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Wheeler’s delayed-choice experiment delays the decision to observe either the wave or particle behavior of
a photon until after it has entered the interferometer, and the quantum delayed-choice experiment provides
the possibility of observing the wave and particle behaviors with a single experimental setup by introducing
quantum control. We here propose a modified quantum delayed-choice experiment without quantum control
or entanglement assistance, in which a photon can be prepared in a wave-particle superposition state and the
morphing behavior of wave-to-particle transition can be observed easily. It is demonstrated that the presented
scheme can allow us to rule out classical hidden-variable models in a device-independent manner via violating
dimension witness. We also extend the scheme to the situation of two degrees of freedom, first constructing a
hybrid quantum delayed-choice experiment which enables a photon respectively exhibits wave and particle be-
haviors in different degrees of freedom, and then proposing a scheme to prepare the single-photon wave-particle
entanglement. This study is not only meaningful to explore the wave-particle complementarity of photons, but
also provides potential for the research of the single-particle nonlocality from the perspective of the wave-particle
degree of freedom.
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I. INTRODUCTION

Wave-particle duality, one of the most fascinating charac-
ters of quantum physics, means a quantum object has both
wavelike and particlelike properties that are two distinct and
mutually exclusive natures from the perspective of classi-
cal physics. Bohr’s complementarity principle shows that
the wave behavior and particle behavior cannot be observed
simultaneously, and which behavior a quantum object will
exhibit depends on the measurement arrangement [1]. Es-
pecially, in the famous Bohr-Einstein debates, the original
idea of delayed-choice experiment was built up [2], which
indicates that, by choosing different measuring instruments,
whether a photon had passed through one of the two ways
or both ways can be decided until after the photon has com-
pleted its journey. Decades later, Wheeler proposed a possible
implementation of the delayed-choice experiment by using
the Mach-Zehnder interferometer (MZI) [3,4], i.e., Wheeler
delayed-choice (WDC) experiment.

Mach-Zehnder interferometer indeed provides an effective
platform for testing the wave-particle duality of a single pho-
ton. The first beam splitter (BS) of a MZI splits the input
photon into two paths, and the second BS of the MZI recom-
bines the two paths. Therefore, if the second BS is inserted
into the MZI, the interference between the two paths can be
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observed at the two output ports, and the input photon shows
wave behavior; if the second BS is removed, the which-way
information will be revealed at the output ports, and the pho-
ton shows particle behavior. Wheeler proposed that the second
BS can be decided to be inserted or removed after the photon
has entered the interferometer, so the photon cannot know
which measurement apparatus lies ahead in advance. This
gedanken experiment has attracted a lot of attention. With the
development of experiment technology, the WDC has been
realized in actual laboratory by using different systems, such
as photons [5–7] and atoms [8–10], even been implemented
between satellite and ground stations [11]. Moreover, the
delayed-choice experiment was also extended to other do-
mains of quantum physics [10,12–18], such as delayed-choice
quantum eraser [13,14], delayed-choice entanglement swap-
ping [15–17], delayed-choice decoherence suppression [18],
entanglement-separation duality [17], and so on. These ex-
periments exhibit profound and amazing quantum effects. On
the other hand, the wave-particle duality has also been studied
quantitatively by the complementarity inequality [19–21].

The reason that the wave behavior and particle behavior
of a photon cannot be exhibited simultaneously is the two
measurement apparatuses (removing the second BS or not)
are mutually exclusive. However, a quantum version of the
delayed-choice experiment was proposed by replacing the
second BS in MZI with a quantum-controlled BS [22], in
which the second BS can be prepared into a quantum superpo-
sition state of presence and absence by using an ancilla qubit.
Thus, the quantum delayed-choice (QDC) experiment enables
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a photon to be in the wave-particle superposition state. The
key module of the QDC experiment is the quantum control
device of the second BS, therefore, many researchers have de-
signed the quantum BS for either massless photons or massive
particles to implement the QDC experiment in different sys-
tems [23–27], and observed the wave-particle superposition
behavior. The QDC experiment enriches the basic contents of
wave-particle duality and Bohr’s complementarity principle,
so interest in the foundations of quantum mechanics has been
further stimulated, and a variety of works exploring quantum
phenomena under the frame of the QDC experiment have been
proposed in theory [28–31] and experiment [32–39].

The authors of Ref. [22] tried to exclude classical hidden-
variable models by using the assumption of wave-particle
objectivity, and they claimed that no hidden-variable model
could account for the quantum predictions of the QDC ex-
periment. However, very recently, Chaves et al. proved that
the assumption of wave-particle objectivity in Ref. [22] will
lead to a retrocausal influence of the delayed-choice vari-
able on the hidden variable that, however, has been excluded
in their assumption, thus the assumption is self-inconsistent
[40]. What’s more, Chaves et al. considered the WDC ex-
periment and its quantum version from the perspective of
device-independent causal models [40], and proposed that a
causal two-dimensional hidden-variable model can reproduce
the quantum mechanical predictions of the WDC experiment
and the QDC experiment, which means the original WDC and
QDC experiments cannot rule out the classical hidden variable
model. In that work, the authors treated the WDC experiment
as a device-independent prepare-and-measure (PAM) scenario
[41], and suggested a slight modification for the WDC ex-
periment can exclude any two-dimensional nonretrocausal
hidden-variable classical model in a device-independent man-
ner by violating the dimension witness [41–43]. Subsequently,
this causal-modeled WDC experiment was carried out in-
dependently in a series of experiments [44–46]. The causal
modeling approach [47] provides an effective way to ana-
lyze the nonclassical nature of an experiment by classical
causal assumptions [48–50]. These theoretical and experimen-
tal works gave further evidences for the nonclassicality of
photons’ behavior.

The advance of the QDC experiment over the WDC ex-
periment is essentially only to demonstrate that the “particle-
or-wave” dichotomy for a photon is meaningless due to the
possibility of the photon in the wave-particle superposition
by introducing the quantum-controlled BS. In the existing
schemes for the QDC experiment, the quantum control de-
vice was achieved with the help of ancilla qubits [22–27]
or entanglement [28,36]. On the other hand, the quantum
mechanical predictions of these QDC experiments can also
be reproduced by the classical causal model proposed in
Ref. [40], therefore, another problem naturally arises: whether
the QDC experiment can exclude such hidden-variable model
in a device-independent manner. Here, we mix these two
different frameworks, and first propose an alternative proposal
for QDC experiment with classical strategies, that is, the pho-
ton’s wave-particle superposition behavior can be observed
without any quantum control or entanglement assistance.
Then, we demonstrate the theoretical results of the pre-
sented scheme can violate the dimension witness by using the

device-independent approach, which means classical hidden-
variable models can also be ruled out in a device-independent
manner. Moreover, we generalize this proposal to the case of
two degrees of freedom, which shows that a single photon
can be in a wave and a particle state in different degrees
of freedom, respectively, and the single-photon wave-particle
entanglement can also be prepared.

II. QUANTUM DELAYED-CHOICE EXPERIMENT WITH
TUNABLE BEAM SPLITTER

We now introduce how to realize the QDC experiment
with classical strategies. The schematic depiction of the pre-
sented proposal is shown in Fig. 1(a). Note that, actually,
the complete setup diagram of the presented proposal is
Fig. 1(c). Figure 1(a) can only generate the same statistical
results as Fig. 1(c), but cannot rule out the two-dimensional
hidden-variable model in Ref. [40], which can be ruled out in
Fig. 1(c) by inserting an additional phase shifter as shown in
the following section. Here, to exhibit the photon’s statistical
distributions clearly, we explain the procedure using Fig. 1(a).
The second BS in the MZI is replaced by a tunable beam split-
ter (TBS) with reflectivity cos2 θ and transmissivity sin2 θ ,
where θ is continuously tunable between 0 and π

4 . The TBS
is always placed in the interferometer in the proposed scheme
[the idea of delayed choice will be reflected in the choice of
φ in Fig. 1(c)]. We denote the two paths of the MZI with
quantum states |0〉 and |1〉. Let a photon enter the MZI initially
from the path 0, i.e., the initial state is |0〉. The BS transforms
the state as {|0〉 → 1√

2
(|0〉 + |1〉), |1〉 → 1√

2
(|0〉 − |1〉)}, and

the phase shifter ϕ induces a phase shift ϕ for the photon in
the path 1. Thus, after passing through BS and ϕ, the state of
the photon evolves to

|ψ〉 → 1√
2

(|0〉 + eiϕ |1〉). (1)

Then, the photon is reflected by mirrors (MR) and
reaches the TBS, whose action is equivalent to the rota-
tion {|0〉 → cos θ |0〉 + sin θ |1〉, |1〉 → sin θ |0〉 − cos θ |1〉}.
When the photon leaves the MZI, the state becomes

|ψ〉 f = 1√
2

[(cos θ + eiϕ sin θ )|0〉 + (sin θ − eiϕ cos θ )|1〉].

(2)

Obviously, if θ = 0, |ψ〉 f = 1√
2
(|0〉 − eiϕ |1〉), detectors

D0(1) can reveal the which-way information of the photon
in the MZI, and the photon behaves as a particle; if θ =
π
4 , |ψ〉 f = eiϕ/2(cos ϕ

2 |0〉 − i sin ϕ

2 |1〉) the photon behaves
as a wave. Therefore, following the operational descrip-
tion of the wave and particle behavior of a photon in
Ref. [22], we can introduce the definition of the particle state
|particle〉 = 1√

2
(|0〉 − eiϕ |1〉) and the wave state |wave〉 =

eiϕ/2(cos ϕ

2 |0〉 − i sin ϕ

2 |1〉). These two defined states are in
general not orthogonal, but such operational definitions not
only can provide suitable expressions for the capacity and
incapacity of the photon to produce interference in the context
of quantum mechanics, but also can be conveniently used to
study the intermediate behavior and the transition behavior
between wave and particle nature [22–28,36]. The purpose
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FIG. 1. (a) The QDC experiment without quantum control device. MR: normal mirror. BS: 50:50 beam splitter. ϕ: phase shifter. TBS:
tunable beam splitter. The two paths of the MZI are labeled by 0 and 1. D0(1): conventional photon detector. (b) The device-independent
PAM scenario consists of a preparer (the first black box) with buttons X , a measurer (the second black box) with buttons Y , and a detection D.
(c) The complete schematic of the proposed QDC experiment with an additional phase shifter φ that can be used to exclude the two-dimensional
hidden-variable model. The gray dashed boxes correspond to the preparer and the measurer in (b).

of using such definitions here is to demonstrate that the
wave-particle superposition state can be prepared by classi-
cal strategies without quantum control. In the wave-particle
representation, the final state in Eq. (2) can be rewritten as

|ψ〉 f = α|particle〉 + β|wave〉, (3)

where the coefficients α = cos θ − sin θ and β = √
2 sin θ . It

can be seen from Eq. (3), for θ = 0 and π
4 , the photon is in the

particle and wave state, respectively. While θ is an arbitrary
value between 0 and π

4 , Eq. (3) will be a wave-particle super-
position state of a photon. In order to show the intermediate
morphing behavior between wave and particle nature visually,
we should explore the interference pattern at the output ports
of the MZI, which, for a single photon, can be reflected by
the probabilities that the detector D0(1) clicks. Take the output
port 0, for example, the probability that D0 clicks is

I (ϕ, θ ) = Tr(ρ f |0〉〈0|) = 1
2 (1 + sin 2θ cos ϕ), (4)

where ρ f = |ψ〉 f f 〈ψ | is the density matrix of the photon’s
final state. For an arbitrary θ , the visibility of the interference
pattern at the output port can be obtained as V = (Imax −
Imin)/(Imax + Imin) = sin 2θ . We plot the probability distribu-
tion I (ϕ, θ ) versus θ and ϕ in Fig. 2, from which one can see
the continuously morphing behavior between wave (θ = π/4)
and particle (θ = 0). Thus, by varying θ we can observe the
photon’s behavior of wave-to-particle transition, that is to
say, both wave and particle properties can be measured in a
single experiment by classical strategies and without quantum
control.

III. RULING OUT THE CLASSICAL HIDDEN-VARIABLE
MODELS VIA DIMENSION WITNESS METHOD

The complementary properties can be observed in a single
experimental setup with the presented scheme, but the setup
above cannot rule out the classical hidden variable that maybe
tells the input photon in advance about the value of θ . One
possible way is to tune the parameter θ of the TBS after the
photon has entered the MZI and before it reaches the TBS, so
that the photon cannot adjust itself beforehand to the specific

superposition state corresponding to θ . However, this possible
way implies the assumption of wave-particle objectivity that
has been shown to be self-inconsistent. The same as the WDC
experiment, it can be straightforward proved that the quantum
mechanical predictions in Fig. 1(a) can be reproduced by
the classical two-dimensional nonretrocausal hidden-variable
model proposed in Ref. [40]. To exclude the causal model,
we here adopt the method similar to Ref. [40], which can
be demonstrated with the device-independent PAM scenario
by the violation of dimension witness. The PAM scenario as
shown in Fig. 1(b) consists of a preparer (the first black box),
a measurer (the second black box), and a detector D [41,42].
The preparer can prepare a physical system in the state ρ(x)
by pressing one of the buttons X , and then the system is
sent to the measurer. By choosing one of the buttons Y , the
system is measured and an outcome D will be produced. For
the PAM scenario, to produce the same statistical distribution,
a classical system is required higher dimensionality than a
quantum system, which is the theoretical basis for testing clas-
sical and quantum systems by using the dimension witness.
For example, consider a scenario with 2k preparations and k
binary measurements, the dimension witness can be achieved

FIG. 2. The morphing behavior between wave (θ = π/4) and
particle (θ = 0) by continuously tuning θ .
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FIG. 3. (a) The dimension witness |Det(W2)| versus ϕ and θ . (b) The linear dimension witness versus ϕ and θ , and the dimension witness
inequality IDW � 3 is violated in the area marked by the dotted line.

with the help of the k × k matrix [41]

Wk (i, j) = p(2 j, i) − p(2 j + 1, i), (5)

with 0 � i, j � k − 1, and p(x, y) = p(D = 0|x, y) is the
conditional probability that D0 clicks for the choice (x, y).
The dimension witness |Det(Wk )| equals 0 for any classical
system of dimension d � k, but for any quantum system of
dimension d �

√
k. Hence, we can test classical and quantum

systems by using the dimension witness |Det(Wk )|.
In order to rule out the classical causal model, we should

insert an extra phase shifter φ in the path 0 as shown in
Fig. 1(c), which has the same experimental results and photon
statistical behaviors as Fig. 1(a) by absorbing φ into ϕ, so
it can also measure the photon’s wave property and particle
property at the same time. As demonstrated by Chaves et al.
[40], the delayed-choice experiment is equivalent to the PAM
scenario. The first dotted rectangular box and the second one
in Fig. 1(c) correspond to the preparer and the measurer in
the PAM scenario. The value of φ should be chosen after the
preparation process to ensure there is no correlation between
the preparer and the measurer. We also send the photon from
path 0 initially, and after passing through the BS and ϕ,
the quantum state corresponding to ρ(x) is 1√

2
(|0〉 + eiϕ |1〉).

Then, the photon enters the measurer, and passes through φ

and TBS. The state evolves to

|ψ ′〉 f = 1√
2

[(eiφ cos θ + eiϕ sin θ )|0〉

+ (eiφ sin θ − eiϕ cos θ )|1〉]. (6)

Because there are two detection results or the photon has
two spatial modes in the experiment, the dimension of the sys-
tem to be tested is 2. Therefore, we should set four preparation
choices X (i.e., ϕ) ∈ {ϕ0, ϕ1, ϕ2, ϕ3}, and two measurement
choices Y (i.e., φ) ∈ {φ0, φ1}. The matrix used for dimension
witness is given by

W2 =
(

p(0, 0) − p(1, 0) p(2, 0) − p(3, 0)
p(0, 1) − p(1, 1) p(2, 1) − p(3, 1)

)
, (7)

where p(x, y) = p(D = 0|ϕx, φy) is the probability that the
photon is detected by D0 for the choice ϕx and φy. For

the state in Eq. (6), it can be obtained that p(x, y) = 1
2 [1 +

sin 2θ cos(ϕx − φy)]. We can get

Det(W2) = 1
4 sin2 2θ{[cos(ϕ0 − φ0) − cos(ϕ1 − φ0)]

× [cos(ϕ2 − φ1) − cos(ϕ3 − φ1)]

− [cos(ϕ2 − φ0) − cos(ϕ3 − φ0)]

× [cos(ϕ0 − φ1) − cos(ϕ1 − φ1)}. (8)

Without loss of generality, we choose ϕ0 = 1
2ϕ1 = 1

3ϕ2 =
1
4ϕ3 = ϕ, φ0 = 0, and φ1 = π

2 for evaluating |Det(W2)|, then,

Det(W2) = 1
4 sin2 2θ (2 sin 2ϕ − sin ϕ − sin 3ϕ). (9)

Now we plot the change of |Det(W2)| versus ϕ and θ in
Fig. 3(a). We can see |Det(W2)| > 0 in several areas, i.e.,
the dimension witness is violated. For example, |Det(W2)| =
0.29 for ϕ = 3π/4 and θ = π/5.

The dimension witness above is called nonlinear dimen-
sion witness [41], that is because it requires the preparer and
the measurer are not correlated. Therefore, as pointed out in
Ref. [40], the analysis above has implicitly assumed that all
noise terms are independent and the hidden variable is also
independent of any noise term. However, in the causal model
proposed in Ref. [40], noise terms might affect the hidden
variable, and thus influence the statistical behaviors of the
photon at the output ports. In order to rule out the hidden-
variable model with such correlation, we should test the
presented scheme with the linear dimension witness, which
has been given by an inequality in Ref. [42]:

IDW = 〈D00〉 + 〈D01〉 + 〈D10〉 − 〈D11〉 − 〈D20〉 � 3, (10)

where 〈Dxy〉 = p(D = 0|ϕx, φy) − p(D = 1|ϕx, φy), i.e., the
probability difference between D0 and D1 to detect the photon.
To employ the dimension witness inequality, we should set
three preparation choices ϕ ∈ {ϕ0, ϕ1, ϕ2}, and two measure-
ment choices φ ∈ {φ0, φ1}. By using Eq. (6), we can obtain

IDW = sin 2θ [cos(ϕ0 − φ0) + cos(ϕ0 − φ1) + cos(ϕ1 − φ0)

− cos(ϕ1 − φ1) − cos(ϕ2 − φ0)]. (11)
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FIG. 4. The schematic of the hybrid QDC experiment in path de-
gree of freedom and polarization degree of freedom. PBS: polarizing
beam splitter. PR: polarization rotator. Other optical elements are the
same as Fig. 1.

To evaluate IDW, we here also choose ϕ0 = −ϕ1 = ϕ, φ0 =
0, φ1 = π

2 , and ϕ2 = π for maximizing IDW, then IDW =
sin 2θ [2(cos ϕ + sin ϕ) + 1]. From Fig. 3(b), it can be seen
that the dimension witness inequality is violated in the area
marked by the dotted line, i.e., IDW > 3 in that region of
(θ, ϕ). Specially, the maximum violation [40,42] in quantum
systems can be obtained IDW = 1 + 2

√
2 for ϕ = π/4 and

θ = π/4. Thus, the hidden variable correlated with noise
terms can also be ruled out in the presented scheme.

IV. HYBRID QUANTUM DELAYED-CHOICE
EXPERIMENT IN DIFFERENT DEGREES OF FREEDOM

Now we extend the scheme to two degrees of freedom,
i.e., implement the QDC experiment simultaneously in path
degree of freedom and polarization degree of freedom. The
basic setup diagram of the scheme is shown in Fig. 4. The pho-
ton is initially prepared in the superposition state of horizontal
polarization |H〉 and vertical polarization |V 〉, and enters the
setup from the path 0, that is, the initial state of the photon
can be given by |
0〉 = 1√

2
(|H〉 + |V 〉)|0〉. The polarization

beam splitter (PBS) transmits |H〉 component and reflects |V 〉
component. The phase shifters ϕ and φ induce phase shifts ϕ

and φ for |V 〉 component and |1〉 component, respectively. So,
after passing through BS, PBSs, and phase shifters, the photon
is in the state

|
〉 = 1
2 (|H〉 + eiφ|V 〉)(|0〉 + eiϕ |1〉). (12)

The polarization rotator (PR) is used to rotate the photon
by an angle ϑ , i.e., |H〉 → cos ϑ |H〉 + sin ϑ |V 〉 and |V 〉 →
sin ϑ |H〉 − cos ϑ |V 〉. The action of TBS with parameter θ

is the same as that in Fig. 1. Therefore, the state after TBS
evolves to

|
〉 f = 1
2 [(cos ϑ + eiφ sin ϑ )|H〉 + (sin ϑ − eiφ cos ϑ )|V 〉]
⊗[(cos θ + eiϕ sin θ )|0〉 + (sin θ − eiϕ cos θ )|1〉].

(13)

The particle state and the wave state in the polarization degree
of freedom can be defined as |particle〉 = 1√

2
(|H〉 − eiφ|V 〉)

and |wave〉 = eiφ/2(cos φ

2 |H〉 − i sin φ

2 |V 〉). Thus, the state in
Eq. (13) is a superposition state of wave and particle in two
degrees of freedom. Especially, |
〉 f = |particle〉pol|wave〉path

for ϑ = 0 and θ = π/4, and |
〉 f = |wave〉pol|particle〉path

for ϑ = π/4 and θ = 0, where the subscripts pol and path,
respectively, indicate polarization and path degree of freedom.
That is, the hybrid QDC experiment allows a single photon
to behave as a particle in one degree of freedom but behave
as a wave in the other one at the same time. What needs
to be pointed out is that the task of the setup in Fig. 4 can
also be achieved by inserting a single polarization interfer-
ometer before the path interferometer rather than doubling
the polarization interferometer for both the arms of the path
interferometer. However, note that we here have used only
one phase shifter in each degree of freedom for simplicity,
which cannot rule out the causal model. To achieve this, every
phase shifter should be divided into two parts and placed in
the preparer and the measurer respectively similar to Fig. 1(c),
then the causal model can be excluded by using the same way
as the above section. For this purpose, the presented setup
may be more convenient than the series connection of two
interferometers.

The hybrid QDC experiment above can be straightforward
used to generate single-photon wave-particle entangled state,
whose schematic diagram is shown in Fig. 5. Two hybrid QDC
experiment setups are combined by one PBS, two half-wave
plates (HWP), and a π -phase shifter σz. The photon is initially
prepared in the state |0〉 = 1√

2
(|H〉 + |V 〉)|1〉. Through di-

rect calculation, the state of the photon passing through the
whole setup becomes

|〉 f = 1

2
√

2
{[(cos ϑ1|H〉 + sin ϑ1|V 〉)

+ eiφ (sin ϑ1|H〉 − cos ϑ1|V 〉)]

× [(cos θ1|0〉+ sin θ1|2〉)+eiϕ (sin θ1|0〉− cos θ1|2〉)]

+ [(cos ϑ2|H〉 + sin ϑ2|V 〉)

+ eiφ (sin ϑ2|H〉 − cos ϑ2|V 〉)]

× [(cos θ2|1〉 + sin θ2|3〉)

+ eiϕ (sin θ2|1〉 − cos θ2|3〉)]}, (14)

where ϑ1 and ϑ2, respectively, denote the rotated angles by
PR1(2) and PR3(4), and θ1(2) is the transmission parameter of
TBS1(2). When we choose ϑ1 = θ2 = 0 and θ1 = ϑ2 = π/4,
in the wave-particle representation, the state above can be
written as

|〉 f = 1√
2

(|particle〉pol|wave〉path+|wave〉pol|particle〉path ),

(15)

which is a wave-particle entangled state of a single photon.
The concurrence of the state above equals 1, i.e., the state
is a maximally entangled state. By choosing proper param-
eters, other Bell-type states can also be obtained. Then, the
generated state enters the entanglement measurement device,
and the entanglement can be measured. To illustrate the entan-
glement measurement device, we consider the nonmaximally
entangled state

| ′〉 f = α|particle〉pol|wave〉path + β|wave〉pol|particle〉path.

(16)
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FIG. 5. The schematic for generating single-photon wave-particle entangled state. The light gray area is the entanglement preparation
device, and the light yellow area is the entanglement measurement device. HWP: half-wave plate oriented at 22.5◦. σz: π -phase shifter. Other
optical elements are the same as Fig. 4.

It is well known that the concurrence of the state above
C = 2|αβ|. Here, the concurrence can be evaluated through
the probabilities of the detectors clicking. By calculating, one
can find C = 2|(PH0 − PH1) + (PV 0 − PV 1) + (PH2 − PH3) +
(PV 2 − PV 3)| for ϕ = 0, where Pk j denotes the probability of
the detector Dk j clicking. For the general case, PH0 − PH1 =
αβ cos φ

2 cos ϕ

2 cos φ−ϕ

2 , that is, the concurrence C is propor-
tional to |PH0 − PH1| for given ϕ and φ. Therefore, we can
employ the quantity |PH0 − PH1| to evaluate the concurrence
and test the coherence of the generated entangled state. The
entanglement generation scheme proposed here can be re-
garded as a simple application of the presented hybrid QDC
experiment. Compared with the two-photon wave-particle
entanglement in Ref. [34], the single-photon wave-particle
entanglement proposed here may be more counterintuitive for
exhibiting the photon’s dual wave-particle behavior.

V. DISCUSSION AND CONCLUSIONS

The wave-particle duality is a fundamental topic of quan-
tum mechanics. The emergence of the QDC experiment has
enriched understanding of Bohr’s complementarity principle.
The relevant QDC schemes presented here require only the
most ordinary optical elements in optical laboratory [51].
Compared to existing schemes, a crucial optical element
here is TBS that plays key role in observing the behav-
ior of wave-to-particle transition. Fortunately, such TBS has
been realized experimentally [52]. Moreover, the device-
independent manner used here is robust to arbitrarily losses
inside the interferometer and the inefficiency of detectors as
pointed out in Ref. [40], which has been demonstrated in

current experiments [44–46]. Therefore, the presented scheme
is feasible under the current experimental condition.

In conclusion, we have proposed an alternative scheme for
the QDC experiment without quantum control or entangle-
ment assistance, which means the wave-particle superposition
state of a photon can be obtained with classical strategies
and provides a compact way to observing the morphing be-
havior of wave-to-particle transition. By violating nonlinear
dimension witness and linear dimension witness inequality, it
has been demonstrated that the presented scheme can exclude
classical two-dimensional hidden variable causal models in
a device-independent manner. We have also constructed a
hybrid QDC experiment in two degrees of freedom that makes
it possible for a photon to be in the particle state in one
degree of freedom but in the wave state in the other one.
The single-photon wave-particle entanglement between two
degrees of freedom can be prepared by using the hybrid QDC
experiment. Therefore, these works may be meaningful for
the research of the single-particle nonlocality and quantum in-
formation protocols from the perspective of the wave-particle
representation.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China under Grants No. 11604190 and
No. 11974223, the Natural Science Foundation of Shanxi
Province Grant No. 201901D211167, the Scientific and
Technological Innovation Programs of Higher Education In-
stitutions in Shanxi Grant No. 2019L0043, and the Fund for
Shanxi “1331 Project” Key Subjects Construction.

[1] N. Bohr, The quantum postulate and the recent development of
atomic theory, Nature (London) 121, 580 (1928).

[2] N. Bohr, in Discussion with Einstein on Epistemological Prob-
lems in Atomic Physics. Albert Einstein: Philosopher-Scientist,
edited by P. A. Schilpp (Cambridge University Press, Cam-
bridge, 1949).

[3] J. A. Wheeler, in Mathematical Foundations of Quantum The-
ory, edited by A. R. Marlow (Academic, New York, 1978).

[4] J. A. Wheeler and W. H. Zurek, Quantum Theory and Measure-
ment (Princeton University Press, Princeton, NJ, 1984).

[5] V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A.
Aspect, and J.-F. Roch, Experimental realization of wheeler’s

022210-6

https://doi.org/10.1038/121580a0


MODIFIED QUANTUM DELAYED-CHOICE EXPERIMENT … PHYSICAL REVIEW A 104, 022210 (2021)

delayed-choice gedanken experiment, Science 315, 966
(2007).

[6] V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier,
A. Aspect, and J.-F. Roch, Delayed-Choice Test of Quantum
Complementarity with Interfering Single Photons, Phys. Rev.
Lett. 100, 220402 (2008).

[7] T. Hellmuth, H. Walther, A. Zajonc, and W. Schleich, Delayed-
choice experiments in quantum interference, Phys. Rev. A 35,
2532 (1987).

[8] B. J. Lawson-Daku, R. Asimov, O. Gorceix, C. Miniatura, J.
Robert, and J. Baudon, Delayed choices in atom Stern-Gerlach
interferometry, Phys. Rev. A 54, 5042 (1996).

[9] A. G. Manning, R. I. Khakimov, R. G. Dall, and A. G. Truscott,
Wheeler’s delayed-choice gedanken experiment with a single
atom, Nat. Phys. 11, 539 (2015).

[10] X.-S. Ma, J. Kofler, and A. Zeilinger, Delayed-choice gedanken
experiments and their realizations, Rev. Mod. Phys. 88, 015005
(2016).

[11] F. Vedovato, C. Agnesi, M. Schiavon, D. Dequal, L. Calderaro,
M. Tomasin, D. G. Marangon, A. Stanco, V. Luceri, G. Bianco,
G. Vallone, and P. Villoresi, Extending wheeler’s delayed-
choice experiment to space, Sci. Adv. 3, e1701180 (2017).

[12] P. Shadbolt, J. C. F. Mathews, A. Laing, and J. L. O’Brien,
Testing foundations of quantum mechanics with photons, Nat.
Phys. 10, 278 (2014).

[13] M. O. Scully, and K. Drühl, Quantum eraser: a proposed pho-
ton correlationexperiment concerning observation and ‘delayed
choice’ in quantum mechanics, Phys. Rev. A 25, 2208 (1982).

[14] Y.-H. Kim, R. Yu, S. P. Kulik, Y. Shih, and M. O. Scully,
Delayed Choice Quantum Eraser, Phys. Rev. Lett. 84, 1 (2000).

[15] T. Jennewein, G. Weihs, J.-W. Pan, and A. Zeilinger, Ex-
perimental Nonlocality Proof of Quantum Teleportation and
Entanglement Swapping, Phys. Rev. Lett. 88, 017903 (2001).

[16] A. Peres, Delayed choice for entanglement swapping, J. Mod.
Opt. 47, 139 (2000).

[17] X.-s. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, C.
Brukner, and A. Zeilinger, Experimental delayed-choice entan-
glement swapping, Nat. Phys. 8, 479 (2012).

[18] J.-C. Lee, H.-T. Lim, K.-H. Hong, Y.-C. Jeong, M. S. Kim,
and Y.-H. Kim, Experimental demonstration of delayed-choice
decoherence suppression, Nat. Commun. 5, 4522 (2014).

[19] D. M. Greenberger and A. Yasin, Simultaneous wave and par-
ticle knowledge in a neutron interferometer, Phys. Lett. A 128,
391 (1988).

[20] G. Jaeger, A. Shimony, and L. Vaidman, Two interferometric
complementarities, Phys. Rev. A 51, 54 (1995).

[21] B.-G. Englert, Fringe Visibility and Which-Way Information:
An Inequality, Phys. Rev. Lett. 77, 2154 (1996).

[22] R. Ionicioiu and D. R. Terno, Proposal for a Quantum Delayed-
Choice Experiment, Phys. Rev. Lett. 107, 230406 (2011).

[23] R. Auccaise, R. M. Serra, J. G. Filgueiras, R. S. Sarthour, I. S.
Oliveira, and L. C. Céleri, Experimental analysis of the quantum
complementarity principle, Phys. Rev. A 85, 032121 (2012).

[24] J.-S. Tang, Y.-L. Li, X.-Y. Xu, G.-Y. Xiang, C.-F. Li, and G.-C.
Guo, Realization of quantum Wheeler’s delayed-choice experi-
ment, Nat. Photonics 6, 600 (2012).

[25] F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and
S. Tanzilli, Entanglement-enabled delayed-choice experiment,
Science 338, 637 (2012).

[26] A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L.
O’Brien, A quantum delayed-choice experiment, Science 338,
634 (2012).

[27] S. B. Zheng, Y. P. Zhong, K. Xu, Q. J. Wang, H. Wang, L. T.
Shen, C. P. Yang, J. M. Martinis, A. N. Cleland, and S. Y. Han,
Quantum Delayed-Choice Experiment with a Beam Splitter in
a Quantum Superposition, Phys. Rev. Lett. 115, 260403 (2015).

[28] R. Ionicioiu, T. Jennewein, R. B. Mann, and D. R. Terno,
Is wave-particle objectivity compatible with determinism and
locality?, Nat. Commun. 5, 4997 (2014).

[29] R. Ionicioiu, R. B. Mann, and D. R. Terno, Determinism, In-
dependence, and Objectivity are Incompatible, Phys. Rev. Lett.
114, 060405 (2015).

[30] Q. Guo, L. Y. Cheng, H. F. Wang, and S. Zhang, Quantum
delayed-choice experiment and wave-particle superposition,
Int. J. Theor. Phys. 54, 2517 (2015).

[31] G. Li, P. Zhang, and T. Zhang, Quantum delayed-choice exper-
iment with a single neutral atom, Opt. Lett. 42, 3800 (2017).

[32] G. L. Long, W. Qin, Z. Yang, and J. L. Li, Realistic inter-
pretation of quantum mechanics and encounter-delayed-choice
experiment, Sci. China Phys. Mech. 61, 1 (2018).

[33] K. Liu, Y. Xu, W. Wang, S.-B. Zheng, T. Roy, S. Kundu, M.
Chand, A. Ranadive, R. Vijay, Y. Song, L. Duan, and L. Sun,
A twofold quantum delayed-choice experiment in a supercon-
ducting circuit, Sci. Adv. 3, e1603159 (2017).

[34] A. S. Rab, E. Polino, Z.-X. Man, N. Ba An, Y.-J. Xia, N.
Spagnolo, R. Lo Franco, and F. Sciarrino, Entanglement of
photons in their dual wave-particle nature, Nat. Commun. 8, 915
(2017).

[35] T. Xin, H. Li, B. X. Wang, and G. L. Long, Realization of
an entanglement-assisted quantum delayed-choice experiment,
Phys. Rev. A 92, 022126 (2015).

[36] K. Wang, Q. Xu, S. N. Zhu, and X. S. Ma, Quantum wave-
particle superposition in a delayed-choice experiment, Nat.
Photonics 13, 872 (2019).

[37] F. Qi, Z. Wang, W. Xu, X. W. Chen, and Z. Y. Li, Towards
simultaneous observation of path and interference of a single
photon in a modified Mach-Zehnder interferometer, Photon.
Res. 8, 622 (2020).

[38] W. Qin, A. Miranowicz, G. L. Long, J. Q. You, and F. Nori,
Proposal to test quantum wave-particle superposition on mas-
sive mechanical resonators, npj Quantum Inf. 5, 1 (2019).

[39] M. X. Dong, D. S. Ding, Y. C. Yu, Y. H. Ye, W. H. Zhang,
E. Z. Li, L. Zeng, K. Zhang, D.-C. Li, G.-C. Guo, and B. S. Shi,
Temporal Wheeler’s delayed-choice experiment based on cold
atomic quantum memory, npj Quantum Inf. 6, 1 (2020).

[40] R. Chaves, G. B. Lemos, and J. Pienaar, Causal Modeling
the Delayed-Choice Experiment, Phys. Rev. Lett. 120, 190401
(2018).

[41] J. Bowles, M. T. Quintino, and N. Brunner, Certifying the
Dimension of Classical and Quantum Systems in a Prepare-and-
Measure Scenario with Independent Devices, Phys. Rev. Lett.
112, 140407 (2014).

[42] R. Gallego, N. Brunner, C. Hadley, and A. Acín, Device-
Independent Tests of Classical and Quantum Dimensions, Phys.
Rev. Lett. 105, 230501 (2010).

[43] J. Ahrens, P. Badzi, A. Cabello, and M. Bourennane, Ex-
perimental device-independent tests of classical and quantum
dimensions, Nat. Phys. 8, 592 (2012).

022210-7

https://doi.org/10.1126/science.1136303
https://doi.org/10.1103/PhysRevLett.100.220402
https://doi.org/10.1103/PhysRevA.35.2532
https://doi.org/10.1103/PhysRevA.54.5042
https://doi.org/10.1038/nphys3343
https://doi.org/10.1103/RevModPhys.88.015005
https://doi.org/10.1126/sciadv.1701180
https://doi.org/10.1038/nphys2931
https://doi.org/10.1103/PhysRevA.25.2208
https://doi.org/10.1103/PhysRevLett.84.1
https://doi.org/10.1103/PhysRevLett.88.017903
https://doi.org/10.1080/09500340008244032
https://doi.org/10.1038/nphys2294
https://doi.org/10.1038/ncomms5522
https://doi.org/10.1016/0375-9601(88)90114-4
https://doi.org/10.1103/PhysRevA.51.54
https://doi.org/10.1103/PhysRevLett.77.2154
https://doi.org/10.1103/PhysRevLett.107.230406
https://doi.org/10.1103/PhysRevA.85.032121
https://doi.org/10.1038/nphoton.2012.179
https://doi.org/10.1126/science.1226755
https://doi.org/10.1126/science.1226719
https://doi.org/10.1103/PhysRevLett.115.260403
https://doi.org/10.1038/ncomms5997
https://doi.org/10.1103/PhysRevLett.114.060405
https://doi.org/10.1007/s10773-014-2482-1
https://doi.org/10.1364/OL.42.003800
https://doi.org/10.1007/s11433-018-9198-0
https://doi.org/10.1126/sciadv.1603159
https://doi.org/10.1038/s41467-017-01058-6
https://doi.org/10.1103/PhysRevA.92.022126
https://doi.org/10.1038/s41566-019-0509-0
https://doi.org/10.1364/PRJ.386774
https://doi.org/10.1038/s41534-018-0113-z
https://doi.org/10.1038/s41534-019-0235-y
https://doi.org/10.1103/PhysRevLett.120.190401
https://doi.org/10.1103/PhysRevLett.112.140407
https://doi.org/10.1103/PhysRevLett.105.230501
https://doi.org/10.1038/nphys2333


GUO, ZHANG, LI, ZHANG, WANG, AND ZHANG PHYSICAL REVIEW A 104, 022210 (2021)

[44] H.-L. Huang, Y.-H. Luo, B. Bai, Y.-H. Deng, H. Wang,
Q. Zhao, H.-S. Zhong, Y.-Q. Nie, W.-H. Jiang, X.-L. Wang
et al., Compatibility of causal hidden-variable theories with
a delayed-choice experiment, Phys. Rev. A 100, 012114
(2019).

[45] S. Yu, Y. N. Sun, W. Liu, Z. D. Liu, Z. J. Ke, Y. T. Wang, J. S.
Tang, C. F. Li, and G. C. Guo, Realization of a causal-modeled
delayed-choice experiment using single photons, Phys. Rev. A
100, 012115 (2019).

[46] E. Polino, I. Agresti, D. Poderini, G. Carvacho, G. Milani, G. B.
Lemos, R. Chaves, and F. Sciarrino, Device-independent test
of a delayed choice experiment, Phys. Rev. A 100, 022111
(2019).

[47] J. Pearl, Causality (Cambridge University, Cambridge, Eng-
land, 2009).

[48] N. Brunner, S. Pironio, A. Acin, N. Gisin, A. A. Méthot, and
V. Scarani, Testing the Dimension of Hilbert Spaces, Phys. Rev.
Lett. 100, 210503 (2008).

[49] R. Chaves, J. B. Brask, and N. Brunner, Device-Independent
Tests of Entropy, Phys. Rev. Lett. 115, 110501 (2015).

[50] R. Chaves, G. Carvacho, I. Agresti, V. Di Giulio, L. Aolita, S.
Giacomini, and F. Sciarrino, Quantum violation of an instru-
mental test, Nat. Phys. 14, 291 (2018).

[51] P. Kok, W. J. Munro, T. C. Ralph, J. P. Dowling, and G. J.
Milburn, Linear optical quantum computing with photonic
qubits, Rev. Mod. Phys. 79, 135 (2007).

[52] X.-s. Ma, S. Zotter, N. Tetik, A. Qarry, T. Jennewein, and A.
Zeilinger, A high-speed tunable beam splitter for feed-forward
photonic quantum information processing, Opt. Express 19,
22723 (2011).

022210-8

https://doi.org/10.1103/PhysRevA.100.012114
https://doi.org/10.1103/PhysRevA.100.012115
https://doi.org/10.1103/PhysRevA.100.022111
https://doi.org/10.1103/PhysRevLett.100.210503
https://doi.org/10.1103/PhysRevLett.115.110501
https://doi.org/10.1038/s41567-017-0008-5
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1364/OE.19.022723

