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The subjective Bayesian interpretation of probability asserts that the rules of the probability calculus follow
from the normative principle of Dutch-book coherence: A decision-making agent should not assign probabilities
such that a series of monetary transactions based on those probabilities would lead them to expect a sure loss.
Similarly, the subjective Bayesian interpretation of quantum mechanics (QBism) asserts that the Born rule is a
normative rule in analogy to Dutch-book coherence, but with the addition of one or more empirical assumptions
characterizing the particularities of the physical world. Here we make this link explicit for a conjectured
representation of the Born rule which holds true if symmetric informationally complete quantum measurements
(or SIC-POVMs) exist for every finite-dimensional Hilbert space. We prove that an agent who thinks they are
gambling on the outcomes of measurements on a sufficiently quantum-like system but refuses to use this form
of the Born rule when placing their bets is vulnerable to a Dutch book. The key property for being sufficiently
quantum-like is that the system admits a symmetric reference measurement but that this measurement is not
sampling any hidden variables.
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I. INTRODUCTION

The Born rule is a centerpiece of quantum mechanics. The
way the Born rule is often described in textbooks is as follows:
We presuppose a density operator ρ to describe a quantum
system and a positive-operator-valued measure (POVM) {Dj}
with outcomes j ∈ {1, . . . , J} to describe a measurement on
the system. The probability q( j) for outcome j is then given
by

q( j) = tr[ρDj]. (1)

But how do we know which operator ρ and which POVM
{Dj} to use in a given experiment? A commonplace view is
that once the system and its method of preparation have been
specified, there is in principle a uniquely correct choice of ρ

that provides the best possible description of the real state of
the system. Similarly, it is thought that a unique POVM {Dj}
exists in principle, which correctly describes the measuring
apparatus.

Despite being the common attitude, this interpretation does
not stand up to serious scrutiny. For an investigation into
the meaning of the symbols ρ and {Dj} leads us into the
long-standing measurement problem, which in turn leads to
competing interpretations of quantum theory. Most debate
focuses on the interpretation of the quantum state ρ and asks
whether the quantum state completely describes reality or
represents only a partial description of reality.

The radical possibility that a particular quantum-state as-
signment has all to do with the agent (the physicist) assigning
it, rather than being even a partial description of the agent’s
external reality, is the core idea of the quantum interpretation
known as QBism. (See Ref. [1] for the first relatively complete

statement of QBism, Refs. [2,3] for comprehensive reviews of
it, and Ref. [4] for a listing of its divergences from the early
“quantum Bayesianism” of Caves et al. [5].) Particularly, a
central tenet of QBism is that a quantum state assignment ρ

directly encodes the agent’s subjective degrees of belief about
the outcomes of possible future measurements on the sys-
tem. QBism thereby dispenses with any notion that quantum
states are complete or partial descriptions of a hypothetical
underlying “ontic state” [6,7]. Evidence supporting this posi-
tion includes the mathematical fact that quantum states and
measurements do not need to be represented by operators
in Hilbert space: They can be written directly as sets of
probabilities.

To understand the Born rule from this point of view, we
begin by suspending our usual tendency to interpret the sym-
bols ρ and {Dj} as descriptors of a system and the measuring
apparatus, and instead see them as they are most directly
presented to us: As mathematical symbols, written in ink
on a page or in pixels on a laptop screen, that we use for
some purpose. This shift in viewpoint entails that we do not
immediately leap to some conclusion about what it is that
the symbols mean—rather, we must slowly and cautiously
approach their real meaning by adopting a new attitude toward
them, in which their mathematical form is not to be assumed
but must be derived by a careful consideration of the symbols’
purpose. With this in mind, we refocus our attention on what
these symbols are used for by the physicist.

In the case of the Born rule, we imagine a physicist who
is in possession of a system, which we may think of as a
physical object located somewhere in the laboratory, and a
measuring device, which we may think of as a box into which
a system can be placed and which responds by displaying the
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measurement outcome j on a visible dial. The physicist wants
to be able to predict the value of j as well as possible, in
order to attain some practical end, such as testing a hypothesis
or building a quantum computer. Since the likelihood of the
outcome j is therefore important to the physicist, the symbols
ρ and {Dj} acquire their meaning because the physicist uses
them to decide which probabilities q( j) are best to assign.
The sum total of the physics community’s past experiments
on systems of this kind, as distilled and captured in the formal
rules of quantum theory, indicates that the physicist should
assign q( j) according to Eq. (1).

But why? What if the physicist—whether in a fit of re-
bellion or due to absent-mindedness—assigns probabilities
according to some other rule? QBism asserts that the physi-
cist should expect to suffer for this transgression, because
it represents an inconsistency between their beliefs. To wit:
On the one hand, the physicist believes they are dealing with
a quantum system, as being within the purview of quantum
theory, and at the same time they believe the likelihood of the
outcomes j is calculated by some method other than that in
Eq. (1). Both sets of beliefs cannot simultaneously be justified
(this is a theorem that we shall prove), so something has to
give—but what?

As with many things in life, when tension becomes unbear-
able, there is no telling which part of the structure will be the
first to fail. We can identify at least three possibilities:

(i) The physicist may realize that they are not justified in
believing the system to be within the purview of quantum
theory.

(ii) The physicist may decide that their expectations about
the outcome j are not justified in light of experience, and may
revise ρ or {Dj} or both.

(iii) Worst of all, the physicist may carry on with their
task oblivious to the inconsistency until—after much labor
wasted in failing to achieve their goal—they re-examine their
assumptions along the lines of (i) or (ii).

This example illustrates that it would be of great use to
have a means of detecting inconsistencies in one’s beliefs
without having to waste the effort of testing them by costly
practical experiments. Fortunately, there is such a method.

The first step is to “unpack” the physicist’s beliefs in terms
of their probability assignments to the outcomes of hypothet-
ically possible experiments. These thought experiments must
be plausible but need not actually be carried out. The next
step is to interpret these probabilities as quantities of money
that the agent would be prepared to wager on the values of the
corresponding experimental outcomes.

Remark: “Money” is being used here as an abstraction or
a metaphor for any kind of utility the agent might seek to
attain, and whose loss would be undesirable to the agent [8].
The essential point is that the subjective interpretation must
supply a reason for using the symbols of probability theory.
While the prospect of facing a sure loss of utility sounds a
little abstract, we trust that most of our readers can understand
why an agent would want to avoid losing money, and therefore
why they would want to make their bets in accordance with
the probability calculus.

After this unpacking of beliefs into probabilities and then
into wagers, the next step is to check for the existence of a
Dutch book: a series of wagers, each justifiable on the basis

of some belief, but whose totality amounts to a certain loss of
money regardless of which outcomes actually occur [9,10]. If
the agent finds that such a Dutch book can be made against
them, they may conclude that their beliefs are mutually incon-
sistent and can proceed to revise them.

This assertion—that a Dutch book implies inconsistency—
is called the principle of Dutch-book coherence [9]. It depends
on the idea that an agent would not want to lose money. That
is, it connects the abstract idea of “inconsistency” with the
concrete and meaningful consequence of “losing money.”

The principle of Dutch-book coherence is a powerful tool
in the subjective Bayesian approach to probability theory.
Among other things, it can be used to derive the standard rules
of the probability calculus from first principles. Constraints on
an agent’s probability assignments derived from Dutch-book
coherence are called normative constraints, to emphasize that
no law of nature forces an agent to adhere to them. So it is
with the rules of the probability calculus: No law forces us to
obey them, but we ignore them at our own risk.

We shall use the principle here to prove that a decision-
making agent (like the physicist in our example) who believes
a system to be “quantum” must then assign probabilities q( j)
in accordance with the Born rule (1) through some choice
of ρ and {Dj}, or else be vulnerable to a Dutch book. This
then establishes the Born rule itself as a normative rule, which
an agent should use in addition to the rules of the standard
probability calculus whenever they are dealing with quantum
systems.

To establish our thesis, we must accomplish four things.
First, we must unpack the meanings of the symbols ρ and {Dj}
in terms of probabilities that the agent assigns to hypothetical
experiments and use the resulting expressions to express the
Born rule purely as a constraint on the agent’s probability
assignments; this will be covered in Sec. II. Second, we must
unpack the agent’s belief that “the system is quantum” in
terms of the agent’s probability assignments to the hypothet-
ical experiments. Evidently we cannot take this to imply that
the agent uses the full-blown structure of quantum theory or
the Born rule, for this would commit the error of assuming
what we set out to prove. Instead, we must make use of some
minimal assumptions about what “quantumness” might mean
for the agent’s probability assignments. Our particular choice
of assumptions is discussed in Sec. III. Third, we must show
how these minimal assumptions, plus Dutch-book coherence,
implies the Born rule. This is a straightforward but nontrivial
mathematical theorem that we prove in Sec. IV. In principle,
we could stop there, for if we hold fixed the agent’s belief
that “the system is quantum” (as represented by our minimal
assumptions), then to not use the Born rule would necessarily
mean a transgression of Dutch-book coherence. For the sake
of completeness, we will show how to explicitly construct a
Dutch book in Sec. V.

II. THE BORN RULE AS A NORMATIVE CONSTRAINT ON
PROBABILITY ASSIGNMENTS

In this section, we review a standard result from the QBist
literature, showing how the Born rule can be interpreted as
a constraint on the agent’s probability assignments [11,12].
This approach to the Born rule involves a generalization of the
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double-slit experiment where the “which way” measurement
is informationally complete [13]. In the familiar treatment of
quantum interference, one compares probabilities calculated
for a scenario where there is only one detector (say, an elec-
tron counter at a given position) to the probabilities calculated
for a scenario that also includes an intermediate measurement
(like a device that indicates which slit the electron passed
through). Designate the final detector by D and the optional
intermediate detector by S . When an agent Alice sets out to
study the phenomenon of interference, she contemplates two
alternative experiments: Either she sends a system directly to
D and obtains an outcome j (experiment 1) or she passes the
system through S and then D, obtaining some outcomes i, j
in succession (experiment 2).

First, consider experiment 2. Let p(i) be the agent’s prob-
ability to obtain i in the S measurement and let R( j|i) be
her probability to obtain j in the D measurement conditional
on obtaining i in the preceding S measurement. Elementary
probability theory implies that her joint probability to obtain
result i followed by j must be equal to R( j|i) p(i), and also
that the probability to obtain j, ignoring the value of i, must
be

s( j) =
∑

i

R( j|i)p(i). (2)

This relation is commonly known as the law of total probabil-
ity.

Next consider Alice’s probabilities q( j) to obtain j in ex-
periment 1. In what manner are these related to, or constrained
by, the probabilities p(i) and R( j|i) that she has already as-
signed to experiment 2?

It is not immediately obvious that the two sets of assign-
ments should have anything to do with each other; after all, we
are talking about different experiments. Nevertheless, there is
an assumption of physical similarity between the two, namely
that they differ only in the inclusion or exclusion of the S
measurement, and so our expectations about one might well
be connected with our expectations of the other. Our task is to
make this connection explicit and show how it depends upon
what amount to be physical assumptions. (Despite a common
trope of the philosophers and science journalists, there is only
so much subjectivity in QBism.)

To begin with, suppose Alice believes that the passage of
the system through apparatus S should not affect her thinking
about the system in any way. This can be rephrased as the
belief that, for the purposes of assigning probabilities to the
outcome of j alone, Alice considers it irrelevant whether that
outcome was obtained as part of experiment 2 or experiment
1; i.e., the outcome of the D measurement is insensitive to
whether or not the system was previously sent through appa-
ratus S . Evidently this implies

q( j) = s( j)

=
∑

i

R( j|i)p(i). (3)

That is, the likelihood of j in experiment 1 must equal the
likelihood of j in experiment 2, which was given by the law
of total probability above.

Note that the validity of this relation depends on a substan-
tive assumption about how the apparatus S affects, or does not
affect, the system. Different beliefs about whether S changes
the whole experimental context may imply a rule of a different
form. It is instructive to ask what is the most general form such
a rule could take.

To answer this question, it will be useful to use a vector
space representation of the probability assignments. Let p be
an N vector with components {p(i) : i = 1, . . . , N} and R be
an J × N matrix with components {R( j|i)}. We will further
make some assumptions about the operational setting of these
experiments. Although we shall present them as background
assumptions without much fanfare, the reader should be alert
to their importance for everything to follow.

First, we assume that the agent assigns p and R indepen-
dently of one another. To see why, consider a fixed choice
of apparatus S . The probabilities p she assigns to the system
going into this apparatus might reasonably only depend upon
her thinking about the system itself and not on what subse-
quent measurement D she might choose to do in the future.
Conversely, we assume that the device S can be modeled
as a measure-and-reprepare device [14]; that is, the system
emerging from it only depends on the outcome i that was
produced, and not on any further details of the system that
entered it. Since the probabilities in R are all conditioned upon
the outcome i, they ought to depend only on the choice of
device D and not on the beliefs about the outcomes if the
system were instead passed into S . In conclusion, p and R
can be treated as independently chosen expressions of beliefs.

Second, we assume that the measurement outcomes j are
noncontextual. That is, for the purposes of assigning the prob-
ability q( j′) to an individual outcome j = j′, only the row
of R having components {R( j′|i) : i = 1, . . . , N} should be
relevant. To justify this, consider two measuring apparatuses
D1 and D2 which share the same outcome j′. What can it mean
to say that this outcome is “the same,” given that it appears
on the dials of two different devices? A priori, the outcomes
should be given different labels, say, j′1 and j′2. However, if
Alice assigns these outcomes the same probabilities given any
any other beliefs she might hold of the system, then she is
justified in identifying them as equivalent and can represent
them using a single label j′ := j′1 = j′2. In other words, in
assigning q( j′) to a single label j′ that can appear on the
dials of different apparatuses, it is implicit that the agent must
consider it irrelevant which of the apparatuses the outcome j′
belongs to. If it had been relevant, then she would not have
seen fit to assign them the same label [15]. For brevity, we
will use the notation r j to stand for the column vector whose
transpose is the jth row of R.

We shall now augment the innocuous premises that we
have made so far with our first substantial assumption:

Assumption A1. Existence of an informationally complete
apparatus. There exists a choice of apparatus S for which the
agent’s assignments to experiments 1 and 2 are related by a
rule of the form

q( j) = F (p, r j ). (4)

That is, all relevant differences between the two experiments
are fully captured by the agent’s beliefs p(i) and R( j|i) about
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the system and the apparatuses involved, without the need for
any additional parameters σ .

Assumption A1 makes a nontrivial statement about the
nature of the physical world, since it asserts that a certain
kind of measurement is physically possible in principle. To
formalize this idea, let us fix a choice of apparatus S satisfying
Assumption A1, which we call the reference apparatus. A
state is a vector of probabilities p for the possible outcomes
that may be generated by applying this apparatus to the sys-
tem. (If it has not already been apparent, this distinguishes the
idea of a state from that of the system, by which we mean the
physical object the agent takes an action upon by way of the
apparatus.)

For each outcome i of the reference apparatus S , we can
consider a “double pass” through it, i.e., taking the measured
system and passing it again through S to obtain another out-
come k ∈ {1, . . . , N}. In our notation, this will generate a
conditional probability R(k|i), where S itself now plays the
role of D. Supposing an initial uniform distribution for the
i’s, we can use Bayes’ rule to formally invert to a conditional
probability p(i|k). We shall call these probabilities the ref-
erence states for the reference apparatus and give them the
special notation {ek (i) : k = 1, . . . , N}.

Now that the assumptions of our general probabilistic set-
ting have been carefully laid out, we can contemplate what
the Born rule would imply in this setting. Let us suppose for
the moment that our agent is cognizant of quantum theory
and makes the following associations for his system and ap-
paratuses: a density operator ρ for the system, a completely
general POVM {Dj} for the apparatus D, an informationally
complete POVM {Ei} consisting of rank-1 elements for the
apparatus S , which finally in turn gives a Lüders rule collapse
to one of the pure states {�i} upon its execution. Quantum
theory dictates that the probabilities the agent should assign
to j in experiment 1 are

q( j) = tr[ρDj], (5)

which is just the Born rule. Similarly, the outcome probabili-
ties for the informationally complete POVM {Ej} are

p(i) = tr[ρEi], (6)

and the conditional probabilities for the second stage of ex-
periment 2 are

R( j|i) = tr[�iD j]. (7)

So far so good, but this does not answer the question as we
have posed it. Recall that on the Bayesian account the agent
begins with the probability assignments p(i) and R( j|i) in
experiment 2 and is asked to deduce q( j) from these. If we
could somehow invert Eqs. (6) and (7) to obtain ρ and {Dj}
in terms of the p(i) and R( j|i), we could substitute those
expressions into (5) and have the solution.

To see how this is done, simply note that {Ei : i =
1, . . . , N} has the defining property that its elements span
the space of linear operators on the system’s Hilbert space.
In dimension d , this requires S to have a minimum of d2

outcomes, and if N = d2 it is then called a minimal IC-POVM,
or MIC [16].

In discussions of QBism, it has been customary to assume
the existence of an apparatus whose representation is not

only minimal but is also symmetric, meaning the elements
are proportional to rank-1 projectors and the overlaps between
distinct elements are constant:

tr[EiEj] = d δi j + 1

d2(d + 1)
∀i, j. (8)

This is called a SIC-POVM, or simply a SIC (pronounced
“seek”) [17,18]. In our probabilistic setting, the symmetry
property amounts to the requirement that the reference states
satisfy

e j (i) = (1 − Nc)δi j + c ∀i, j, (9)

for some constant c.
Although it is not known whether SICs exist in all dimen-

sions, exact algebraic constructions have been found in more
than 100 dimensions and high-precision numerical solutions
have been found in nearly 100 more [19]. Beyond this raw
evidence, there are also a number of rather elegant mathemat-
ical reasons to suggest that SICs ought to exist in all finite
dimensions [20–25]. In fact, it is widely believed that it is only
a matter of time before a full existence proof will be found.
(For a broad review this topic, see Ref. [26].) In light of this,
QBism usually takes it for granted that the reference apparatus
may be supposed to implement a SIC, especially as this would
give the Born rule a very special and simple mathematical
expression in terms of probabilities [14,27], which we are
about to see.

Proceeding with the convention that S is associated with a
SIC, the formulas (6) and (7) can be inverted to obtain

ρ =
d2∑

i=1

(
(d + 1)p(i) − 1

d

)
�i, (10)

where {�i} := {dEi}, and

Dj =
d2∑

i=1

R( j|i)
(

(d + 1)Ei − 1

d
I

)
. (11)

with I being the identity operator. Substituting Eqs. (10) and
(11) into (5) yields the QBist version of the Born rule,

q( j) =
d2∑

i=1

(
(d + 1)p(i) − 1

d

)
R( j|i), (12)

which we can see amounts to a special choice of the function
F appearing in Assumption A1. Hereafter, we shall simply
call the expression in Eq. (12) “the Born rule,” despite the fact
that it has not been completely established in quantum theory,
for lack of a conclusive proof of SIC existence.

It should be noted that though our Assumption A1 remains
true even in an infinite-dimensional context (for instance, ex-
pressing the Born rule in terms of the Husimi function via the
use of a reference apparatus whose outcomes are the coher-
ent states), we will limit ourselves to the finite-dimensional
setting already described. The reason is that it is as yet un-
clear how to define the analog of a SIC measurement in the
infinite-dimensional case, and hence it is unknown whether
an equation with a form analogous to (12) could be defined in
that setting.

Equation (12) provides the Born rule with an operational
meaning: It is an example of a rule that an agent might use

022207-4



BORN’S RULE AS A QUANTUM EXTENSION OF BAYESIAN … PHYSICAL REVIEW A 104, 022207 (2021)

to relate their probability assignments between hypothetical
experiments 1 and 2. Why would an agent use this particular
rule instead of some other? The answer is that they would use
it if they believed the system and the apparatuses possess some
of the essential features we normally use full-blown quantum
theory for. In the next section, we unpack the meaning of this
statement in terms of the agent’s probability assignments.

III. MINIMAL ASSUMPTIONS FOR QUANTUM SYSTEMS

Given a reference apparatus S of N outcomes, the
physically legitimate states are represented by the set of as-
signments p(i) that the agent considers to be possible; we
denote this set PN . Similarly, we let RJ denote the space
of physically possible measurement apparatuses with J out-
comes. Specifically, the elements of RJ are sets of conditional
probabilities {R( j|i) : ∀ j, i} the agent considers to be plausible
probabilities for the outcomes j conditional on sending the ith
reference state ei(k) into the apparatus D. We shall assume
that, among the physically possible apparatuses, there is a
“garbage disposal” apparatus whose outcome is uniformly
distributed regardless of its input, i.e., to which the agent
assigns the uniform distribution {R( j|i) = 1

J : ∀ j, i}.
The basic rules of probability theory, which follow from

Dutch-book coherence, say that a probability vector p must
have non-negative entries and be properly normalized. More-
over, the entries in a matrix of conditional probabilities must
be non-negative, and each column of the matrix must sum
to 1. As mentioned above, noncontextuality lets us split up
a matrix R that defines a measurement and consider its rows
separately. We will write the jth row of a measurement matrix
R as the transpose of a column vector r j . The bare minimum
requirement imposed by Dutch-book coherence alone on such
vectors is that their entries lie in the unit interval. We will refer
to vectors that meet these basic requirements for probabili-
ties and conditional probabilities respectively as Dutch-book
valid. When we augment the abstract basic rules of probability
theory with lessons about the character of the physical world,
we find that only a subset of the Dutch-book valid vectors
are physically valid. The set PN of physically valid states is
a proper subset of the probability simplex, and the set RJ of
physically valid J-outcome measurements is a proper subset
of the set of all J × N stochastic matrices. We will use MN

to denote the set of all physically valid vectors r j that can be
used as “building blocks” for matrices in RJ .

Let us focus our attention on the set of state assignments
PN that the agent considers physically valid. Since we con-
sider the probabilities p(i) as components of an N vector,
we can define the Euclidean inner product between any two
probability N vectors p1 and p2. We shall assume this inner
product has potentially nontrivial lower and upper bounds:

L � (p1, p2) � U, ∀p1, p2 ∈ PN . (13)

It will turn out that two states separated by L can always be
perfectly distinguished by some measurement other than the
reference measurement. This is very unlike what happens in
a classical probabilistic theory, where all measurements are
coarse grainings of the information one would have if one
knew the values of the intrinsic physical degrees of freedom:
Coarse grainings cannot make probability distributions more

distinguishable. A strictly positive value of L is thus a signal
of nonclassicality.

The following two assumptions are intended to apply gen-
erally, not just to quantum systems. To begin with, we assume
that the agent is as permissive as possible about what can
be a physical state, within the constraints represented by the
inequalities (13):

Assumption A2: Maximality with respect to the inequalities.
If a vector p1 satisfies the inequalities (13) for all p2 ∈ PN ,
then p1 also belongs to PN .

Intuitively, Assumption A2 asserts that anything not for-
bidden is permitted: Any probability assignment that is not
already ruled out by the bounds (13) must in fact be a
physically valid state. It is a straightforward consequence of
Assumption A2 that PN is convex and closed and contains the
uniform distribution { 1

N : i = 1, . . . , N}.
Because the uniform distribution is a physically valid state,

it is intuitively plausible that vectors close to the uniform
distribution should be so as well. Heuristically, a theory that
is as permissive as possible should include the largest possible
region around the uniform distribution within the set of phys-
ically valid states PN . Our next assumption formalizes this
by considering a ball of physically valid states surrounding
the uniform distribution inside PN —the so-called “in ball.”
We assume that the radius of this ball is fixed not by an
arbitrary parameter fed into the theory, but by the geometrical
constraints of probability theory itself.

Assumption A3: Maximality of the in ball. The state space
PN has an in ball of the maximum possible size, namely,
the size of the largest ball that can be inscribed within the
probability simplex.

In Appendix A, we show that Assumption A2 implies that
PN contains a set of N states having the form

pk (i) = (1 − NL)δik + L, k ∈ {1, . . . , N}, (14)

which span PN . In the same Appendix, we also show that
Assumption A3 implies that these states have the maximum
possible norm,

(pk, pk ) = U, ∀k. (15)

Since these have the form (9) required of the reference states,
we might as well adopt the convention that these are the
reference states, i.e. that when a system is passed into S and
produces the outcome i, the agent assigns the state ek (i) :=
pk (i) to the system coming out of S . This is a convenient
choice for the reference states because Assumption A2 guar-
antees that any agent operating within our assumptions must
consider these to be physically valid states.

We next introduce another natural property of the state
space—the dimension d of the system, which depends on both
the possible states PN and the possible apparatuses RJ . To get
at this notion, let us first define what it means for a set of states
{pi} to be mutually maximally distant (MMD). We say a set is
MMD when for all pi and p j in it,

(pi, pi ) = U,

(pi, p j ) = L, i �= j. (16)

The number d is then defined operationally as the maximum
size possible for an MMD set.
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Remark. One can find multiple notions of the dimension
of a system in the literature. For example, one could define
d as the measurement dimension—the maximum number of
states that are mutually perfectly distinguishable by a single
apparatus [28]. In the present context, our reference measure-
ment is informationally complete but generally not optimal
for distinguishing states in a single shot. Therefore, we find it
more natural to use a definition of d that refers to the bounds U
and L on states’ overlap, rather than one that refers to perfect
distinguishability. Our definition coincides with the measure-
ment dimension in both classical and quantum mechanics but
may not coincide with it in general.

Note that an apparatus with fewer than d outcomes cannot
possibly be informationally complete, so in general N � d . In
the special case where P is a simplex, which we can loosely
identify with classical theories, the N vertices of the simplex
form a MMD set of maximum size, and it follows that N = d
and L = 0. This suggests that an agent who thinks themselves
to be dealing with a nonclassical theory ought to assign N > d
and L > 0.

More specifically, we can now ask what values of these
numbers might represent an agent’s belief that they are oper-
ating in the quantum regime. Quantum theory tells us that the
minimum number of outcomes of any informationally com-
plete apparatus must be equal to d2. An agent who believes
that the system and apparatuses are “quantum” must therefore
at least believe in the following operational constraint:

Assumption A4: Quantum prerequisite. The minimal num-
ber of outcomes for the reference apparatus is N = d2.

It is worth pointing out that Assumption A4 only refers to
quantities with an operational meaning, and so it is entirely
plausible that an agent could come to believe Assumption A4
without first knowing, or having to derive, quantum theory.

As one might expect, Assumption A4 has some highly
nontrivial consequences for the structure of PN . For one thing,
it implies that no two physically valid states can be perfectly
distinguished by the reference measurement, and hence that
L > 0. In fact, in Appendix B we show that Assumptions A2–
A4 imply L = 1/(d2 + d ) and U = 2L. Putting these results
together implies that the reference states are

ek (i) = 1

(d + 1)
δik + 1

d (d + 1)
. (17)

In what follows, we will show that so long as the agent
assigns probabilities in accordance with Assumptions A1–A4,
then the function F which they choose to mediate their assign-
ments to experiments 1 and 2 must have the form of the Born
rule as expressed in (12).

Remark. Assumptions A1–A4 are insufficient to imply the
full structure of quantum theory, i.e., to imply that the state
space PN is necessarily equivalent to quantum state space.
The full quantum state space can be achieved using additional
assumptions, as discussed in detail elsewhere [29], but since
our present aim is only to derive the Born rule, we have no
need of those assumptions here.

IV. OPERATIONAL DERIVATION OF THE BORN RULE

We have already seen that Assumption A1 asserts a func-
tion F that constrains the agent’s probability assignments to

experiment 1 in terms of the probabilities they would assign
to a hypothetical experiment 2. In this section, we show that
the additional assumptions A2–A4 imply that the function F
has the form of the Born rule in the form Eq. (12).

The first stage in the proof is to show that the function F
acts linearly on the r j argument. First, we note that F defines
a map

F : PN × MN �→ [0, 1], (18)

such that for any measurement {r j : j = 1, . . . , J} we have

J∑
j

F (p, r j ) = 1, ∀p ∈ PN . (19)

We then have the following result.
Proposition. Consider any r′ ∈ MN that decomposes as a

linear combination of vectors in MN ,

r′ =
∑

x

αkrx, r′, rx ∈ MN , (20)

where αk are real (not necessarily positive) coefficients. Then
F preserves linear combinations on r, i.e.,

F
(

p,
∑

x

αx rx

)
=

∑
x

αx F (p, rx ), (21)

for any fixed p ∈ PN .
To prove this, we employ the following mathematical pre-

liminary.
Lemma. Consider a function f : VN �→ [0, 1] acting on a

spanning subset of vectors VN in the space RN,+ of vectors
having positive or null components. Furthermore, suppose
that f is additive on VN , i.e., given any v1, v2 ∈ VN such that
(v1 + v2) ∈ VN , we have

f (v1 + v2) = f (v1) + f (v2). (22)

It then follows that f preserves linear combinations on VN ,
i.e.,

f

(∑
x

αxvx

)
=

∑
x

αx f (vx ) (23)

for real coefficients αx ∈ R.
Proof. See Appendix C.
In order to apply this lemma to our present situation, let

us fix p and define f (r j ) := F (p, r j ). Evidently f is a map
from MN to the unit interval, and MN is a spanning subset
of vectors in RN,+ since it contains the vectors defining the
reference measurement, Eq. (17). To be able to apply the
lemma, it remains to show that f is additive.

Suppose that {r1, r2, r3} is a set of three physically valid
vectors that satisfy the normalization constraint and so qualify
as a measurement. From this set, we can obtain another mea-
surement by coarse graining the outcomes j = 2 and j = 3
into a single outcome j = 4, resulting in the set {r1, r4}. El-
ementary probability theory states that the probability of the
union of two mutually exclusive events must be the sum of the
probabilities of the individual events, and hence

R( j = 4|i) = R( j = 2|i) + R( j = 3|i) ∀i, (24)
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or in vector form, r4 = r2 + r3. Since the f (r j ) must sum to
1, we have

f (r1) + f (r2) + f (r3) = f (r1) + f (r4)

⇒ f (r2) + f (r3) = f (r2 + r3), (25)

and so additivity of f is proven. We can therefore apply the
lemma to conclude that for any fixed p ∈ PN we have

F
(

p,
∑

x

αxrx

)
=

∑
x

αx F (p, rx ) (26)

for real coefficients αx ∈ R. �
We have argued from noncontextuality that for fixed p, the

output probability q( j) must be a linear function of r j . This
means that we can write q( j) as the inner product of r j with
some vector. This vector depends somehow on p, so let us call
it g(p). What can we say about the vector-valued function g?
We know that if the r j are the vectors that define the reference
measurement itself, then q = p. So, the inner product of r j

with g(p) just reads out an element of p. Whatever g does,
it can be undone by a linear transformation. Therefore, g
itself is a linear transformation, defined by the inverse of the
conditional-probability matrix for the reference measurement.

We can express this in matrix form as

F (p, r j ) = rT
j � p, (27)

where � is an N × N matrix whose inverse is the matrix
whose columns are the vectors ek . Recalling that the compo-
nents of ek are given by Eq. (17) due to Assumptions A2–A4,
we have

�i j = (d + 1)δi j − 1

d
. (28)

Consequently,

F (p(i), R( j|i)) =
d2∑

i=1

(
(d + 1)p(i) − 1

d

)
R( j|i), (29)

which is precisely Eq. (12), i.e., the Born rule in probabilistic
form, as promised.

The Born rule in Eq. (27) would reduce to the law of total
probability if the � matrix were replaced with the identity.
The fact that � does not equal the identity is an expression
of how quantum theory deviates from classical probability.
Prior work has shown that there is no choice of reference
measurement which can make a statement of the Born rule
that comes closer to the law of total probability [14]. Deducing
Eq. (27) with its specific choice of �, as we have done here,
derives the irreducible margin of nonclassicality exhibited by
quantum theory.

V. A DUTCH BOOK FOR THE BORN RULE

In order to understand the Born rule as an addition to
Dutch-book coherence, we need to understand how much
Dutch-book coherence itself implies. The essential point can
be illustrated by reviewing the Dutch-book argument for the
additivity of probabilities.

Dutch-book arguments like the one we are about to make
are an introspective tool that any agent can use to test the

consistency of their own probability assignments. To do so,
the agent imagines a hypothetical “bookie” with whom they
negotiate to buy or sell lottery tickets. We can see the additiv-
ity requirement arise in the following way.

Alice contemplates two mutually exclusive events, E and
F . The bookie, who wants to profit off any inconsistencies
among her beliefs, offers to sell her lottery tickets whose
values are contingent upon these events and to buy such tickets
from her, in arbitrary combinations. The simplest tickets to
write are

TE := [Worth $1 if E ],

TF := [Worth $1 if F ] , (30)

and then there is a ticket of slightly more complicated form,

TE∨F := [Worth $1 if E ∨ F ]. (31)

Alice declares that she is willing to price these tickets at
$p(E ), $p(F ), and $p(E ∨ F ) respectively. The bookie then
considers the prices Alice has set. If p(E ∨ F ) > p(E ) +
p(F ), the bookie sees that Alice will agree to the following
series of transactions:

Buy TE∨F for $p(E ∨ F ),
Sell TE for $p(E ),
Sell TF for $p(F ).
Alice, having committed to these prices, pays the bookie

$p(E ∨ F ) to buy the first ticket and then sells the bookie the
other two tickets, so she runs at a loss of $(p(E ) + p(F ) −
p(E ∨ F )). If E occurs, Alice wins $1 for TE∨F , but must pay
the bookie $1 (since the bookie holds $TE ), leaving her still
with a net loss. Likewise, if F happens, Alice earns a dollar
and loses a dollar, her balance remaining negative. Finally, if
neither E nor F occurs, none of the three tickets are worth
anything, and Alice’s balance again stays at its initial negative
value.

On the other hand, if Alice declares her prices and the
bookie sees that p(E ∨ F ) < p(E ) + p(F ), then the bookie
simply exchanges “buy” and “sell” in the above set of trans-
actions, again forcing Alice into a loss. In brief, no matter
what the circumstances, holding the ticket TE∨F is always
equivalent to holding the pair of tickets TE and TF . Therefore,
in order to avoid being Dutch booked, Alice must gamble in
accord with the condition p(E ∨ F ) = p(E ) + p(F ).

Dutch-book arguments can also be made that ticket prices
should never be negative (Alice knows she would be a fool
to pay the bookie to take a ticket off her hands) and that they
should be bounded above by 1 (Alice knows better than to
buy a ticket for more than it could ever be worth). In brief, the
basic rules of probability theory emerge from the requirement
that Alice gamble coherently, that is, in such a way as to avoid
a sure loss. Probabilities simply are the gambler’s internally
self-consistent prices for tickets.

The relation between joint and conditional probabilities

p(E ∧ F ) = p(E )p(F |E ) (32)

is often presented as an axiom, but the Dutch-book method
can derive it as a theorem, because the bookie can offer con-
ditional lottery tickets that pay off if both E and F occur, but
are refunded if E does not:

TF |E := [Worth $1 if E ∧ F, but refund if ¬E ]. (33)
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If Alice does not relate joint and conditional probabilities in
accord with Eq. (32), then she can be Dutch booked, because
holding the conditional ticket TF |E is equivalent to holding the
pair of tickets

TE∧F := [Worth $1 if E ∧ F ],

TX := [Worth $p(F |E ) if ¬E ]. (34)

The events E ∧ F and ¬E are mutually exclusive, so the
additivity rule applies, and thus in order to be Dutch-book
coherent, Alice must set

p(F |E ) = p(E ∧ F ) + p(F |E )p(¬E ). (35)

This yields Eq. (32) once we recognize that p(E ) + p(¬E ) =
1, which also easily follows from Dutch-book coherence.

If Alice discovers that she is vulnerable to a Dutch book,
say, by declaring

p(E ∨ F ) > p(E ) + p(F ), (36)

then she can restore coherence by adjusting any or all of the
probabilities p(E ), p(F ), and p(E ∨ F ) to establish balance.
The mathematics does not say which to modify; that is up to
Alice’s best judgment.

Living up to the standard of Dutch-book coherence means
that in experiment 1, Alice’s probabilities for the different
outcomes j must divide up the unit interval among them.
Likewise, in experiment 2, Alice’s p(i) must be non-negative
numbers that sum to 1, and her joint probabilities for i
followed by j must obey the law of total probability. But
Dutch-book coherence alone cannot bridge between experi-
ment 1 and experiment 2, because the lottery tickets pertaining
to the reference measurement are simply inoperative if the
reference measurement is not physically performed. To make
any connection between experiments 1 and 2, we need at least
a little physics.

In the previous section, we identified the necessary physics
as the Assumptions A1–A4. When added to the basic rules of
probability theory, these conditions pinpoint the Born rule.

Suppose that Alice’s gambling commitments for experi-
ment 1 are internally self-consistent, and so are those she
makes for experiment 2, but when put together, they turn out
to violate the Born rule. That is, Alice declares vectors p
and q along with a matrix R that satisfy the requirements of
non-negativity and normalization, but

q( j) �=
d2∑

i=1

[
(d + 1)p(i) − 1

d

]
R( j|i). (37)

The message of the Born rule is that Alice should work to
remove this inconsistency. However, the quantum formalism
does not provide guidance on how exactly to do so. Alice
might decide that the reference measurement S is so central
to her thinking that she ought to maintain her expectations
about it, namely the vector p, and reset q accordingly. On the
other hand, she might say that she has much more experience
with measurements like D—they could be cheap while the
reference measurement S is expensive—and so it is best to
keep q and adjust p and R. In other words, the quantum
formalism does not help Alice decide, although more “meaty”
quantum physics could.

Does an inconsistency like Eq. (37) manifest in the possi-
bility of Alice being Dutch-booked? One way to see how it
can is to revisit the theme that Alice is vulnerable to a Dutch
book if she declares unequal prices for two equivalent sets of
tickets.

The bookie, who is quite clever and will go to any length
to be adversarial, offers Alice the possibility to gamble upon
her own future declarations of belief. This is a standard move
when constructing Dutch-book arguments for how probabil-
ities might best be updated over time [30,31]. The subject
of coherent probability-updating strategies is a level beyond
what we have discussed so far, and it offers more flexi-
bility than is often acknowledged [31]. Without developing
the subject in depth, we can still make good use of the ba-
sic gambling-on-probabilities idea. Suppose that Alice thinks
over experiment 2 and then declares her gambling commit-
ments in the form of p and R. The bookie asks her if she has
accepted the Born rule, and she says that she has. Quickly, the
bookie calculates the probability vector q using the Born rule
and offers to buy a ticket

Tq := [Worth $1 if Alice declares q]. (38)

Alice, hesitant, fixes her price for Tq at less than $1. She
then works through the calculation and finds that q is the
unique probability vector consistent with the Born rule and
her declared p and R. Chagrined, she declares q and pays the
bookie $1, leaving herself with a net loss.

The lesson illustrated by this scenario is that if Alice ac-
cepts Assumptions A1–A4, then holding tickets about her
declaring p and R is equivalent to holding a ticket about her
declaring q. Assigning unequal prices to equivalent sets of
tickets makes her vulnerable to a Dutch book; she can restore
coherence by adjusting any of her probability assignments,
though probability theory itself does not say which.

VI. CONCLUSIONS

In this paper, we have established that the Born rule in the
form Eq. (12) can be viewed as a normative constraint on an
agent’s probability assignments. It is a normative constraint
above and beyond the standard rules of probability theory. On
their own, the rules of probability theory do not tell an agent
how their probabilities for one experiment (experiment 2)
should constrain their assignments to another slightly different
experiment in which one of the measurements is missing
(experiment 1). To make this connection requires some extra
empirically motivated assumptions about the physics relevant
to these two experiments. We identified a set of such as-
sumptions, the first three of which (A1–A3) represent general
assertions about physical systems and are compatible with
both classical and quantum systems, while the last (A4) rep-
resents a minimal requirement for believing the systems to
be essentially quantum in spirit if not letter. We then showed
that any agent who adheres to A1–A4 and strives to uphold
the principle of Dutch-book coherence must use the Born rule
as the constraint that connects their probability assignments
between the hypothetical experiments 1 and 2.

We suspect that our set of assumptions can be
streamlined—that is, that it will be possible to enumerate
fewer assumptions, potentially at the cost of lengthier chains
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of deductions between them. The most physically significant
of the assumptions we have made are A1, which entails that
probabilities are noncontextual in a sense inherited from Glea-
son [32,33], and A4, which pushes the general mathematics in
the direction of quantum theory specifically.

The assumption of maximality, A2, expresses the ethos that
“everything not forbidden must be allowed”; if a probability
vector p were consistent with the upper and lower inner-
product bounds (13) and yet excluded from the theory’s state
space, then the theory would tacitly be assuming some other
physical principle, and we wish to be as parsimonious with
our physical principles as we can. Assumption A3 can also be
viewed as an appeal to parsimony, for it amounts to saying that
no new distance scale within the probability simplex has to be
introduced by hand in order to determine the outer boundaries
of the state space.

Much of this work is based on an earlier informal pre-
sentation by one of us [34], in which it was suggested that
the bilinear form of the Born rule could be derived from
van Fraassen’s reflection principle [30,31]. Such an approach
could potentially circumvent our rather abstract and lengthy
proof of linearity, replacing it with a more direct conceptual
argument using Dutch-book coherence. This requires a careful
study of how the reflection principle applies to conditional
probabilities, which will be the subject of a subsequent paper.

Finally we reiterate that although we have recovered the
Born rule within a general setting, we have not gotten all the
way from abstract probability theory to quantum mechanics.
As we remarked after Assumption A4, at least one additional
condition that is required to ensure that a qplex, a maximal
consistent set with respect to the bounds

1

d (d + 1)
� (p1, p2) � 2

d (d + 1)
,

is a Hilbert qplex isomorphic to quantum state space. We know
that postulating a particular type of symmetry is sufficient,
and we have elsewhere conjectured that this condition can be
relaxed to a more qualitative one [29]. In fact, it is possible
that a condition with the same ethos as Assumption A2, asking
that the state space have as few “distinguishing marks and
scars” as mathematically possible, could not only serve this
role but also allow a relaxation of Assumption A4 to an even
weaker condition like N > d [34].
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APPENDIX A: CONSEQUENCES OF MAXIMALITY

In this Appendix, we prove the two claims made in Sec. III
about the consequences of Assumptions A2 and A3 for the
state space PN . First, we prove that Assumption A2 implies
that the state space contains a set of states of the form (14).

Any set of probability vectors that is maximal (according
to Assumption A2) has a property called self-polarity, defined
as follows. Let H be the hyperplane in RN consisting of
vectors whose elements sum to unity, i.e., the hyperplane of
probabilities and quasiprobabilities. The polar of a point in H
is the set of all points in H whose inner product with the given
point is greater than the lower bound L in the inequalities (13).
The polar of a set of points is the set of all points which are in
the polars of all the given points. (This terminology is adapted
from the study of polytopes.) It follows from the maximality
of PN that the polar of any subset of PN is also a subset of PN ,
that is, PN is a self-polar set. Note that the operation of taking
the polar reverses inclusion, i.e., if X ⊆ Y then polar(X ) ⊇
polar(Y ). Since PN lies within the probability simplex, the
polar of PN contains the polar of the probability simplex,
which is another simplex whose vertices are the distributions

pk (i) = (1 − NL)δik + L, k ∈ {1, . . . , N}. (A1)

For a proof, see Lemma 4 in Ref. [29]. And since PN is self-
polar, this set is contained in PN . Thus, we have established
that the state space contains the states of the form (A1).

Next, we prove that Assumption A3 implies that these
states have the maximum norm, as expressed by Eq. (15). First
note that the distributions (A1) exist on the surface of a sphere,
since they have the same norm. We shall call this sphere and
the vectors inside it the “out ball.” The out ball is mutually
polar with another ball, which happens to be the largest ball
that can be inscribed inside the probability simplex (Lemma
6 in Ref. [29]). By Assumption A3, this ball is the in ball of
PN and hence is fully contained within PN . Since polarity
reverses inclusion, it follows that PN is fully contained within
the polar of the in ball, that is, within the out ball. Since the
vectors {pk} are on the surface of this ball, they must have the
maximum possible norm, that is U . �

This logic also works in reverse. Thanks to self-polarity, we
can make an assumption either about the largest ball contained
within the state space or about the smallest ball that contains
it. Instead of adopting Assumption A3, we could postulate a
condition A3′ declaring that the basis states lie on the sphere
that just encloses the state space. This would fix U in terms
of N and L. Again, this can be motivated by parsimony, since
it means avoiding the introduction by hand of a new distance
scale.

Along the way, we have also proven that the physically
valid vectors that can become rows in measurement matri-
ces are, up to scaling, the physically valid states. In other
words, any vector in MN is a prefactor times some vector
in PN . This is the probabilistic statement of the fact that in
quantum theory, any effect operator in a POVM becomes a
density matrix when renormalized by its trace. Sometimes
called “self-duality,” this condition follows from the Born rule
(27) and Assumption A2 of maximality with respect to upper
and lower bounds. In order to be physically valid, a vector
r j must have a non-negative inner product with �p for all
p ∈ PN . Write

r j (i) = αs j (i), (A2)

where α > 0 and s j is a properly normalized probability
vector. Then the condition that the Born rule must give
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non-negative values implies that

N∑
i=1

p(i)s j (i) � L. (A3)

So, when a vector r j is normalized to have unit sum, the result
must lie in the polar of PN , which is just PN .

APPENDIX B: CONSEQUENCES OF ASSUMPTION A4

Within the set of possible states PN , recall that a “mutually
maximally distant (MMD) set of states” is defined as a set
satisfying

(pi, pi ) = U,

(pi, p j ) = L, i �= j. (B1)

The uniform distribution is a vector ι := { 1
N : i = 1, . . . , N}

that necessarily lies inside PN (a consequence of Assumption
A2). It will be convenient to use coordinates in which this
vector is the origin, by shifting p �→ p − ι := p′. In these
shifted coordinates, the MMD set satisfies

(p′
i, p′

i ) = U − 1

N

:= U ′,

(p′
i, p′

j ) = L − 1

N

:= −L′, i �= j. (B2)

Note that

L � (ι, ι) � U

⇒ L � 1

N
� U, (B3)

so the quantities U ′, L′ defined above are both strictly positive.
Next consider the vector V defined as the sum of all m vectors
in the MMD set:

V :=
m∑
i

p′
i. (B4)

The norm of V is

(V,V ) = m U ′ + (m2 − m) (−L′), (B5)

and since the norm is necessarily non-negative,

0 � m U ′ + (m2 − m) (−L′)

⇒ m � 1 + U ′

L′ . (B6)

Note that this bound is tight, i.e., there is a possible choice of
PN for which it is realized. On the other hand, by definition,
the maximum possible size of an MMD set is the system’s
dimension:

m � d. (B7)

Identifying these bounds leads to

d = 1 + U ′

L′

⇒ U = (1 − d )L + 1

N
d. (B8)

Furthermore, recall that the reference states have the form

ek (i) = (1 − NL)δik + L, k ∈ {1, . . . , N}, (B9)

and have maximal norm, hence

U = (ek, ek )

= (1 − NL)2 + 2L(1 − NL) + NL2

= 1 − 2NL + N2L2 + 2L − NL2

= 1 + L(N − 1)(NL − 2). (B10)

By Assumption A4, we have N = d2; substituting this into
Eqs. (B8) and (B10) yields L = 1/(d2 + d ) and U = 2L. �

APPENDIX C: PROOF OF THE LEMMA

A version of this result was first derived in Refs. [32,33] to
prove Gleason’s theorem for POVMs. Our version applies to
probability vectors instead of POVM elements, but is other-
wise very similar.

Our strategy is to show that there exists an extension of
f to the full vector space RN , which satisfies the linearity
property (23) on the whole space. Since the extension reduces
to f when restricted to the original domain VN , f must be also
be linear.

First, we note that if v is in VN , then so must be 1
nv, for any

positive integer n. (To see why, just consider that any outcome
of an apparatus can be “fine grained” by appending to it
the outcome of the n-outcome “garbage disposal” apparatus.
Thus, if an outcome originally occurred with probability v,
it is fine grained into a set of n outcomes that each have
probability 1

nv.) Then, using the additivity of f we have

f (v) = n f

(
1

n
v

)
= m f

(
1

m
v

)
, (C1)

for arbitrary positive integers n, m. If we define v′ := 1
m v we

obtain

f
(m

n
v′

)
= m

n
f (v′) (C2)

and hence f (av) = a f (v) for any positive rational a.
Since VN spans R+N , any vector of positive components

w ∈ R+N can be written as w = av for some v ∈ VN , where
a is positive and rational. Hence we can define an extension
of f to all positive vectors as f +(w) := a f (v). Note that this
definition is independent of the particular choice of decompo-
sition of w. Suppose that w = a1v1 = a2v2. Then v2 = a1

a2
v1,

so

f (v2) = f
(a1

a2
v1

)
= a1

a2
f (v1) (C3)

and therefore f +(w) := a1 f (v1) = a2 f (v2). Next, we show
that this extension is additive. Let u,w be any vectors in
R+N . Since VN spans R+N , there exists some rational a �
1 such that the vectors 1

a (w + u), 1
aw, 1

a u are all in VN .
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Thus,

f +(w + u) = a f +
(

1

a
(w + u)

)

= a f

(
1

a
(w + u)

)

= a f

(
1

a
w

)
+ a f

(
1

a
u

)

= a f +
(

1

a
w

)
+ a f +

(
1

a
u

)

= f +(w) + f +(u). (C4)

To further extend our function to include vectors with negative
components, note that any vector z ∈ RN can be written as
z = w − u for positive w, u ∈ R+N . Hence, we may define the
extension as f̃ (z) := f +(w) − f +(u). Notice that by its very
definition this extension is additive. To see that it does not
depend on the choice of decomposition of z into w, u, suppose
that z = w1 − u1 = w2 − u2, and hence w1 + u2 = w2 + u1.
Then,

f̃ (w1 + u2) = f̃ (w2 + u1)

⇒ f +(w1 + u2) = f +(w2 + u1)

⇒ f +(w1) + f +(u2) = f +(w2) + f +(u1)

⇒ f +(w1) − f +(u1) = f +(w2) − f +(u2). (C5)

Comparing the left- and right-hand sides, we see that the
extension must be the same, regardless of whether it is defined
using the decomposition z = w1 − u1 or z = w2 − u2.

We have now shown that f can be extended to an additive
function f̃ on the full vector space RN . To prove that f̃ is
linear, first note that

f̃

(∑
x

αxvx

)
=

∑
x

f̃ (αxvx ). (C6)

Moreover, since f̃ is additive, a similar argument as was used
above for f can be applied to prove that f̃ (αxvx ) = αx f̃ (vx )
for any rational αx. What if αx are irrational? Consider x, z ∈
RN with x � z (i.e., y := z − x is entrywise non-negative).
Then x + y = z and the additivity of f̃ gives f̃ (x) � f̃ (z). Let
α be an irrational number, and let {an : n = 1, 2, . . . } be an
increasing sequence and {bn : n = 1, 2, . . . } be a decreasing
sequence of rational numbers that both converge to α. It fol-
lows that for any entrywise non-negative z,

f̃ (anz) � f̃ (αz) � f̃ (bnz)

⇒ an f̃ (z) � f̃ (αz) � bn f̃ (z). (C7)

Since an f̃ (αz) and bn f̃ (αz) approach the same limit, by the
“pinching theorem” of calculus this limit must be f̃ (αz).
Hence, we can consistently define f̃ (αz) := α f̃ (z) for any real
α. Applying this to the last line of (C6), we finally obtain that
the function f̃ is linear:

f̃

(∑
x

αxvx

)
=

∑
x

αx f̃ (vx ). (C8)

Finally, we conclude the proof by observing that by definition
f̃ = f when restricted to the original domain VN , and so it
follows that f is linear on its domain, as desired. �

This proof somewhat parallels Wright and Weigert’s proof
of a Gleason-type theorem for general probabilistic theories
[35]; both our theorem and theirs have the Busch and Renes
et al. papers as common ancestors. Our program of probabilis-
tic representations of quantum theory differs from the GPT
tradition by, for example, proving the convexity of state space
rather than assuming it, and requiring only one reference
measurement for each N rather than a family that must be
considered conjointly. In essence, the GPT school abstracts
the notion of von Neumann measurements, whereas we start
with informationally complete POVMs.

[1] C. A. Fuchs, QBism, the perimeter of quantum Bayesianism,
arXiv:1003.5209.

[2] C. A. Fuchs and B. C. Stacey, QBism: Quantum theory as a
Hero’s handbook, in Proceedings of the International School of
Physics “Enrico Fermi” Course 197 – Foundations of Quantum
Physics, edited by E. M. Rasel, W. P. Schleich, and S. Wölk
(IOS Press, Amsterdam, 2018), pp. 133–202.

[3] C. A. Fuchs, N. D. Mermin, and R. Schack, An introduction to
QBism with an application to the locality of quantum mechan-
ics, Am. J. Phys. 82, 749 (2014).

[4] B. C. Stacey, Ideas abandoned en route to QBism,
arXiv:1911.07386.

[5] C. M. Caves, C. A. Fuchs, and R. Schack, Quantum probabili-
ties as Bayesian probabilities, Phys. Rev. A 65, 022305 (2002).

[6] N. Harrigan and R. W. Spekkens, Einstein, incompleteness, and
the epistemic view of quantum states, Found. Phys. 40, 125
(2010).

[7] M. F. Pusey, J. Barrett, and T. Rudolph, On the reality of the
quantum state, Nat. Phys. 8, 475 (2012).

[8] J. M. Bernardo and A. F. M. Smith, Bayesian Theory (Wiley,
Chichester, UK, 1994).

[9] B. de Finetti, Theory of Probability (Wiley, New York, 1990).
[10] C. Misak, Frank Ramsey: A Sheer Excess of Powers (Oxford

University Press, Oxford, UK, 2020).
[11] C. A. Fuchs and R. Schack, Quantum-Bayesian coherence, Rev.

Mod. Phys. 85, 1693 (2013).
[12] C. A. Fuchs and R. Schack, QBism and the Greeks: Why a

quantum state does not represent an element of physical reality,
Phys. Scr. 90, 015104 (2015).

[13] J. B. DeBrota, C. A. Fuchs, and R. Schack, Respecting one’s
fellow: QBism’s analysis of Wigner’s friend, Found. Phys. 50,
1859 (2020).

[14] J. B. DeBrota, C. A. Fuchs, and B. C. Stacey, Symmetric in-
formationally complete measurements identify the irreducible
difference between classical and quantum systems, Phys. Rev.
Research 2, 013074 (2020).

[15] C. A. Fuchs, Quantum mechanics as quantum information (and
only a little more), in Quantum Theory: Reconsideration of

022207-11

http://arxiv.org/abs/arXiv:1003.5209
https://doi.org/10.1119/1.4874855
http://arxiv.org/abs/arXiv:1911.07386
https://doi.org/10.1103/PhysRevA.65.022305
https://doi.org/10.1007/s10701-009-9347-0
https://doi.org/10.1038/nphys2309
https://doi.org/10.1103/RevModPhys.85.1693
https://doi.org/10.1088/0031-8949/90/1/015104
https://doi.org/10.1007/s10701-020-00369-x
https://doi.org/10.1103/PhysRevResearch.2.013074


DEBROTA, FUCHS, PIENAAR, AND STACEY PHYSICAL REVIEW A 104, 022207 (2021)

Foundations, edited by A. Khrennikov (Växjö University Press,
Växjö, Sweden, 2002), pp. 463–543.

[16] J. B. DeBrota, C. A. Fuchs, and B. C. Stacey, The varieties
of minimal tomographically complete measurements, Int. J.
Quant. Inf. 0, 2040005 (2020).

[17] G. Zauner, Quantum designs: Foundations of a noncommutative
design theory, Ph.D. thesis, University of Vienna, 1999; trans-
lated in Int. J. Quant. Inf. 9, 445 (2011).

[18] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves,
Symmetric informationally complete quantum measurements,
J. Math. Phys. 45, 2171 (2004).

[19] M. Grassl, Computing Numerical and Exact SIC-POVMs, Talk
given at Quantum Chaos and Quantum Information Seminar,
Jagiellonian University (unpublished).

[20] D. M. Appleby, S. T. Flammia, and C. A. Fuchs, The Lie
algebraic significance of symmetric informationally complete
measurements, J. Math. Phys. 52, 022202 (2011).

[21] D. M. Appleby, C. A. Fuchs, and H. Zhu, Group theo-
retic, Lie algebraic, and Jordan algebraic formulations of the
SIC existence problem, Quantum Inf. Comput. 15(1-2), 61
(2015).

[22] M. Appleby, S. Flammia, G. McConnell, and J. Yard, SICs and
algebraic number theory, Found. Phys. 47, 1042 (2017).

[23] I. Bengtsson, SICs: Some explanations, Found. Phys. 50, 1794
(2020).

[24] J. B. DeBrota and B. C. Stacey, Discrete Wigner functions from
informationally complete quantum measurements, Phys. Rev. A
102, 032221 (2020).

[25] S. K. Pandey, V. I. Paulsen, J. Prakash, and M. Rahaman,
Entanglement breaking rank and the existence of SIC POVMs,
J. Math. Phys. 61, 042203 (2020).

[26] C. A. Fuchs, M. C. Hoang, and B. C. Stacey, The SIC question:
History and state of play, Axioms 6, 21 (2017).

[27] C. A. Fuchs, Notwithstanding Bohr, the reasons for QBism,
Mind and Matter 15, 245 (2017).

[28] N. Brunner, M. Kaplan, A. Leverrier, and P. Skrzypczyk,
Dimension of physical systems, information processing, and
thermodynamics, New J. Phys. 16, 123050 (2014).

[29] D. M. Appleby, C. A. Fuchs, B. C. Stacey, and H. Zhu, Intro-
ducing the Qplex: A novel arena for quantum theory, Eur. Phys.
J. D 71, 197 (2017).

[30] B. C. van Fraassen, Belief and the will, J. Philos. 81, 235 (1984).
[31] C. A. Fuchs and R. Schack, Bayesian conditioning, the re-

flection principle, and quantum decoherence, in Probability in
Physics, edited by Y. Ben-Menahem and M. Hemmo (Springer,
Berlin, 2012), pp. 233–247.

[32] P. Busch, Quantum States and Generalized Observables: A Sim-
ple Proof of Gleason’s Theorem, Phys. Rev. Lett. 91, 120403
(2003).

[33] C. M. Caves, C. A. Fuchs, K. K. Manne, and J. M. Renes,
Gleason-type derivations of the quantum probability rule for
generalized measurements, Found. Phys. 34, 193 (2004).

[34] B. C. Stacey, Quantum theory as symmetry broken by vitality,
arXiv:1907.02432.

[35] V. J. Wright and S. Weigert, General probabilistic theories with
a Gleason-type theorem, arXiv:2005.14166.

022207-12

https://doi.org/10.1142/S0219749911006776
https://doi.org/10.1063/1.1737053
https://doi.org/10.1063/1.3555805
https://doi.org/10.1007/s10701-017-0090-7
https://doi.org/10.1007/s10701-020-00341-9
https://doi.org/10.1103/PhysRevA.102.032221
https://doi.org/10.1063/1.5045184
https://doi.org/10.3390/axioms6030021
https://doi.org/10.1088/1367-2630/16/12/123050
https://doi.org/10.1140/epjd/e2017-80024-y
https://doi.org/10.2307/2026388
https://doi.org/10.1103/PhysRevLett.91.120403
https://doi.org/10.1023/B:FOOP.0000019581.00318.a5
http://arxiv.org/abs/arXiv:1907.02432
http://arxiv.org/abs/arXiv:2005.14166

