + β2

n,i + 1
(n−1)2 = 1. Also, νn,i = νn, j and βn,i = βn, j

when i = (n + 1)/2 and j = (n + 3)/2. In quantum theory,
such choices of observables satisfy

An,1 +
(n−1)/2∑

i=2

An,i +
n∑

j=(n+1)/2

An, j = 0 (52)

and consequently the corresponding projectors satisfy the re-
lation

2

n

(
P+(−)

A,1 +
(n−1)/2∑

i=2

P+(−)
An,i

+
n∑

j=(n+1)/2

P+(−)
An, j

)
= I. (53)

This in turn satisfies the parity-oblivious condition of the
game. The required state is a maximally entangled state given
by Eq. (24). Using Eq. (49), we can obtain Bob’s choice of
observables for optimal violation. It can be seen that Bob’s
observables satisfy the same condition of Alice as given by
Eq. (52).

Using the parity-oblivious condition given by Eq. (53),
the preparation noncontextuality bound of Bn can be derived,
which is (Bn)pnc � 2n − 2, which is violated by quantum
theory. The proof is similar to the case for n = 3, which can be
seen as follows. Substituting the condition given in Eq. (52)
into the generalized Bell expression in Eq. (42), we have
Bn = 2

∑n
x=y=1 AxBy. Using Eq. (52) again, it is straightfor-

ward to derive the aforementioned upper bound of (Bn)pnc in a
preparation noncontextual model. However, there is flexibility
to choose a different form of the observables satisfying the
same condition of Eq. (53). In Appendix B we provide a
self-testing protocol for certifying the maximally entangled
state and observables based on the optimal quantum value of
the generalized Bell expression in Eq. (42).

Now one may be wondering whether it is possible to certify
n-outcome POVMs and log2 n bits of randomness for an arbi-
trary (odd) n scenario similar to that for n = 3. We discuss that
this is not the case. Following the n = 3 case, let us consider
the action of the (n + 1)th measurement An,n+1 of Alice which
is an n-outcome qubit POVM {Ak|n+1}. As already used earlier,
a shifted Bell expression of Eq. (42) can be written as

B′
n = Bn − α′

n∑
k=1

P(k,+|x = n + 1, y = k), (54)

where α′ is a strictly positive quantity. As the last term on
the right-hand side is always non-negative, the preparation
noncontextual bounds of both B′

n and Bn remain 2n − 2. Sim-
ilarly, the quantum value of B′

n cannot exceed 2n. There is
only one way to obtain a maximum value of (B′

n)Q when
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for every k the probability P(a = k, b = +|x = n + 1, y = k)
equals zero. This is possible when the POVM elements of the
measurement {Ak|n+1} is antialigned with n projective mea-
surements of Bob’s side. Such POVM elements can then be
written as Ak|n+1 = 2

n	−
Ak

, with 2
n

∑n
k=1 	−

Ak
= I. We already

have the parity-oblivious condition in Eq. (53) where such a
condition is satisfied for qubit observables.

Note here that every element of the POVMs {Ak|n+1} is
effectively a projector. One may expect to certify n outcome
qubit POVMs as in the n = 3 case and consequently log2 n
bits of randomness. However, {Ak|n+1} is not an extremal set of
POVMs if (odd) n > 3. It is known that the extremal POVMs
for qubit systems have at most four outcomes and nonex-
tremal POVMs can be simulated by convex combination of
extremal POVMs [86]. This indicates that the certification of
unbounded randomness is not possible using our generalized
version of the game for arbitrary n. However, the optimal
quantum success probability for the arbitrary n case enables
device-independent self-testing of the entangled state and
measurements.

VII. CONCLUSION

We have provided an interesting oblivious communication
game played between two parties, Alice and Bob, who re-
ceive an arbitrary (odd) number n of inputs. In particular,
we provided an entanglement-assisted parity-oblivious game
where Alice is allowed to communicate any amount of in-
formation but that should not reveal the parity information
of the inputs to Bob. Such an oblivious condition in an op-
erational theory implies obliviousness at the level of ontic
states for a preparation noncontextual ontological model [17].
We showed that given any arbitrary n the success probability
of our game is solely dependent on a relevant Bell expres-
sion Bn. We demonstrated that the upper bound Bn can be
reduced from the trivial case (the local bound), which we
termed here a nontrivial preparation noncontextual bound.
The aforementioned Bell expression is optimized using the
SOS approach and it is found that a two-qubit maximally
entangled state and an interesting set of observables in the
qubit system will suffice for the purpose of optimization.
Interestingly, the set of observables leading to the optimal
value satisfies the required parity-oblivious condition of Al-
ice’s inputs. This provides a functional relationship between
Alice’s choice of observables, which in turn reduces the local
bound to the nontrivial preparation noncontextual bound of
Bn. Thus, for specific choices of states and measurements,
it is possible that an optimal quantum value of (Bn)opt

Q may
not be enough to exhibit nonlocality, but the nonclassicality
in the form of nontrivial preparation contextuality may be
demonstrated.

Using the optimal quantum value (B3)opt
Q = 6 for the n = 3

case, we demonstrated the self-testing of a two-qubit max-
imally entangled state and trine-spin observables. We used
it to certify the three-outcome extremal POVMs, which in
turn enabled us to certify the log2 3 bits of local randomness.
Further, we generalized our scheme for any arbitrary (odd)
number of inputs n of Alice and Bob and demonstrated that
the optimal quantum value of the Bell expression (Bn)opt

Q can
be obtained for a qubit system local to Alice and Bob. One

may intend to examine the possibility of certifying n-outcome
POVMs by using a modified version of the Bell expression
and its optimal quantum value (B′

n)opt
Q . Since extremal POVMs

for qubit systems have at most four outcomes and nonextremal
POVMs can be simulated by convex combination of extremal
measurements, then the certification of n-outcome POVMs is
not possible. Finally, we may remark that since the general-
ized Bell expression can be optimized for qubit systems, then
the parity-oblivious communication game presented here can
be tested using the existing technologies.
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APPENDIX A: SELF-TESTING OF STATE AND
MEASUREMENTS BASED ON THE OPTIMAL

VALUE OF B3

We provide the detailed derivation of self-testing of the
maximally entangled state and trine set of spin observables
for the n = 3 scenario based on the optimal quantum vio-
lation of Bell’s inequality (10). Specifically, we prove here
Eqs. (27)–(30) by using the self-testing circuit in Fig. 1. The
self-testing relations given by Eqs. (25) and (26) are derived
as follows. We define ZA = A1, X̃A = (A3 − A2)/

√
3, ZB =

−B1, and X̃B = (B2 − B3)/
√

3. From Eq. (18) the optimal
quantum violation ensures that A1B1|ψ〉AB = A2B2|ψ〉AB =
A3B3|ψ〉AB = −|ψ〉AB. Using |ψAB〉 = −A1B1|ψAB〉, we have
A1|ψAB〉 = −B1|ψAB〉 and hence

ZA|ψ〉AB = ZB|ψ〉AB. (A1)

Similarly, we can write

X̃AX̃B|ψ〉AB = 1
3 (A3B2 − A3B3 − A2B2 + A2B3)|ψ〉AB

= 1
3 (2 + A3B2 + A2B3)|ψ〉AB. (A2)

We prove that (A3B2 + A2B3)|ψ〉AB = |ψ〉AB. Note that the
optimal violation provides A1 + A2 + A3 = 0 to hold for
Alice’s observables and B1 + B2 + B3 = 0 for Bob’s observ-
ables. Then, by considering A1(B1 + B2 + B3)|ψ〉AB = 0,
we get (A1B2 + A1B3)|ψ〉AB = |ψ〉AB. Similarly, we get five
more relations as (A2B1 + A2B3)|ψ〉AB = |ψ〉AB, (A3B1 +
A3B2)|ψ〉AB = |ψ〉AB, (A2B1 + A3B1)|ψ〉AB = |ψ〉AB,
(A1B2 + A3B2)|ψ〉AB = |ψ〉AB, and (A2B3 + A1B3)|ψ〉AB =
|ψ〉AB. Using these relations, it can be proved that
(A3B2 + A2B3)|ψ〉AB = |ψ〉AB. In fact, it can be proved
that each of AxBy|ψ〉AB is equal to the other for any x not
equal to y.

From Eq. (A2) we then have X̃AX̃B|ψ〉AB = |ψ〉AB, i.e.,

X̃A|ψ〉AB = X̃B|ψ〉AB. (A3)

Using the aforementioned relations, it can be shown that

(ZAX̃A + X̃AZA)|ψ〉AB

= 1
3 (A1B3 + A3B1 − A1B2 − A2B1)|ψ〉AB = 0 (A4)
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and

(ZBX̃B + X̃BZB)|ψ〉AB

= 1
3 (B1B3 + B3B1 − B1B2 − B2B1)|ψ〉AB = 0. (A5)

We then have

{ZA, X̃A}|ψ〉AB = {ZB, X̃B}|ψ〉AB = 0. (A6)

Equations (A1), (A3), and (A6) are the self-testing properties
provided in Eqs. (25) and (26).

Using the isometry described in Fig. 1, we can write

�(|ψ〉AB ⊗ |00〉A′B′ ) = 1
4 [(1 + ZA)(1 + ZB)|ψ〉AB|00〉 + X̃B(1 + ZA)(1 − ZB)|ψ〉AB|01〉
+ XA(1 − ZA)(1 + ZB)|ψ〉AB|10〉 + X̃AX̃B(1 − ZA)(1 − ZB)|ψ〉AB|11〉], (A7)

which can be recast using the self-testing properties given by Eqs. (25) and (26) as

�(|ψ〉AB ⊗ |00〉A′B′ ) = 1

4
[2(1 + ZA)|ψ〉AB ⊗ (|00〉 + |11〉)]

≡ 1 + ZA√
2

|ψ〉AB ⊗ |φ+〉A′B′ . (A8)

Identifying |χ〉AB = 1+ZA√
2

|ψ〉AB, we have Eq. (27). This implies the self-testing of a two-qubit maximally entangled state using
the optimal quantum value of the Bell expression in Eq. (10).

Now, for self-testing of measurements, we note that B1 = −ZB, B2 = (
√

3/2)X̃B + 1
2 ZB, and B3 = −(

√
3/2)X̃B + 1

2 ZB.
Similar relations can be written for A1, A2, and A3. It is then enough to demonstrate how the local isometry works for ZB,
XB, XA, and ZA. We thus show the following by using the self-testing circuit:

�(X̃A|ψ〉AB ⊗ |00〉A′B′ ) = 1
4 [(1 + ZA)X̃A(1 + ZB)|ψ〉AB|00〉 + X̃B(1 + ZA)X̃A(1 − ZB)|ψ〉AB|01〉
+ X̃A(1 − ZA)X̃A(1 + ZB)|ψ〉AB|10〉 + X̃AX̃B(1 − ZA)X̃A(1 − ZB)|ψ〉AB|11〉]. (A9)

The first term (1 + ZA)X̃A(1 + ZB)|ψ〉AB|00〉 = (X̃A + X̃AZB + ZAX̃A + ZAX̃AZB)|ψ〉|00〉. Using ZA|ψ〉 = ZB|ψ〉 and
{ZA, X̃A}|ψ〉AB = 0, we find (X̃A + {ZA, X̃A} − X̃A)|ψ〉AB|00〉 = 0. The second term is given by (X̃BX̃A − X̃BX̃AZB +
X̃BZAX̃A − X̃BZAX̃AZB)|ψ〉AB|01〉 = (2 + ZA + ZB)|ψ〉AB|01〉 = 2(1 + ZA)|ψ〉AB|01〉. The third term (X̃AX̃A + X̃AZAX̃A −
X̃AX̃AZB − X̃AZAX̃AZB)|ψ〉AB|10〉 = 2(1 + ZA)|ψ〉AB|01〉. Similarly, the fourth term (X̃AX̃BX̃A − X̃AX̃BX̃AZB − X̃AX̃BZAX̃A +
X̃AX̃BZAX̃AZB)|ψ〉AB|11〉 can be written as (X̃A + X̃BZB − X̃AZA − X̃AX̃BX̃A)|ψ〉AB|11〉 by using Eqs. (A1) and (A3). Further using
them along with {ZA, X̃A}|ψ〉AB = 0 from Eq. (A6), we have (X̃A − {X̃B, ZB} − X̃A)|ψ〉AB|11〉 = 0.

Using those, Eq. (A9) can then be written as

�(X̃A|ψ〉AB ⊗ |00〉A′B′ ) = 1 + ZA√
2

|ψ〉AB
(|01〉 + |10〉)√

2
= |χ〉AB ⊗ (σx ⊗ I)|φ+〉A′B′ . (A10)

Following steps similar to those above, we have

�(X̃B|ψ〉AB ⊗ |00〉A′B′ ) = 1
4 [(1 + ZA)(1 + ZB)X̃B|ψ〉|00〉 + X̃B(1 + ZA)(1 − ZB)X̃B|ψ〉|01〉
+ XA(1 − ZA)(1 + ZB)X̃B|ψ〉|10〉 + X̃AX̃B(1 − ZA)(1 − ZB)X̃B|ψ〉|11〉]

≡ |χ〉AB ⊗ (I ⊗ σx )|φ+〉A′B′ (A11)

and

�(ZA|ψ〉AB ⊗ |00〉A′B′ ) = |χ〉AB ⊗ (σz ⊗ I)|φ+〉A′B′ , (A12)

�(ZB|ψ〉AB ⊗ |00〉A′B′ ) = |χ〉AB ⊗ (I ⊗ σz )|φ+〉A′B′ . (A13)

Using the results in Eqs. (A11)–(A13), it is straightforward
to show that

�(By|ψ〉) = |χ〉AB ⊗ (I ⊗ B′
y)|φ+〉A′B′ , (A14)

�(Ax|ψ〉) = |χ〉AB ⊗ (A′
x ⊗ I)|φ+〉A′B′ . (A15)

Similarly, a few more steps are required to show that

�(Ax ⊗ By|ψ〉) = |χ〉AB ⊗ (A′
x ⊗ B′

y)|φ+〉A′B′ . (A16)

We have thus self-tested the measurements and Eqs. (A14)–
(A16) are Eqs. (28)–(30).
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APPENDIX B: SELF-TESTING FOR THE CASE OF n = 5

We note that there are different forms of choices of ob-
servable available that satisfy the oblivious condition given
by Eq. (52). One of the choices is presented in Eq. (51).
We can choose another set of observables by keeping the
parity-oblivious condition and consequently the functional
relation between the observables of Alice and Bob intact. As
already mentioned in the main text, such a functional relation
fixes the optimal quantum value of the Bell expression (42).
We provide the self-testing scheme for n = 5, which can be
straightforwardly generalized for any odd n. The alternative
choices for n = 5 are

A5,1 = σz, A5,2 = ν5,1σx − β5,1σy − σz

4
,

A5,3 = −ν5,1σx − β5,1σy − σz

4
,

A5,4 = ν5,1σx + β5,1σy − σz

4
, A5,5 = −ν5,1σx + β5,1σy − σz

4
,

(B1)

satisfying the parity-oblivious condition
∑5

n=1 A5,n = 0. Here
|ν5,n|2 + |β5,n|2 + 1

16 = 1.
Following the usual SWAP circuit in Fig. 2, we show that

the maximum violation of B5 implies the existence of an
isometry � so that � : HA ⊗ HB → (HA ⊗ HA′ ⊗ HA′′ ) ⊗
(HB ⊗ HB′ ⊗ HB′′ ) and |ψ〉AB → |ξ 〉ABA′B′ ⊗ |φ+〉A′′B′′ . Let us
define the observables ZA = A5,1, XA = A5,2 − A5,3 + A5,4 −
A5,5, and YA = −A5,2 − A5,3 + A5,4 + A5,5 along with ZB =
−B5,1, XB = −B5,2 + B5,3 − B5,4 + B5,5, and YB = −B5,2 −
B5,3 + B5,4 + B5,5 satisfying following properties. The ob-
servables XA, XB, YA, and YB may not be Hermitian, but one
can define the following Hermitian operators, for example,
X̃A = XA/‖XA‖. The self-testing relations are

ZA|ψ〉 = ZB|ψ〉, X̃A|ψ〉 = X̃B|ψ〉, ỸA|ψ〉 = −ỸB|ψ〉,
(B2)

{ZA, X̃A}|ψ〉{ỸA, X̃A}|ψ〉 = {ZA, ỸA}|ψ〉 = 0, (B3)

{ZB, X̃B}|ψ〉{ỸB, X̃B}|ψ〉 = {ZB, ỸB}|ψ〉 = 0. (B4)

FIG. 2. Self-testing scheme based on the optimal quantum value
of B5 which can be obtained by setting n = 5 in Eq. (10). Details of
the SWAP isometry are given in the text.

Using the above relations, we can also have

ỸAX̃A|ψ〉 = ỸBX̃B|ψ〉, (B5)

which provides ỸAX̃AỸBX̃B|ψ〉 = −|ψ〉. Using the circuit in
Fig. 2, we demonstrate the self-testing of the two-qubit
maximally entangled state using the isometry �(|ψ〉AB ⊗
|00〉A′B′ ⊗ |00〉A′′B′′ ).

It is already shown in Appendix A that, due to the action of
the first two pairs of Hadamard operations and controlled gate
operations of ZA, X̃A, ZB, and X̃B, the state evolves to

|χ〉AB ⊗ |φ+〉A′B′ ⊗ |00〉A′′B′′ , (B6)

where |χ〉AB = 1+ZA√
2

|ψ〉AB. After the third pair of Hadamard

gates, the state evolves to |ξ 〉AB ⊗ |φ+〉A′B′ ⊗ | + +〉A′′B′′ and
applying the final set of controlled gates and finally using
Eq. (B5), the state in Eq. (B6) evolves to

|χ〉AB ⊗ |φ+〉A′B′ ⊗ 1
2 [|00〉A′′B′′ + iỸBX̃B|01〉A′′B′′

+ iỸBX̃B|10〉A′′B′′ − |11〉A′′B′′ ]. (B7)

Considering the action of the final pair of Hadamard gates, we
find that the self-testing of the entangled state is given by

�(|ψ〉AB ⊗ |00〉A′B′ ⊗ |00〉A′′B′′ ) = |ξ 〉ABA′′B′′ ⊗ |φ+〉A′B′ ,

(B8)

where |ξ 〉ABA′′B′′ is the so-called junk state that is given by

|ξ 〉ABA′′B′′ = 1
2 [|χ〉AB ⊗ (I + iỸAX̃A)|00〉A′′B′′

+ |χ〉AB ⊗ (I − iỸAX̃A)|11〉A′′B′′ ]. (B9)

Now, for the local unitary evolutions provided in Fig. 2 and
using self-testing relations given by Eqs. (B2) and (B3), it is
straightforward to demonstrate that

�(X̃A|ψ〉AB ⊗ |00〉A′B′ ⊗ |00〉A′′B′′ )

= |ξ 〉ABA′′B′′ ⊗ (I ⊗ σx )|φ+〉A′B′ , (B10)

�(ZA|ψ〉AB ⊗ |00〉A′B′ ⊗ |00〉A′′B′′ )

= |ξ 〉ABA′′B′′ ⊗ (I ⊗ σz )|φ+〉A′B′ , (B11)

�(X̃B|ψ〉AB ⊗ |00〉A′B′ ⊗ |00〉A′′B′′ )

= |ξ 〉ABA′′B′′ ⊗ (σx ⊗ I)|φ+〉A′B′ , (B12)

�(ZB|ψ〉AB ⊗ |00〉A′B′ ⊗ |00〉A′′B′′ )

= |ξ 〉ABA′′B′′ ⊗ (σz ⊗ I)|φ+〉A′B′ . (B13)

However, for �(ỸA|ψ〉AB ⊗ |00〉A′B′ ⊗ |00〉A′′B′′ ), the deriva-
tion is a little involved and we provide a modified version of
the derivation. The state just before the final pair of Hadamard
gates can be written as

1
2 [|χ〉AB ⊗ |00〉A′′B′′ + iỸBX̃B|χ〉AB

⊗|01〉A′′B′′ + iỸAX̃A|χ〉AB ⊗ |10〉A′′B′′

− ỸAX̃AỸBX̃B|χ〉AB ⊗ |11〉A′′B′′ ]|φ+〉A′B′ . (B14)
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Using Eq. (B5) and after the action of the final pair of
Hadamard gates we finally have

�(ỸA|ψ〉AB ⊗ |00〉A′B′ ⊗ |00〉A′′B′′ )

= 1
2 [|χ〉AB ⊗ (I + iỸAX̃A)|00〉A′′B′′

−|χ〉AB ⊗ (I − iỸAX̃A)|11〉A′′B′′ ] ⊗ (σy ⊗ I)|φ+〉A′B′

≡ σ A′′
z |ξ 〉ABA′′B′′ ⊗ (σy ⊗ I)|φ+〉A′B′ . (B15)

Similarly, following the earlier steps, it can be easily seen that

�(ỸB|ψ〉AB ⊗ |00〉A′B′ ⊗ |00〉A′′B′′ )

= σ B′′
z |ξ 〉ABA′′B′′ ⊗ (I ⊗ σy)|φ+〉A′B′ . (B16)

In order to take care of the conjugation issue involved with σy,
the observable σ B′′

z has to be suitably used.

APPENDIX C: SKETCH REGARDING THE
SELF-TESTING FOR THE CASE OF (ODD) n > 5

Now, for the self-testing purpose in the case of n > 5 it
is convenient to use a different set of observables which also
satisfy the required parity-oblivious condition in Eq. (52). We

choose the following set of observables. When n = 4l + 5
with l = 0, 1, 2, . . .,

An,1 = σz, {An,2+4m} = νn,mσx − βn,mσy − σz

n − 1
,

{An,3+4m} = −νn,mσx − βn,mσy − σz

n − 1
,

{An,4+4m} = νn,mσx + βn,mσy − σz

n − 1
,

{An,5+4m} = −νn,mσx + βn,mσy − σz

n − 1
, (C1)

where m = 0, 1, 2, . . . , n − 5 and |νn,m|2 + |βn,m|2 +
1/(n − 1)2 = 1. For n = 4l + 7 along with the above set
of observables, we additionally require

An,(n−1) = α′
nσx − β ′

nσy − σz

n − 1
,

An,n = −α′
nσx + β ′

nσy − σz

n − 1
, (C2)

where |α′
n|2 + |β ′

n|2 + 1/(n − 1)2 = 1. By suitably summing
and subtracting the observables in Eqs. (C1) and (C2) one
obtains ZA, ZB, XA, XB, YA, and YB, which will provide the
self-testing relations (B2)–(B5).
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