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Quantum process inference for a single-qubit Maxwell demon
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While quantum measurement theories are built around density matrices and observables, the laws of ther-
modynamics are based on processes such as the ones used in heat engines and refrigerators. The study of
quantum thermodynamics fuses these two distinct paradigms. In this article, we highlight the usage of quantum
process matrices as a unified language for describing thermodynamic processes in the quantum regime. We
experimentally demonstrate this in the context of a quantum Maxwell demon, where two major quantities are
commonly investigated: the average work extraction 〈W 〉 and the efficacy γ , which measures how efficiently
the feedback operation uses the obtained information. Using the tool of quantum process matrices, we develop
optimal feedback protocols for these two quantities and experimentally investigate them in a superconducting
circuit QED setup.
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I. INTRODUCTION

The interplay of information and energy is at the heart of
thermodynamics, originating from the thought experiment of
Maxwell’s demon [1–6]. In particular, the laws of thermody-
namics have been generalized to accommodate the presence of
feedback operations [7–14]. Experimental implementations of
various types of classical demons have been realized [15–21].
The modern development of quantum technologies further
enables us to investigate the idea of Maxwell’s demon in the
quantum regime [22–31], where concepts such as coherence,
entanglement, measurement back-action, and the exponen-
tial scaling of system Hilbert spaces may become important.
Furthermore, quantum information theory allows us to an-
alyze and optimize these measurement and feedback-based
protocols in a way that can reveal quantum thermodynamical
advantages.

In this article, we introduce the tool of the quantum process
matrix to analyze and optimize a weak-measurement-based
Maxwell-demon protocol [28]. The quantum process ma-
trix has vast application in quantum information processing
[32–37] and quantum optics [38–40], but its usage in quan-
tum thermodynamics is still nascent [22]. The optimization
of feedback protocols has been considered in classical [41]
and quantum [42] contexts, with experimental implementa-
tion so far limited to classical systems [43]. Using quantum
process matrices, we are able to assign a different meaning to
the efficacy—a measure of how efficiently feedback uses ob-
tained information [17]—which can be related to violations of
Jarzynski’s equality when the role of information is neglected.
Previous experimental work has demonstrated efficacy above
unity [28]. However, optimization and maximization of the
efficacy reveal certain fundamental limitations associated with
the usual language of quantum mechanics. First, while quan-
tum mechanics provides us with methods to describe states
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and observables, thermodynamics concerns work, which is
not an observable [44]. Second, we show that the quantum
state alone—the density matrix—does not provide the full
description of the evolution and is thus inadequate for cer-
tain feedback tasks. As a consequence, in order to design a
feedback protocol that maximizes the efficacy, we harness the
quantum process matrix to derive effective states that achieve
this goal. Using a circuit QED setup, we experimentally test
work and efficacy maximizing feedback protocols that utilize
the quantum coherence encoded in the off-diagonal elements
during the evolution. We examine their performance over the
parameter space of time, temperature, and measurement effi-
ciency.

This article is organized as follows: In Sec. II we intro-
duce the stochastic master equation that is used to track the
quantum state of a qubit undergoing weak continuous mea-
surement. We extend this stochastic master equation treatment
to derive a stochastic differential equation for the quantum
process matrix that contains complete information about the
quantum evolution. In Sec. III we introduce the protocol for a
single-qubit quantum Maxwell demon along with the Jarzyn-
ski equality and the efficacy. We consider the optimization of
feedback protocols that maximize different moments of the
work distribution and study the performance of these proto-
cols versus measurement efficiency and temperature. Several
Appendixes discuss the experimental setup and data acquisi-
tion, the formalism of quantum process inference, the analysis
of the efficacy, the equivalence of different work distributions,
the methods used to reduce the measurement efficiency, sta-
tistical analysis methods, and the tomographic validation of
quantum trajectories.

II. CONTINUOUS MEASUREMENT OF A
SUPERCONDUCTING QUBIT

We use a superconducting transmon qubit [45,46] as a
versatile platform for weak measurements and quantum state
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FIG. 1. Quantum process matrix and quantum trajectory descriptions of the qubit evolution. (a) The signal r obtained from continuous
weak measurement. (b) The diagonal and off-diagonal matrix elements of the quantum process matrix χ jk . The colors of the shaded areas
represent the phases of the off-diagonal elements. (c) The matrix elements of the quantum process matrix at t = 0.94 μs. The length and
color of each bar represent the norm and phase of the corresponding matrix elements of χ jk , respectively. The quantum process matrix of
a (rescaled) ideal Hadamard gate (dashed boxes). (d) The quantum trajectory for ρr calculated from a weak measurement record with the
quantum process matrix (xχ , zχ ; solid lines with symbols) and with the SME (xρ, zρ ; solid lines without symbols). These trajectories are
verified with tomographic validation (xtom, ztom; dotted lines). In this example, the qubit is initialized in the ground state.

tracking. By coupling the qubit with a microwave cavity in the
dispersive regime [47–51], one can perform continuous weak
measurement and qubit-state tracking without completely de-
stroying coherences in the measurement basis. Using the
measurement records, we experimentally reconstruct the time-
dependent quantum process matrix along a single trajectory.

The system is subject to a resonant drive given by the
Hamiltonian HR = −h̄�Rσy/2 in the rotating frame (�R is
the Rabi frequency, and σx, σy, σz are the Pauli operators,
with σz being diagonal in the energy basis). The drive creates
coherences between the qubit energy levels. Simultaneously,
a continuous-weak-measurement probe signal coupled to σz is
used by the demon to track the state. The weak-measurement
record is denoted by r(t ), and the resulting conditional state
evolution ρr can be obtained from the stochastic master equa-
tion (SME) [28,52,53],

ρ̇r = 1

ih̄
[HR, ρr] + k(σzρrσz − ρr )

+ 2ηk[σzρr + ρrσz − 2Tr(σzρr )ρr]r(t ), (1)

where η is the efficiency of the detector and k represents the
strength of the measurement. In this measurement architec-
ture, the signal r(t ) is the demodulated quadrature amplitude
that encodes qubit-state information [Fig. 1(a)], such that

r(t ) = 〈σz〉(t ) + dW, (2)

where dW is a zero-mean Gaussian-distributed Wiener incre-
ment [54]. This noise arises from the quantum fluctuations
of the cavity probe. The noise obscures state information,
resulting in weak measurement.

We now introduce the tool of the quantum process matrix
in our experiment, which represents the complete set of in-
formation obtained from the measurement record [55]. The
evolution of the density matrix under the quantum operation

Er can be written as

Er (ρi ) =
∑

jk

χ jk (r)K†
j ρiKk, (3)

where ρi is the initial density matrix of the system and χ jk (r)
are the elements of the quantum process matrix written in the
basis of standard quantum process tomography [Figs. 1(b) and
1(c)],

{Kj} = {I, σx, σy, σz}. (4)

Note that quantum operations are not trace preserving.
The resulting normalized density matrix is given by ρr =
Er (ρi )/TrEr (ρi ). While the technique of quantum process to-
mography exists to determine a quantum operation [55], it
does not apply to a time-dependent quantum process matrix,
as we study here. This quantum process matrix is determined
by a single stochastic measurement record, where repeated
measurement and statistical averaging are impossible. Here,
we develop an alternative way to infer the conditional quan-
tum process by using a stochastic differential equation for the
quantum process matrix (see Appendix B),

χ̇ jk (r) =
∑
mn

∑
m′n′

c j
mm′c∗k

nn′θmn(r)χm′n′ (r), (5)

where cl
jk are the structure constants of the basis {Kj} defined

by

KjKk =
∑

l

cl
jkKl , (6)

whose complex conjugates are denoted by c∗l
jk . The coeffi-

cients θmn(r) are stochastic variables determined by the SME
of the system. In our experimental setup, we have the closed
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FIG. 2. Demon utilizing quantum process inference. The qubit
is prepared in a high-temperature initial state. We apply an initial
measurement to determine Ei. The system undergoes Rabi drive
and continuous weak measurement. The demon infers the quantum
process matrix χ jk from the measurement record and performs a
feedback rotation to extract work. At the end, we apply a final
measurement to determine Ef , concluding the TPM protocol.

form

θ (r) =

⎛
⎜⎜⎝

−k 0 −i �R
2 2ηkr

0 0 0 0
i �R

2 0 k 0
2ηkr 0 0 0

⎞
⎟⎟⎠. (7)

Figure 1(b) shows the evolution of the quantum pro-
cess matrix obtained from one example measurement record.
Clearly, the quantum process matrix contains more infor-
mation about the system evolution than is preserved in the
trajectories. χ (r) is a Hermitian matrix with positive diag-
onal elements. Although the information encoded in χ jk (r)
is generally obscure, in our experimental setup when the
system undergoes 3/4 of a Rabi cycle (approximately at
t = 0.94 μs), the quantum operation can be compared with
an ideal Hadamard gate where the effects of measurement
back-action and dephasing are neglected [Fig. 1(c)]. We
also show that the quantum trajectory of the system can be
recovered from χ (r). The result is compared with the trajec-
tory expressed as Pauli expectation values x = Tr(ρσx ), z =
Tr(ρσz ), where ρ is calculated from Eq. (1) (xρ, zρ ) or via
Eq. (3) (xχ , zχ ). The trajectories generated from these two
methods are nearly identical and agree with the tomographic
validation [Fig. 1(d)].

III. QUANTUM THERMODYNAMICS

As shown in Fig. 2, the qubit system is initialized in the
thermal state

ρi = ρth(β ) = 1

Z
e−βH = 1

2 cosh(β/2)

(
eβ/2 0

0 e−β/2

)
, (8)

where H = −h̄ωσz/2 and Z = 2 cosh(β/2) are the Hamil-
tonian and partition function of the qubit, respectively, and
β = (kBT )−1 is the inverse temperature. For simplicity, the
qubit energy levels are given in units such that h̄ω = 1.

We consider a Maxwell-demon protocol where informa-
tion from weak continuous measurement is used to extract
work through unitary feedback. In order to experimentally
determine the work extraction, we introduce the two-point
measurement (TPM) protocol [56], which consists of a pair of
projective measurements at the beginning and the end of the
measurement and feedback. The work extraction measured by
the TPM protocol (Fig. 2) is calculated as

−WTPM = 〈Ei〉 − 〈E f 〉, (9)

where Ei and E f represent the initial and final energies of
the qubit system, respectively. Previous work [28] studied a
feedback protocol that was solely determined by the density
matrix ρr . Starting with a thermal state, the demon tracked the
quantum trajectory of the qubit via the SME [Eq. (1)]. After
a variable duration, the demon applied a feedback rotation to
rotate the qubit state toward the ground state. This protocol
maximized the work extracted from the qubit.

In addition to W , the higher-order moments of the work
distribution and their combinations are informative since they
encode the correlation of the initial and final states of the
system. For example, the second-order moment of W ,

〈W 2〉 = 〈
E2

i

〉 + 〈
E2

f

〉 − 2〈EiE f 〉, (10)

explicitly involves the correlation between Ei and E f in the
cross term 〈EiE f 〉, which, unlike a quantum-mechanical ob-
servable, is inaccessible from the initial and final density
matrices of the system. With the language of quantum opera-
tions, this cross term can be expressed as

〈EiE f 〉 =
∫

DrTr[HEr (ρthH )], (11)

where
∫
Dr (see Appendix C) represents the path integral

over the entire space of possible measurement records. In
summary, the higher-order moments of the work distribution
serve as the probe of the correlation information encoded in
the quantum operation beyond a traditional density-matrix
treatment.

Among the various choices, one of the most valuable quan-
tities to consider is given by Jarzynski’s equality [57,58]. In
the case that the initial and final free energies of the system
are the same, Jarzynski’s equality is written as

〈e−βW 〉 = γ . (12)

The equality introduces the efficacy γ [59]. In the absence of
measurement and feedback, γ = 1. On the one hand, −W > 0
is thermodynamic evidence of the demon extracting work,
while γ > 1 is, on the other hand, more of an information-
theoretical measure since (i) γ is dimensionless, (ii) as we
will show, γ is bounded by n, the size of the system Hilbert
space, and is irrelevant to the energy spectrum of the system
considered, and (iii) γ can be maximized only if the correla-
tion information contained in the quantum process matrix is
not destroyed.

We now analyze the feedback protocols that maximize the
work extraction and efficacy. Previous work has pointed out
that the role of γ is closely related to the idea of backward
processes [59]. Quantum operations can be utilized to study
the time reversal of open quantum systems [60]. Motivated
by these results, we also notice that the flexibility provided
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by quantum operations allows us to extract the information
solely encoded in the measurement records without a specific
initial state, which is of key importance for optimizing the
feedback protocols considered in this article. We emphasize
that while the measurement records preserve the correlation
between the initial and final states of the system, specifying
an initial state in the SME (1) or Eq. (3) may be invasive as
this correlation information can be destroyed. However, by
replacing the initial state ρi in Eq. (3) with the completely
mixed state I/2, which can be understood as a “least inva-
sive” choice, we effectively discard any prior thermodynamic
information about the system. The resulting quantity

ρ̃r ∝ Er (I/2) =
∑

jk

χ jk (r)K†
j Kk =

∑
jkl

χ jk (r)cl
jkKl (13)

is the effective density matrix that we define, which is sim-
ilarly normalized as ρ̃r = Er (I )/TrEr (I ). The significance of
ρ̃r becomes clearer if we rewrite the efficacy as

γ =
∫

Dr Tr[ρthEr (I )] = nE[Tr(ρthρ̃r )|I], (14)

where n = 2 is the number of energy levels of the system
(see Appendix C). The expectation value E[·|I] is evaluated
as if the system were initialized into a completely mixed state.
We comment that in the case where no feedback operation
is performed on the system, the average of ρ̃r remains the
completely mixed state I/n and the value of Eq. (14) reduces
to 1 [Eq. (12)]. This equation also shows that γ is propor-
tional to the overlap between ρth and ρ̃r . Noting the overlap
Tr(ρthρ̃r ) never exceeds unity, we conclude that the efficacy
of any feedback protocol is bounded by n, which can be
exponentially large for multiqubit systems.

After a unitary feedback Ur , the effective density matrix
of the system becomes ρ̃ f = U †

r ρ̃rUr . Since ρth has more
population in the ground state, we conclude that an optimal
feedback that maximizes the efficacy given ρ̃r will maximize
its overlap with ρth by returning ρ̃ f to the +Z direction, which
defines the behavior of the “χ demon” in our experiment. On
the other hand, since, in general, ρ̃r is not a function of ρr and
is obtained from χ (r), a “ρ demon” unaware of ρ̃r is unable to
perform this optimal feedback. This is the direct consequence
of the fact that work is not an observable [44].

As shown in Figs. 3(a) and 3(b), the feedback protocols
designed for these two different tasks have very different
behaviors for the same ensemble of measurement records.
Remarkably, we observe that maximizing the work extraction
and maximizing the efficacy are generally incompatible tasks.

Both of the feedback protocols are able to achieve the
γ > 1 regime, as shown in Fig. 3(c). Especially, we confirm
that the χ demon possesses a significant advantage over the
ρ demon under this measure. This advantage is larger for
small t because in the limit of long-time evolution where the
significance of ρi decreases, we expect the difference between
these two feedback protocols to vanish. Figure 3(c) also shows
the generalized Jarzynski equality 〈e−βW −I〉 = 1. This gener-
alized equality accounts for the information exchange, defined
as Ii, f = ln Pf (ρr ) − ln Pi(ρi ), where Pi and Pf represent the
populations of the system before and after the evolution cal-
culated in the instantaneous eigenbasis, respectively [7,28].
Figure 3(d) displays the extracted work due to feedback for the

FIG. 3. Two different feedback protocols. (a) The feedback pro-
tocol that maximizes the work extraction: an ensemble of ρr ,
obtained by tracking single trajectories via the SME from an initial
thermal state (β = 1.3), is represented as points in the X -Z plane.
As shown in the plot, the feedback rotation angle is directly related
to arctan(z/x) returning the state to the +Z direction. Experimen-
tally, this feedback rotation is approximated by 20 discrete angles
separated by π/10. (b) The feedback protocol that maximizes the
efficacy: the map is more complicated because the optimal feedback
rotation (color) is determined by ρ̃r rather than ρr (points on the
X -Z plane). (c) The efficacy of the two feedback protocols measured
at different evolution times (circles) for β = 2.5. The generalized
Jarzynski equality is verified for the ρ demon (squares). (d) Work
advantage due to the two feedback protocols for β = 2.5.

two protocols. As expected, the ρ demon, which is optimized
for work extraction, performs better than the χ demon.

In order to build deeper intuition on the optimization of the
two protocols, we examine the efficacy advantage (〈e−βW 〉χ −
〈e−βW 〉ρ) of the χ demon’s protocol for different temperatures
and measurement efficiencies. Experimentally, we reduce the
quantum efficiency by adding zero-mean Gaussian noise to
our measurement signals, and different temperatures are ob-
tained by sampling experiments with initial states given by
respective Gibbs distributions. These data are displayed in
Fig. 4(a). We first note that the χ demon always outperforms
the ρ demon in efficiently using the obtained information.
This difference becomes most stark at short times and low
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FIG. 4. Efficacy and work extraction advantages of the two pro-
tocols. (a) The efficacy gain for different initial temperatures and
different quantum efficiencies at three evolution times. The negative
values (black) are caused by statistical fluctuations. Efficiency lower
than the experimental realization is obtained by adding Gaussian
random numbers as discussed in Appendix F. (b) The corresponding
work gain for the same parameters.

temperature, where the ρ demon’s feedback protocol is most
significantly biased by the initial state. Figure 4(b) displays
the corresponding work advantage [−(〈W 〉ρ − 〈W 〉χ )] of the
ρ demon. In regions of short evolution time, low temperature,
and low quantum efficiency, initial-state information is very
relevant to work extraction. Likewise, in the limits of high
temperature, high efficiency, and long evolution time, the final
state becomes less correlated with the initial state, leading to
similar performance of the two protocols.

IV. OUTLOOK

Experiments in quantum thermodynamics strive to eluci-
date opportunities for quantum advantage in thermodynamics,
clarifying the interplay of measurement, information, and en-
ergy. We highlighted the limitations of the quantum state alone
for the optimization of feedback protocols, which can be ad-
dressed through the use of the quantum process matrix, which
we tracked through continuous-time weak measurement. This
work enabled us to consider and optimize a broader variety
of feedback protocols that take advantage of the information
that is inaccessible in the density matrix alone, enabling new
opportunities for achieving quantum thermodynamical advan-
tages.
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APPENDIX A: EXPERIMENTAL SETUP

The experimental setup in this work is identical to that used
in Ref. [28]. Briefly, the system consists of a transmon circuit
(EC/h = 325 MHz, EJ/h = 8.88 GHz, where h is Planck’s
constant) embedded in a three-dimensional microwave cavity
(ωc/2π = 6.86 GHz). A dispersive interaction, characterized
by the Hamiltonian term χa†aσz, with χ/2π = −0.3 MHz
and a†a being the cavity number operator, leads to a qubit-
state-dependent phase shift on a cavity probe. The weak
cavity probe is amplified by a Josephson parametric amplifier
operating in phase-sensitive mode, achieving an overall mea-
surement quantum efficiency of η = 0.48. The experimental
sequence consists of a strong (projective) measurement of the
qubit energy, followed by variable duration evolution under
continuous measurement with strength k/2π = 57 kHz and
�R/2π = 0.8 MHz, a feedback rotation, and, finally, a sec-
ond projective energy measurement. The projective energy
measurements are used for the TPM work distributions. The
feedback operation is applied in a postprocessing step; the
data set contains different feedback rotations, and the subset of
data where the correct rotations are chosen is selected from the
data set for analysis. This allows for zero-latency feedback,
especially when the computational overhead for calculating
the quantum process matrix would require significant time.
We treat the photons in the weak-measurement probe signal as
a free thermodynamic resource because the dispersive interac-
tion changes only the phase of the incoming photons without
changing their energy.

APPENDIX B: QUANTUM PROCESS INFERENCE

The stochastic master equation (SME) is written as

ρ̇r = 1

ih̄
[HR, ρr] + k(σzρrσz − ρr )

+ 2ηk[σzρr + ρrσz − 2Tr(σzρr )ρr]r, (B1)

where ρ(0) = ρi is the initial state. Note that this equation
is nonlinear in ρ because of the quadratic term Tr(σzρ)ρ. In
order to recover the linear nature of the Kraus operators, we
relax the restriction of trace preservation to get

ϕ̇r = 1

ih̄
[HR, ϕr] + k(σzϕrσz − ϕr ) + 2ηk[σzϕr + ϕrσz]r,

(B2)

where ϕ is the unnormalized density matrix with ϕ(0) = ρi. It
can be verified that

ρr = ϕr

Trϕr
. (B3)

The right-hand side of Eq. (B2) is represented in the basis {Kj}
as

ϕ̇r =
∑

j,k

θ jk (r)KjϕrK†
k , (B4)

where the stochastic variables θ jk are determined by the SME.
Meanwhile, the evolution of ϕ is also described by quantum
operation Er and the corresponding quantum process matrix
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χ ,

ϕr = Er (ρi ) =
∑

j,k

χ jk (r)KjρiK
†
k . (B5)

Substituting Eq. (B5) into Eq.(B4), we obtain∑
j,k

χ̇ jk (r)KjρiK
†
k

=
∑
m,n

∑
m′,n′

θmn(r)χm′n′ (r)KmKm′ρiK
†
n′K†

n

=
∑
m,n

∑
m′,n′

c j
mm′c∗k

nn′θmn(r)χm′n′ (r)KjρiK
†
k , (B6)

where cl
jk are the structure constants of the basis {Kj}. By

comparing the coefficients, we arrive at the stochastic differ-
ential equation for χ ,

χ̇ jk (r) =
∑
m,n

∑
m′,n′

c j
mm′c∗k

nn′θmn(r)χm′n′ (r). (B7)

Using Eq. (B7) and the initial quantum process matrix

χi =

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, (B8)

we can therefore determine χ jk (r). The structure constants
c j

mm′ form a 64-element tensor and are determined based on
their definition in Eq. (6). We also note that because we have
relaxed the trace preservation, the elements of χ (r) are statis-
tically increasing in time; this growth in the elements of χ (r)
can be seen in Fig. 1. This has no physical consequence be-
cause we explicitly normalize the density matrix determined
by the quantum process.

APPENDIX C: EFFICACY AND THE EFFECTIVE
DENSITY MATRIX

We study the statistical aspect of the formalism by first
considering the operator-sum form of Er

Er (ρi ) =
∑

j

Mr, jρiM
†
r, j, (C1)

where Mr, j is a set of Kraus operators implicitly determined
by the χ matrix. With these Kraus operators, various types of
probability density can be evaluated. Since each Mr, j can be
understood as an individual contribution to Er , by performing
the summation over the traces,∑

j

Tr
(
Mr, jρiM

†
r, j

) = TrEr (ρi ) = p(r|ρi ), (C2)

we obtain the total probability density of getting the trajectory
r starting from initial state ρi [55]. Note that in Eq. (C2), we
have not incorporated the TPM protocol yet, which can be
done by considering a particular pair of initial and final states
|i〉 and | f 〉. By replacing the trace operation in Eq. (24) with
the projection onto | f 〉, we obtain∑

j

〈 f |Mr, jρiM
†
r, j | f 〉 = 〈 f |Er (ρi )| f 〉 = p( f , r|ρi ). (C3)

By further specifying the initial state to be |i〉, we obtain∑
j

〈 f |Mr, j |i〉〈i|M†
r, j | f 〉 = 〈 f |Er (|i〉〈i|)| f 〉 = p( f , r|i). (C4)

Then we arrive at the joint probability density p( f , r, i) by
writing

p( f , r, i) = p( f , r|i)Pi = 〈 f |Er (|i〉〈i|)| f 〉Pi, (C5)

where Pi represents the initial population of the system in
|i〉. In this section, we will mainly focus on the two types of
probability densities given by Eqs. (C2) and (C5).

Noting that r is a function of time, the normalization condi-
tion of these probability densities are properly expressed using
the language of path integrals,∫

Dr p(r|ρi ) = 1 (C6)

and ∑
f ,i

∫
Dr p( f , r, i) = 1, (C7)

respectively. Based on these normalization conditions, two
types of expectation values over the ensemble of r can be
defined. For quantity A(r, ρi ), which explicitly depends on the
initial density matrix, we define

E[A|ρi] =
∫

Dr p(r|ρi)A

=
∫

Dr ATrEr (ρi ), (C8)

where the second line is obtained by applying Eq. (C2). For
quantity A( f , r, i), which explicitly depends on the TPM mea-
surement results, we define

〈A〉 =
∑

f ,i

∫
Dr p( f , r, i)A. (C9)

With these probabilities and expectation values properly de-
fined, now we can use them to analyze the efficacy.

We consider an initial state described by the canonical
ensemble at temperature β with population in the ith energy
level given by

Pi(β ) = 1

Z
e−βEi . (C10)

The initial density matrix is described by the thermal state

ρth =
∑

i

Pi(β )|i〉〈i|. (C11)

Using Eq. (C9), the efficacy can be defined in a straightfor-
ward way as

γ = 〈e−βW 〉 =
∑

f ,i

∫
Dr p( f , r, i)e−β(E f −Ei ). (C12)

Equation (C12) can be simplified in several steps. By utilizing
Eq. (C10), we can rewrite the exponential part to get

γ =
∑

f ,i

∫
Dr p( f , r, i)

Pf (β )

Pi(β )
. (C13)
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With Eq. (C5) the probability part can be reformatted with Er

γ =
∑

f ,i

∫
Dr 〈 f |Er (|i〉〈i|)| f 〉Pi(β )

Pf (β )

Pi(β )

=
∑

f ,i

∫
Dr 〈 f |Er (|i〉〈i|)| f 〉Pf (β ). (C14)

Next, we deal with the summations. Since Er is a linear map-
ping, the summation over i is straightforward,

γ =
∑

f

∫
Dr 〈 f |Er

(∑
i

|i〉〈i|
)

| f 〉Pf (β )

=
∑

f

∫
Dr 〈 f |Er (I )| f 〉Pf (β ). (C15)

In order to perform the summation over f , we rewrite the
quantum-mechanical expectation value with the trace opera-
tion,

γ =
∫

Dr Tr

⎡
⎣∑

f

Pf (β )| f 〉〈 f |Er (I )

⎤
⎦. (C16)

By utilizing Eq (C11), we obtain

γ =
∫

Dr Tr[ρthEr (I )]. (C17)

The physical meaning of Eq. (C17) becomes clearer by intro-
ducing the effective density matrix

ρ̃r = Er (I )

TrEr (I )
= Er (I/n)

TrEr (I/n)
. (C18)

Combining Eqs. (C18) and (C17), we obtain

γ = n
∫

Dr Tr[ρthEr (I/n)]

= n
∫

Dr Tr[ρthρ̃r]TrEr (I/n). (C19)

By comparing this result with Eq. (C8), we arrive at

γ = nE[Tr(ρthρ̃r )|I], (C20)

where the expectation value E[·|I] is evaluated as if the system
were initialized as a completely mixed state and the denomi-
nator n has been omitted from the complete form E[·|I/n] for
convenience. Note that Eq. (C20) is in the form of a nested
expectation value because it is the statistical average of the
quantum expectation value over the ensemble of measurement
records.

Similarly, we can evaluate

〈EiE f 〉 =
∑

f ,i

∫
Dr p( f , r, i)EiE f

=
∑

f ,i

∫
Dr 〈 f |Er (|i〉〈i|)| f 〉Pi(β )EiE f

=
∑

f

∫
Dr 〈 f |Er (ρthH )| f 〉E f

=
∫

DrTr[HEr (ρthH )]. (C21)

FIG. 5. Two approaches to calculate the work distribution. The
left and right panels display the work distribution before and after
the feedback rotation, respectively. (a) The TPM work distribution
measured at β = 0.5. The dashed lines indicate the average work.
(b) The corresponding conditional work distribution viewed by the
demon. 〈Wr〉 is in fair agreement with 〈WTPM〉.

APPENDIX D: WORK DISTRIBUTION

To characterize how the demon extracts work we compare
the work distribution with and without unitary feedback. The
work distribution obtained from the TPM is always discrete,
but this quantity does not reflect the true expectation from
the demon’s point of view because the demon has no prior
knowledge of the TPM measurement results; the actual work
distribution viewed by the demon is the conditional expecta-
tion value

−Wr = −E[W |r, ρi] = Tr(ρiH ) − Tr(ρ f H ). (D1)

The conditional work extraction depends on the stochastic
measurement record r and is a continuous variable taking val-
ues from −1 to 1. We experimentally recover the conditional
work extraction for each trajectory and obtain its statistical
distribution (Fig. 5).

Naturally, these two different descriptions of work produce
the same overall expectation value, as is guaranteed by the law
of total expectation,

〈WTPM〉 = 〈Wr〉, (D2)

where 〈Wr〉 is defined from Eq. (C8) as

〈Wr〉 =
∫

Dr p(r|ρi )Wr . (D3)

From Eq. (D1), we also see the optimal feedback that max-
imizes the work extraction will minimize the overlap between
ρ f and H by returning the state to the +Z direction, which
corresponds to the behavior of the ρ demon in our experiment.
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APPENDIX E: OPTIMIZATION OF THE
FEEDBACK PROTOCOLS

We optimize the feedback protocols by considering the
expectation value of a given operator A with respect to the
density matrix ρr under a unitary feedback operation U . The
final state and the final expectation value after the feedback
are written as

ρ f = UρrU
† (E1)

and

〈A〉 f = Tr(ρ f A), (E2)

respectively. If U is the optimal feedback, we expect 〈A〉 f

to stay unchanged under an arbitrary additional infinitesimal
unitary operation

V = I + iJδλ, (E3)

up to the first order in δλ, where J is a Hermitian operator
and δλ is an infinitesimal real parameter. By applying the
infinitesimal operation V to ρ f , we obtain

δρ f = (I + iJδλ)ρ f (I − iJδλ) − ρ f = i[J, ρ f ]δλ. (E4)

The resulting variation of 〈A〉 f

δ〈A〉 f = iδλTr([J, ρ f ]A). (E5)

Since J is arbitrary, we can choose J to be a projection opera-
tor

J = |ψ〉 〈ψ | , (E6)

where |ψ〉 is an arbitrary pure state. Then 〈A〉 f reduces to

δ〈A〉 f = i〈ψ |[ρ f , A]|ψ〉δλ. (E7)

Note here [ρ f , A] is an anti-Hermitian operator. The condition
δ〈A〉 f = 0 for any |ψ〉 implies

[ρ f , A] = 0. (E8)

In other words, the optimal feedback operation always makes
the final density matrix diagonalized in the basis defined by
A. As a consequence, for the ρ demon, which maximizes the
work extraction, the optimal feedback operation diagonalizes
the density matrix in the energy basis, with the larger popu-
lation occupying the lower-energy states. For the χ demon,
which maximizes the efficacy given by Eq. (C20), the effec-
tive density matrix defined by Eq. (C18) is used instead.

APPENDIX F: LOWERING MEASUREMENT EFFICIENCY
WITH ADDED GAUSSIAN NOISE

In Fig. 4, we study the behavior of the feedback protocols
at low measurement efficiency by adding zero-mean Gaussian
random numbers to the measurement record while processing

the data. The variance σ 2 of the noise is determined by the
equality (

dW√
4kη�t

)2

+ σ 2 =
(

dW√
4kη′�t

)2

, (F1)

where η is the efficiency of experimental setup and η′ is the
effective measurement efficiency with the added noise.

APPENDIX G: STATISTICAL ANALYSIS

The error analysis in Figs. 3 and 5 relies on the formula

�A =
√

〈A2〉 − 〈A〉2

N
, (G1)

where A represents the quantity averaged over and N is the
number of measurement records used. Experimentally, the
quantities A and A2 are determined for each measurement
record, and their mean values are calculated separately. In
Figs. 3(c) and 3(d), a total data set of 676 072 measurement
records is used. Of this data set, we select subensembles
that meet the specified feedback protocols with N vary-
ing from 6205 to 6669. In Fig. 3(d), the work advantage
is displayed as −(〈W 〉ρ,χ − 〈W 〉n), where 〈W 〉n represents
the work extraction with no feedback. The corresponding
statistical uncertainties are determined by error propaga-
tion as

√
(�Wρ,χ )2 + (�Wn)2. The statistical uncertainties of

〈e−βW 〉, 〈e−βW −I〉, and −(〈W 〉ρ,χ − 〈W 〉n) are displayed as
vertical bars. In Fig. 5, a total of 68 856 measurement records
is used, with subensembles of around 3300. The errors of
P(WTPM), 〈WTPM〉, and 〈Wr〉 are included in the corresponding
figures.

APPENDIX H: TOMOGRAPHIC VALIDATION

We validate the prediction of the quantum trajectories by
performing quantum state tomography over a subensemble
[Fig. 1(d)]. We first generate a reference quantum trajectory
from the measurement record shown in Fig. 1(a). For each
time t , the quantum trajectory predicts a pair of expectation
values x(t ) and z(t ) (solid lines). This pair of expectation
values is validated by preparing an ensemble of trajectories
with an identical experimental setup but an evolution time
truncated to t . Then we examine a subset of this ensemble
such that their prediction on the final state is close enough
to x(t ) [or z(t )], within ±0.04 tolerance. Note that although
these trajectories may behave differently prior to t , ideally,
they share the common final expectation value. Since each
of the trajectories is followed by a final projective measure-
ment, we are allowed to apply quantum state tomography to
examine this subensemble. The resulting expectation values
(dashed lines) given by the tomography are compared with
the reference trajectory.
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