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Generation of quasimonoenergetic positron beams in chirped laser fields
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High-energy photons can decay to electron-positron pairs via the nonlinear Breit-Wheeler process when
colliding with an intense laser pulse. The energy spectrum of the produced particles is broadened because of
the variation of their effective mass in the course of the laser pulse. Applying a suitable chirp to the laser pulse
can narrow the energy distribution of the generated electrons and positrons. We present a scenario where a
high-energy electron beam is collided with a chirped laser pulse to generate a beam of quasimonoenergetic γ

photons, which then decay in a second chirped, UV pulse to produce a quasimonoenergetic source of high-energy
electrons and positrons.
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I. INTRODUCTION

When a beam of charged particles collides with an intense
laser pulse, the spectrum of produced photons, via the process
referred to as the nonlinear Compton scattering (NLC) [1,2],
is sensitive to the shape of the pulse. Employing a many-
cycle laser pulse will lead to outgoing photon spectra similar
to those in a monochromatic background [3,4]: well-defined
harmonic fringes in lightfront momenta and emission angle.
Collision with short laser pulses will lead to a broadening of
outgoing particle harmonic peaks [5–7] and richer spectral
structures: infrared structure [8,9], asymmetry in emission
angle [10], and pronounced interference phenomena [11,12].
The spectral broadening can be attributed to the inhomoge-
neous effective mass of the charged particle moving in the
intense laser pulse [13–16]: the variation of the effective mass
modifies the velocity of the changed particle during the scat-
tering [17–20]. It is also known, that if one can prescribe the
chirp of the laser pulse, that is, a nonlinear dependency on
the phase, then this relativistic broadening of particle spectra
can be compensated for, to generate a narrowband source of
high-energy photons [20–22].

The decay of a probe photon to an electron-positron pair
in an intense electromagnetic field, is often referred to as the
nonlinear Breit-Wheeler process (NBW) [3,23,24], and has
been measured experimentally in the landmark E144 experi-
ment more than two decades ago [25,26]. The phenomenology
of the process has been investigated theoretically in various
types of laser field. First in monochromatic [3] and constant
crossed fields [3,27], and more recently in finite laser pulses
[28–30], as well as two-color [31] and double-pulse fields
[32–34]. As in the NLC process, harmonic structure also
arises in the outgoing electron-positron pair spectra operating
in a many-cycle laser pulse. However, this structure is only
clearly discernible when the center-of-mass energy reaches
the threshold of 2mc2 already with only a low number of laser
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photons, where m is electron (positron) rest mass and c is the
speed of light.

Analogous to the spectral broadening in the NLC process,
the variation of the electron-positron pair’s effective mass in
the course of the intense laser pulse also induces a broaden-
ing in their energy spectra. The current paper is a proof of
principle calculation to show that a suitable nonlinear chirp
of a laser pulse can also be employed to counterbalance the
spectral broadening in the NBW process, and proposes a sim-
ple two-step scenario to provide a quasimonoenergetic source
positron. The existence of a quasimonoenergetic positron
source would be useful in the electron-positron colliding ex-
periments [35–37].

The study of laser chirp’s effect on positron spectra
is partly motivated by upcoming high-energy experiments
LUXE at DESY [38,39] and E320 at FACET-II [40,41], where
photons with energies of the order of 10 GeV are planned to be
generated, either directly in the laser pulse through Compton
scattering of the electrons (LUXE and E320), or from a sep-
arated bremsstrahlung and inverse Compton source (LUXE).
The multiphoton harmonic regime of the NBW process can
be approached by colliding these high-energy photons with
the higher-order harmonics of the interaction laser, using,
e.g., relativistic plasmas [42–44]. The positron spectra in
this regime would show distinct harmonic edges related to
multiphoton channels. Colliding with fundamental-frequency
[ω0 ∼ O(1 eV)] laser pulses, this multiphoton regime appar-
ently cannot be reached as the energy to stimulate the pair
production must be provided larger than 2mc2 in the center-
of-mass frame, and the spectral harmonic edges would be
smoothed out as the many-photon channels would be domi-
nant.

The paper is organized as follows. In Sec. II, we present
the spectrum of produced positrons in the NBW process, and
investigate the contributions from the stationary phase points.
We then analyze the broadening of the positron spectrum
and propose a special laser frequency chirp to counteract the
spectral broadening. In Sec. III we demonstrate numerical
implementations of our chirp prescription in narrowing the
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positron spectra from a single high-energy photon and from
the γ ray obtained through the NLC process of a high-energy
electron. We conclude in Sec. IV.

II. THEORETICAL FRAMEWORK

We consider the scenario in which a high-energy photon
with momentum � colliding (almost) head-on with a laser
pulse produces a pair of electron and positron. The laser pulse
is simplified as a plane wave with scaled vector potential aμ =
|e|Aμ(φ) and wave vector kμ = ω0(1, 0, 0, 1) where φ = k · x
and ω0 is the laser frequency at the initial phase point φi at
which the laser is turned on. The interaction energy is char-
acterized by η� = k · �/m2. We use natural units h̄ = c = 1
throughout and the fine-structure constant is α = e2 ≈ 1/137.

The angular-resolved spectrum of the produced positron
can be formulated as

d3P

ds d2q⊥
= α

|I|2 + (SI∗ + IS∗ − 2FF ∗)g(s, 1)

(2π )2η2
� (1 − s)s

, (1)

where g(u, v) = [u2 + (v − u)2]/[4u(v − u)]. We sum over
the spin of the outgoing particles and average over the
polarization of the incoming photon. The spectrum (1) is
parametrized by the three components of the positron mo-
mentum p: these are s = k · p/k · �, the fraction of the photon
lightfront momentum taken by the positron, and q⊥ = (qx, qy),
qx,y = px,y/m − s�x,y/m, positron momenta in the plane per-
pendicular to the laser propagating direction. q⊥ reflects the
angular spread of the produced positron around the pho-
ton incident direction. In our parameter region, the angular
spread is extremely narrow, and for head-on collisions �⊥ =
0, q⊥ ≈ γpθp(cos ψ, sin ψ ) where θp and ψ are the polar
and azimuthal angles of the positron, and γp is the positron
energy factor.

The functions I , F , and S are defined as

I =
∫

dφ

(
1 − � · πp

� · p

)
ei�(φ),

Fμ = 1

m

∫
dφ aμ(φ)ei�(φ),

S = 1

m2

∫
dφ a(φ) · a(φ)ei�(φ),

with the exponent

�(φ) =
∫ φ

φi

dφ′ � · πp(φ′)
m2η�(1 − s)

, (2)

where πp is the instantaneous momentum of the positron in
the field

πp = p − a + p · a

k · p
k − a2

2k · p
k. (3)

The completed derivation of the NBW pair production
probability could start from an S-matrix element with Volkov
wave functions [45] and has been well documented in the
literature (see, for example, [46] for an introduction and [12]
for an analogous presentation for NLC). Because of the charge
symmetry, the spectrum (1) can also be applied to the pro-
duced electron by just changing the corresponding definitions

for the electron. After doing the transverse integral over q⊥,
the spectrum (1) shows the symmetry P(s) = P(1 − s).

Quasimonoenergetic positron beams from chirped laser pulses

We now choose, as an example, the vector potential aμ with
circular polarization:

aμ(φ) = mξ [0, cos (φ), sin (φ), 0] f (φ), (4)

in which ξ and f (φ) are the normalized pulse amplitude
and envelope, and  ′(φ) = ω(φ)/ω0 is the chirped frequency
of the pulse. Here and below, the prime (′) stands for the
derivative of φ. For simple expression, we set the initial phase
φi = 0. At the initial phase, f (φi ) = 0 and ω(φi ) = ω0.

We request (i) that the pulse duration is sufficiently long
and the variation of the pulse local amplitude is much slower
than the laser frequency, and (ii) that the variation of the
local frequency ω(φ) is on the same timescale as the pulse
local amplitude (this will be clear later): ω′(φ), f ′(φ) � 1.
Under these conditions, we can then apply the slowly vary-
ing approximation that terms of order f ′(φ) [ω′(φ)] can be
neglected [47].

The exponent (2) can be expressed approximately as

�(φ) ≈ κ (φ)φ − ζ (φ) sin [(φ) − ψ], (5)

where we ignore all the terms proportional to ω′(φ), f ′(φ):∫ φ

φi
dφ̃[cos (φ̃), sin (φ̃)] f (φ̃) ≈ ω0[sin (φ),−

cos (φ)] f (φ)/ω(φ), and

κ = � · p

m2η�(1 − s)
+ ξ 2

2η�(1 − s)s

1

φ

∫ φ

0
dφ̃ f 2(φ̃),

ζ = ξ f (φ)

η�(1 − s)s

ω0

ω(φ)
|q⊥|.

With the Jacobi-Anger expansion:

e−iζ sin(−ψ ) =
+∞∑

n=−∞
Jn(ζ )einψe−in, (6)

where Jn(ζ ) is the Bessel function of the first kind, the
functions S can be expanded approximately as a series of
harmonics:

S ≈ −ξ 2
+∞∑

n=−∞
einψ

∫
dφ f 2(φ)Jn(ζ )ei�(φ), (7)

where �(φ) = κ (φ)φ − n(φ), the harmonic order n counts
the net number of the laser photons absorbed from the back-
ground field. The dependence of the argument ζ on the pulse
envelope f (φ) indicates that the contribution of each har-
monic varies during the course of the pulse and the high-order
harmonics contribute only at the pulse center where f (φ) →
1. The functions I and F can be calculated in the same way
as (7) and obtained with exactly the same exponent term (and
the different preexponents).

From (7), one can see that the main contribution to the
functions I , F , and S, and therefore to the final spectrum (1),
comes from the stationary phase point where

∂

∂φ
�(φ) = q2

⊥ + m2
∗(φ)/m2

2η�(1 − s)s
− n

ω(φ)

ω0
= 0, (8)
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where m∗(φ) = m[1 + ξ 2 f 2(φ)]1/2 denotes the effective mass
of the produced positrons in the laser pulse [14,15].

Let us first consider the standard case with constant fre-
quency: ω(φ) = ω0. The stationary condition (8) implies a
chirp in the positron energy varying with the pulse envelope,
ds/dφ 
= 0: For the nth harmonic, the positron energy is in the
spectral region s̃n,−(φ) � s � s̃n,+(φ), where

s̃n,±(φ) = [1 ±
√

1 − 2m2∗(φ)/(nη�m2) ]/2, (9)

shifting between the linear [ f (φ) = 0] and nonlinear [ f (φ) =
1] BW spectral lines. This shifting stems indeed from the
variation of the positron’s effective mass m∗(φ) during the
course of laser pulse [20,22].

To exclude the energy chirp in the positron spectrum,
one simple idea from (9) is to adapt the energy parameter
η� by prescribing the laser frequency with a specific chirp,
η� ∼ ω(φ) ∼ 1 + ξ 2 f 2(φ), to compensate the variation of the
particle effective mass in the laser pulse. As one can see, this
frequency chirp is modulated by the field intensity and varies
on the same timescale as the pulse envelope, satisfying the
request before.

Based on the stationary condition (8), this frequency chirp
can be prescribed by solving the differential equation

dω

dφ
= ω0

2nη�(1 − s)s

d

dφ
[q2

⊥ + 1 + ξ 2 f 2(φ)], (10)

with the initial conditions f (φi ) = 0 and ω(φi ) = ω0, and
acquired with its explicit expression

ω(φ) = ω0
[
1 + ξ 2 f 2(φ)/(q2

⊥ + 1)
]
. (11)

From (11), one can see a remarkable fact that this chirp pre-
scription is irrelevant to the harmonic order n, which indicates
this spectral broadening can be removed from all the harmonic
lines at the same time. One should also note that the com-
plete counterbalance of the broadening can only happen at a
particular outgoing angle |q⊥| ∼ γpθp specified by the chirp
(11). For a realistic detector with nonzero angular acceptance
�θ > 0, the spectral peaks of the probed positrons would shift
slightly from the harmonic lines with a finite energy spread
(see the results later in Fig. 4).

Similar discussions can also be applied to linearly polar-
ized field backgrounds: aμ(φ) = mξ [0, cos (φ), 0, 0] f (φ),
and the prescription of frequency chirp (11) is exactly the
same, except that ξ 2 → ξ 2/2.

III. NUMERICAL RESULT

In this section, we first present a numerical example of
a head-on collision between a 13.1 GeV photon and a laser
pulse with and without the frequency chirp, and then we con-
sider the scenario in which the high-energy photon is replaced
with a beam of γ photons obtained from the NLC process of
a 16.5 GeV electron.

We are interested in the on-axis positrons collimated in the
direction of the incoming photon q⊥ → 0 for higher yield, and
thus apply the frequency chirp:

ω(φ) = ω0[1 + ξ 2 f 2(φ)]. (12)

Inserting back into the stationary condition (8), one can then
get the unchirped positron spectrum peaked at the angle θp =
0 around the harmonic line

sn,± = [1 ±
√

1 − 2/(nη�)]/2, (13)

which can be understood as the linear BW harmonic in the
collision between the incident photon �ν and a photon with
momentum nkν . To produce a narrow-band positron beam at
the cone angle θp ∼ |q⊥|/γp, one can employ the frequency
chirp (11).

To improve the interaction energy parameter ηl , we employ
the laser pulse with the UV frequency ω0 = 15.5 eV and
the envelope f (φ) = sin2(φ/2N ) where 0 < φ < 2Nπ and
N = 16. The (areal) energy of a plane laser pulse can be
calculated as

E = − ω0

4παλ̄2
e

∫
dφ

(
a′

m

)2

, (14)

in which λ̄e = 1/m = 386.16 fm is the electron’s reduced
Compton wavelength. For circularly polarized laser pulses
with the frequency chirp (12), one can obtain

E = ω0ξ
2

4αλ̄2
e

(
3

4
+ ξ 2 35

32
+ ξ 4 231

512

)
N. (15)

The first term within the brackets corresponds to the laser
pulse with a constant frequency ω(φ) = ω0.

The choice of particle energy parameters is motivated by
the upcoming high-energy experiments such as LUXE at
DESY [38,39] and E320 at FACET-II [40,41]. The strong
UV laser pulse can be obtained through the plasma harmonic
generation driven by an ultrahigh-power optical laser pulse
[42–44]. One of the potential methods to imprint the proposed
frequency chirp into the laser spectrum is via the coherent
superposition of two linearly and oppositely chirped laser
pulses with suitable time delay [22].

A. NBW

Figure 1 depicts the narrowing of the positron angular
spectra from the chirped laser pulse benchmarked with the
results from constant-frequency pulses. As shown, the fre-
quency chirp (12) can effectively compensate the broadening
of each harmonic line: For the unchirped case in (b) and
(c), where the laser, respectively, has the same energy or
intensity as the chirped case in (a), harmonic lines are broad-
ened with plenty of subsidiary peaks and overlap together
to be a continuum spectral domain in the positron angular-
energy distribution. However, for the chirped case in (a),
the angular-energy distribution is comprised of a number of
well-separated harmonic lines. Around each harmonic line,
the distribution is narrowed to be a single peak at the small
outgoing angle θp → 0 and is slightly broadened at larger
scattering angles with some subpeaks, which comes from the
interference between contributions from different stationary
points. At the same time, the amplitude of the harmonic lines
in the chirped case are significantly improved.

From Fig. 2(a), one can see that the chirped laser
pulse can produce many more positrons than the unchirped
case with the same intensity, and produce, approximately, the
same number of positrons as the unchirped case with the same
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FIG. 1. Angular-energy distribution d2P/[ds d (γpθp)] of the pro-
duced positrons via the NBW process from a high-energy photon
(13.1 GeV) in a circularly polarized laser pulse with the proposed
frequency chirp: (a) ξ = 1, and without the frequency chirp: (b) ξ =
1.75; (c) ξ = 1. The horizontal axis is restricted in the region 0.5 <

s < 1 because of the symmetry P(s) = P(1 − s). The chirped laser
pulse (ξ = 1, ω(φ) = ω0[1 + ξ 2 f 2(φ)]) has the same energy as the
unchirped laser pulse (ξ = 1.75, ω(φ) = ω0).

energy. The difference between the positron spectra appears
around the harmonic lines sn,± (13), where the harmonic order
n must be � 2 because of our parameter setup. This difference
becomes significant in Fig. 2(b) where the angular-energy
distribution is integrated within a narrow angular spread θp <

�θp/2 = 16 μrad: the positron spectrum from the chirped
pulse background spikes around the harmonic lines sn�2,+
[see the vertical dashed lines in Fig. 2(b)], and has a much
higher amplitude than that from the unchirped laser pulse
which gives a much lower and broader spectrum in the on-axis
direction. We label the location of the first three harmonics:
s2,+ = 0.80, s3,+ = 0.88, and s4,+ = 0.91 in the chirped case.
As one can see, the first spectral peak has a much higher am-
plitude and narrower energy spread �s/s ≈ 1.7% than other
higher-order peaks, where �s measures the full width at the
half maximum of the peak. This collection of the positrons
in a narrow high-energy region and particular direction can
effectively improve the potential to observe this process in
experiments.

The horizontal axis of the panels in Figs. 1 and 2(a) are
restricted to the region 0.5 < s < 1 because of the symmetry:
P(s) = P(1 − s) [see Eq. (1) and the discussion above Sec. II].

FIG. 2. Energy spectra dP/ds of the produced positrons shown
in Fig. 1 within the whole angular spread, �θp = π (a) and a narrow
acceptance �θp = 32 μrad (b). For visibility, the spectral curve for
the unchirped case is multiplied by a factor 10 for the ξ = 1.0 case
and factor 20 for the ξ = 1.75 case in (b). The vertical dashed lines
show the location of the first three harmonics in the chirped NBW
process: s2,+ = 0.80, s3,+ = 0.88, and s4,+ = 0.91. On the top axis
is shown the corresponding region of the positron energy Ep ≈ sE�.
The other parameters are as in Fig. 1.

However, the spectrum in Fig. 2(b), which is plotted for the
whole spectral region 0 < s < 1, shows an asymmetric distri-
bution in the higher-energy region s > 0.5. This is because the
lower-energy positrons distribute in a broader angular region:
γp → 0 leading to θp → π/2. Therefore, the lower-energy
positrons could be simply excluded from the generated high-
energy positron beam by an angular selection.

B. NLC + NBW

GeV γ rays generated by high-energy electron beams via
the NLC process have been analyzed in detail in [4,48]. The
spectrum of the emitted γ rays is presented in [12] in the same
way as (1). With a similar stationary phase analysis, one can
prove that a beam of quasimonoenergetic γ photons can be
obtained in a well-chirped laser background [20]. Replacing
the seed photon used in Fig. 1 with these acquired high-energy
γ photons, a source of narrow-band positrons can be obtained.
This two-step scenario can be regarded as a part of the trident
process [49–51] in which only real photons contribute.

In Fig. 3, we plot the distributions of the emitted photons
from a 16.5 GeV electron head-on colliding with the laser
pulse parametrized as in Fig. 1(a). With the same technique
as in the NBW case, the frequency chirp can effectively
compensate the broadening of the photon spectrum, results in
well-separated harmonic lines in the photon angular-energy
distribution d2Pγ /dθ�dr in Fig. 3(a), especially for small an-
gle scatterings θ� → 0 [20,22], where r = k · �/k · pe is the
fraction of the lightfront momentum taken by the scattered
photon from the seed electron, pe is the electron momentum,
and θ� is the polar angle of the scattered photon.

With a narrow acceptance, �θ� = 16 μrad collimated
in the on-axis direction in Fig. 3(b), the collected photons
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FIG. 3. (a) Angular-energy distribution d2Pγ /(dr dθ�) of the γ

photons generated through the NLC process from a high-energy
electron Ee = 16.5 GeV. (b) Energy distribution of the emitted γ

photons within the whole angular spread, �θ� = π (blue dashed),
and a narrow acceptance, �θ� = 16 μrad (red solid). On the top axis
is shown the corresponding change in the photon energy E� ≈ rEe

from 7.5 to 16 GeV. The vertical dashed lines show the location of
the first two harmonics in the NLC process: r1 = 0.80 and r2 = 0.89
corresponding to the photon energy E� = 13.1 GeV and 14.6 GeV.
The laser parameters are the same as Fig. 1(b).

distribute tightly around the first harmonic line r1 = 0.80,
corresponding to the energy E� = 13.1 GeV, with the en-
ergy spread �r/r ≈ 1.3%, and subpeak around the second
harmonic line r2 = 0.89 at E� = 14.6 GeV; see the verti-
cal dashed lines in Fig. 3(b), where rv = 2vηe/(2vηe + 1),
ηe = k · pe/m2, v � 1 denotes the net number of laser photons
absorbed in the NLC process. The other higher-order sub-
peaks are too small to view. With a broader angular selector
�θ� = π , the energy spread of the collected γ photons would
be much larger, shown as the blue dashed line in Fig. 3(b).

Making use of the obtained γ -ray spectrum ργ (r) =
dPγ /dr in Fig. 3(b), we can calculate the total number of the
generated positrons:

P = α

(2πηe)2

∫ 1

0
dt

∫ 1

t
dr ργ (r)h(r, t ), (16)

where t = k · p/k · pe denotes the fraction of the lightfront
momentum transferring from the seed electron to the pro-
duced positron, and

h =
∫

d2q⊥
|I|2 + (SI∗ + IS∗ − 2F · F ∗)g(t, r)

(r − t )rt
. (17)

Here, we ignore the small angular spread of the collected
γ photons to simplify the numerical calculations. The selec-
tion of small-angle photons can be done in experiments by
adjusting the separation between the two laser pulses used
in each process. This simplification would not affect the
positron spectrum as the interaction parameter η� = k0�0(1 +
cos θ�)/m2 ≈ 2k0�0/m2 is almost unchanged. The induced
error in the positron number would be much smaller than the

FIG. 4. (a) Energy distribution dP/dt of the positrons gener-
ated by the on-axis γ photons obtained through the NLC process
of a high-energy electron Ee = 16.5 GeV. The energy region of
the produced positron Ep is shown on the top axis. The vertical
black dashed lines denote the location of each combined harmonic:
t1,2,3,4 = (0.637, 0.700, 0.726, 0.732) corresponding, respectively,
to the energy Ep = (10.5, 11.5, 12.0, 12.1) GeV. (b) Energy spread
and peak location of the first harmonic peak with the change of the
acceptance �θp. The horizontal dashed line denotes the theoretical
location of the first combined harmonic: t1. The energy spectrum
of the γ photons used in the calculation is plotted as the red solid
line in Fig. 3(b).

total number of the collected positrons if the acceptance is
much broader than the photon angular spread �θp � �θ�.

In Fig. 4(a), we plot the yield of the positrons from the
on-axis γ photons (�θ� = 16 μrad) obtained through the
NLC process discussed in Fig. 3. With the acceptance �θp =
32 μrad along the direction of the seed electron, most of the
positrons are collected in a narrow energy region peaked at
t = 0.625 with a narrow energy spread �t/t ≈ 2.2% and a
much higher amplitude than other subpeaks in the higher-
energy region. All of these peaks can be related to the
combined harmonic lines tu = rvsn,+(rv ), where sn,+(rv ) is the
value of the NBW harmonic line calculated with the NLC
harmonic energy η� = ηerv; see the vertical dashed lines in
Fig. 4(a): The dominant peak is related to the first combined
harmonic line t1 = r1s2,+ = 0.637 corresponding to the en-
ergy Ep ≈ 10.5 GeV. The one that appears around t = 0.691
corresponds to the second combination t2 = r1s3,+ ≈ 0.700
with the energy Ep ≈ 11.5 GeV, and the one that appears
around t = 0.719 may come from the sum of the com-
binations t3 = r1s4,+ = 0.726 and t4 = r2s2,+ = 0.732. The
redshift of each peak location is because of the broad accep-
tance �θp and can be reduced by narrowing the acceptance;
see the red dot-dashed line in Fig. 4(b): the dominant peak
moves asymptotically back to the location of the first com-
bined harmonic line t1 with a decreasing acceptance.

To improve the brilliance of the positron beam, one needs
to increase the detector acceptance: with a larger acceptance
�θp = 48 μrad in Fig. 4(a), the amplitude of the spectral peak
becomes much higher, and at the same time, its energy spread
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is broadened to be 3.8%. As shown in Fig. 4(b), the energy
spread of the probed positrons increases with the raising of
the detector acceptance �θp. With a broad acceptance �θp ≈
80 μrad, one can acquire a positron beam with the energy
spread around 10%, and with a relatively narrow acceptance
�θp < 56 μrad, the energy spread of the positron beam can
be simply controlled to be less than 5%.

IV. CONCLUSION

We investigated the nonlinear Breit-Wheeler process in a
chirped laser background with intensity ξ ∼ 1. Via the stan-
dard stationary-phase analysis, we elaborated the broadening
of the produced positron spectrum stemming from its inhomo-
geneous effective mass during the course of the laser pulse,
and proved that with a suitable frequency chirp, this broaden-
ing can be completely compensated in a specified direction.
We present a proof-of-principle calculation in which a beam
of quasimonoenergetic γ photons is obtained from a chirped
laser pulse via the nonlinear Compton scattering process and
then is used to produce electron-positron pairs in the second
chirped laser pulse to provide a quasimonoenergetic source
of positrons. The produced positrons are tightly gathered in
a narrow energy region around the combine harmonic lines
from the relevant processes. By adjusting the detector accep-

tance, the energy spread of the obtained positrons can be well
controlled.

In our calculations, we ignore the energy spread of the seed
electron beam, which would be crucial if it is in the same
level of or much broader than the predicted positron energy
spread. To obtain the predicted narrow-band positrons, high-
quality electron beams with limited energy spread are needed
[41]. We also ignore the radiation effect from the produced
pairs before leaving the pulse, because the probability for this
secondary radiation is much smaller than 1 in the intermediate
intensity region ξ ∼ O(1) [see the results in Fig. 3(b)] and
thus can hardly affect the width of the positron spectrum. We
employ the high-power laser pulse with the UV frequency
which is critical in our discussion: the UV laser frequency
guarantees the scattering of high-energy γ photons, and then
significantly improves the yield of the electrons and positrons
by opening the low-order harmonic channels for the following
nonlinear Breit-Wheeler process.
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