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The term “layers of classicality” in the context of quantum measurements was introduced by T. Heinosaari
[Phys. Rev. A 93, 042118 (2016)]. The strongest layer among these consists of the sets of observables that
can be broadcast and the weakest layer consists of the sets of compatible observables. There are several other
layers in between those two layers. In this work, we study their physical and geometric properties and show
the differences and similarities among the layers in these properties. In particular we show that (i) none of the
layers of classicality respect transitivity property, (ii) the concept like degree of broadcasting similar to degree of
compatibility does not exist, (iii) there exist informationally incomplete positive operator-valued measures that
are not individually broadcastable, (iv) a set of broadcasting channels can be obtained through concatenation of
broadcasting and nondisturbing channels, (v) unlike compatibility, other layers of classicality are not convex,
in general. Finally, we discuss the relations among these layers. More specifically, we show that a specific
type of concatenation relations among broadcasting channels decides the layer in which a pair of observables
resides.
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I. INTRODUCTION

The incompatibility of observables is one of the origins of
nonclassicality in quantum theory. A set of positive operator-
valued measures (POVMs) is compatible if those can be
measured simultaneously. Otherwise, they are incompatible
[1]. Today we all know the connections between incompatibil-
ity, nonlocality, and steering [2,3]. Nonclassical features like
Bell inequality violation as well as the demonstration of steer-
ing is only possible using incompatible measurements [4,5].
In quantum information theory, incompatibility of measure-
ments provides an advantage over compatible measurements
in several information-theoretic tasks [6,7].

The impossibility of universal cloning of quantum state
is known as the no-cloning theorem [8]. Broadcasting is the
weaker version of cloning. Today we know that only commut-
ing states can be simultaneously broadcast [9]. Similarly, there
are no-cloning theorems for a single POVM as well as for a
set of POVMs [10–13].

Compatible measurement does not show any nonclassical
feature. But the compatibility of observables is the weak-
est layer of classicality. The other layers from stronger to
weaker can be written as (1) broadcastable sets of observables,
(2) one-side broadcastable sets of observables, (3) mutually
nondisturbing observables, and (4) nondisturbing observables
[14].

In Ref. [14], the existence of hierarchies of these layers
have been proved and complete characterization for qubit
observables is presented. In the present paper, we discuss
the properties of individual layers and the present work may
be considered as the immediate development in this research
direction subsequent to the work presented in Ref. [14]. More
specifically in this paper, we mainly tackle the following

questions: (i) What are the differences in properties between
compatibility and any other layer of classicality? (ii) Are there
any similarities in the properties between compatibility and
any other layer of classicality? (iii) What are the connections
among different layers of classicality? Our results open up
several research avenues which have been summarized in the
Conclusion.

The rest of this paper is organized as follows. In Sec. II,
we briefly review the incompatibility of quantum observ-
ables, quantum channels, and the layers of classicality. In
Sec. III, we discuss our main results, i.e., physical as well
as geometric properties of different layers of classicality and
relations among different layers of classicality. More specif-
ically, in Sec. III A, we show that none of the layers of
classicality respect the transitivity property. Then we show
that the concept like degree of broadcasting similar to degree
of compatibility does not exist. We also show the existence of
informationally incomplete POVMs that are not individually
broadcastable. Next we show that a set of broadcasting chan-
nels can be obtained through concatenation of broadcasting
and nondisturbing channels. In Sec. III B, we show that unlike
compatibility, other layers of classicality are not convex, in
general. Finally in Sec. III C, We show that a specific type
of concatenation relations among the broadcasting channels
decides the layer in which a pair of observables resides. Fi-
nally, in Sec. IV we summarize the work and discuss the future
outlook.

II. PRELIMINARIES

In this section, we briefly discuss compatibility, quantum
channels, quantum instruments, and the layers of classicality.
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A. Observables and compatibility

Let A be an observable acting on d dimensional Hilbert
space H with number of outcomes nA. Then we denote the
outcome set of A as �A = {1, . . . , nA}. We denote the set
of all observables acting on d dimensional Hilbert space H
with outcome set X as Od

X and with outcome set Y as Od
Y .

Then we denote the Cartesian product of these two sets as
Od

XY = Od
X × Od

Y . Then the set Od
XY is the set of all the

pairs (A, B) ∀A ∈ Od
X ,∀B ∈ Od

Y . From now on, throughout
the paper, we will consider all observables are acting on d
dimensional Hilbert space H unless specifically mentioned. A
pair of observables (A, B) ∈ Od

XY is compatible iff there exists
an observable G ∈ Od

Z where Z = X × Y , such that

A(x) =
∑

y

G(x, y) ∀x ∈ X, (1)

B(y) =
∑

x

G(x, y) ∀y ∈ Y. (2)

We denote the set of all compatible pairs acting on
d dimensional Hilbert space H as Od

comp,XY [15]. Clearly,
Od

comp,XY ⊆ Od
XY . Also Od

comp,XY is convex, where for p ∈
[0, 1], the convex combination of two observables A ∈ Od

X
and B ∈ Od

X is defined as pA + (1 − p)B = {pA(x) + (1 −
p)B(x)} [16].

An observable A = {A(x)} is called commutative if
A(x)A(y) = A(y)A(x) ∀x, y ∈ �A. Throughout the paper, we
restrict ourselves to the pairs of observables. A pair of ob-
servables (A, B) ∈ Od

XY is mutually commuting if A(x)B(y) =
B(y)A(x) for all x ∈ X and y ∈ Y .

B. Quantum channels

We denote the set of density matrices on a Hilbert space H
as S (H). We also denote the set of linear operators on Hilbert
space H as L(H). A CPTP map � : S (Hin) → S (Hout) is
called a quantum channel, where Hin and Hout are two
Hilbert spaces [15]. The dual channel of � is defined as
a map �∗ : L(Hout) → L(Hin) which satisfies the equation
Tr[�(ρ)A(x)] = Tr{ρ�∗[A(x)]} for all x ∈ �A, for all states
ρ ∈ S (Hin) and all observable A = {A(x)} acting on Hout.
We denote the composition of two channels �1 : S (Hin) →
S (H′) and �2 : S (H′) → S (Hout ) as �2 ◦ �1, where H′ is
another Hilbert space. From the definition of the dual channel
we have

(�2 ◦ �1)∗ = �∗
1 ◦ �∗

2. (3)

We denote the set of all channels for which Hin = Hout = H
as Cd .

Our definition of broadcasting channel is same as the defi-
nition given in [14].

Definition 1. A channel � : S (H) → S (HA ⊗ HB) with
HA = HB = H is called a broadcasting channel.

We denote the set of all broadcasting channels acting on
S (H) as Cd

broad. Let us now define a property of broadcasting
channels which we name local changeability.

Definition 2. A broadcasting channel �1 ∈ Cd
broad is called

locally changeable to another broadcasting channel �2 ∈
Cd

broad if there exist two channels �1 ∈ Cd and �2 ∈ Cd such

that

�2 = (�1 ⊗ �2) ◦ �1 (4)

and we denote it as �2 
local �1. If both �2 
local �1 and
�1 
local �2 hold then they are called locally interchangeable
and we denote it as �1 �local �2.

We will use this property to construct relations between
different layers of classicality.

C. Quantum instruments

An instrument I with outcome set X is the collection of
CP maps I = {Ix : L(H) → L(K)} such that IC = ∑

x Ix is
a quantum channel, where H and K are two Hilbert spaces. An
observable A ∈ Od

X can be implemented using I if for all ρ ∈
S (H) and x ∈ X , Tr[ρA(x)] = Tr[Ix(ρ)]. Such an instrument
is known as an A-compatible instrument and the channel IC

is called compatible with A [15].

D. Layers of classicality

In this subsection, we discuss briefly the layers of classi-
cality [14].

1. Broadcastable pairs of observables

Definition 3. An observable A ∈ Od
X is broadcast by a

broadcasting channel � ∈ Cd
broad if for all ρ ∈ S (H), x ∈ X

Tr[ρA(x)] = Tr[�(ρ)A(x) ⊗ I] = Tr[�(ρ)I ⊗ A(x)]. (5)

A pair of observables (A, B) ∈ Od
XY is broadcastable if

there exists a broadcasting channel � which can broadcast
both observables A and B. We denote the set of all broad-
castable pairs of observables in Od

XY as Od
broad,XY .

It is proved in [14] that a mutually commuting pair of
commutative observables acting on finite dimensional Hilbert
space is broadcastable. It is also proved in [14] that a pair of
qubit observables are broadcastable iff those observables are
commutative and mutually commuting.

2. One-side broadcastable pairs of observables

Definition 4. A pair of observables (A, B) ∈ OXY is one-
side broadcastable if there exists a broadcasting channel � ∈
Cd

broad such that for all ρ ∈ S (H), x ∈ X and y ∈ Y

Tr[ρA(x)] = Tr[�(ρ)A(x) ⊗ I], (6)

Tr[ρB(y)] = Tr[�(ρ)I ⊗ B(y)] (7)

hold. We denote the set of all one side-broadcastable pairs
of observables in Od

XY as Od
1-side-broad,XY .

3. Nondisturbing pairs of observables

Definition 5. An observable A ∈ Od
X can be measured

without disturbing B ∈ Od
Y if there exists an instrument I =

{I (x)} such that for all ρ ∈ S (H), x ∈ X and y ∈ Y

Tr[ρA(x)] = Tr[Ix(ρ)], (8)

Tr[ρB(y)] = Tr[IC (ρ)B(y)]. (9)
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A pair of observables (A, B) is called nondisturbing if
either A can be measured without disturbing B or B can be
measured without disturbing A [14]. We denote the set of
all nondisturbing pairs of observables in Od

XY as Od
nondist,XY .

Some of the properties of nondisturbing pairs of observables
has been discussed in Ref. [17]. In the dimension more than
2, the complete characterization of nondisturbing pairs is dif-
ficult and requires separate investigation.

4. Mutually nondisturbing pairs of observables

Definition 6. A pair of observables (A, B) ∈ OXY is mutu-
ally nondisturbing if A can be measured without disturbing B
and B can be measured without disturbing A.

We denote the set of all mutually nondisturbing pairs
of observables in Od

XY as Od
mut-nondist,XY . It is proved

in [14] that Od
broad,XY ⊆ Od

1-side-broad,XY ⊆ Od
mut-nondist,XY ⊆

Od
nondist,XY ⊆ Od

comp,XY .
For any observable, if all of its POVM elements are

multiples of identity, then the observable is called a trivial
observable. Otherwise, it is called a nontrivial observable.
Any mutually commuting pair of nontrivial qubit observables
is necessarily commutative [14]. We now write down the
following proposition which is originally proved in [14].

Proposition 1. For a pair of nontrivial qubit observables A
and B, the following statements are equivalent:

(1) The pair (A, B) is one-side broadcastable.
(2) The pair (A, B) is mutually nondisturbing.
(3) The pair (A, B) is nondisturbing.
(4) The pair (A, B) is mutually commuting.
(5) The pair (A, B) is broadcastable.

III. MAIN RESULTS

In this section, we discuss the main results of our work.
At first, we discuss the physical properties of some layers of
classicality. Then, we discuss geometric properties of differ-
ent layers of classicality. Finally, we discuss the connection
among different layers.

A. Physical properties of some of the layers of classicality

In this section, we discuss mainly the physical properties
of broadcasting, one-side broadcasting, and compatibility. Let
us start with a simple property. We know that there exist three
nontrivial observables A, B, and C such that (A, B) and (B,C)
are compatible pairs but the pair (A,C) is not compatible, i.e.,
compatibility does not respect the transitivity property. Our
next proposition shows that none of the layers of classicality
respect this property.

Proposition 2. There exist nontrivial observables A, B, and
C such that the pairs (A, B) and (B,C) reside in a particular
layer of classicality, while (A,C) does not reside in that layer
of classicality.

Proof. Consider three nontrivial sharp observables acting
on H2 ⊗ H2:

A = {|+0〉 〈+0| , |−0〉 〈−0| , |01〉 〈01| , |11〉 〈11|}, (10)

B = {I ⊗ |0〉 〈0| , |01〉 〈01| , |11〉 〈11|}, (11)

C = {|00〉 〈00| , |10〉 〈10| , |01〉 〈01| , |11〉 〈11|}, (12)

where |0〉 , |1〉 are the eigenvectors of σz and |+〉 , |−〉 are the
eigenvectors of σx and H2 is Hilbert space with dimension
d = 2. Clearly, these observables are commutative and also
the pairs (A, B) and (B,C) are mutually commuting. There-
fore, they are

broadcastable ⇒ one side broadcastable ⇒ mutually
nondisturbing ⇒ nondisturbing ⇒ compatible. But the pair
(A,C) is mutually noncommuting. Therefore, this pair is

incompatible ⇒ disturbing ⇒ mutually disturbing ⇒ not
one-side broadcastable ⇒ not broadcastable. So, the pairs
(A, B) and (B,C) reside in all of these layers of classicality.
But the pair (A,C) does not reside in any of these layers of
classicality.

Definition 7. An observable Ap is called an unsharp ver-
sion of observable A with unsharp parameter p iff Ap =
{Ap(x) = pA(x) + (1 − p) I

nA
} for all x ∈ �A, where nA is the

number of outcomes of A and p ∈ (0, 1].
Now we show a basic difference in a property between

broadcasting and compatibility. Consider a pair of observables
(A, B) with number of outcomes nA and nB. It is well known
that for the particular value of p, q ∈ (0, 1], the compatibility
of the pair (Ap, Bq ) does not imply compatibility of the pair
(A, B). But for broadcasting, this is not the case. The following
theorem will clarify that.

Theorem 1. If the pair (Ap, Bq ) is broadcastable for some
p, q ∈ (0, 1], then the pair (A, B) is also broadcastable.

Proof. Suppose the pair (Ap, Bq ) is broadcastable by the
broadcasting channel � and p, q ∈ (0, 1]. Then for all x ∈
�Ap and ρ ∈ S (H) we have

Tr[ρAp(x)] = Tr[�(ρ)(Ap ⊗ I)]

or Tr

[
ρ

(
pA(x) + (1 − p)

I

nA

)]
= Tr{�(ρ)[(pA(x)

+ (1 − p)
I

nA
) ⊗ I]}

or pTr[ρ(A(x)] + (1 − p)

nA
= pTr{�(ρ)[A(x) ⊗ I]}

+ (1 − p)

nA

or Tr[ρ(A(x)] = Tr{�(ρ)[A(x) ⊗ I]}.
(13)

Similarly, one can prove for all x ∈ �Ap, y ∈ �Bq , and
ρ ∈ S (H):

Tr[ρA(x)] = Tr{�(ρ)[I ⊗ A(x)]}, (14)

Tr[ρB(y)] = Tr{�(ρ)[I ⊗ B(y)]}, (15)

Tr[ρB(y)] = Tr{�(ρ)[B(y) ⊗ I]}. (16)

Therefore, the pair (A, B) is broadcastable by the same
channel �.

The highest value of an unsharp parameter for which the
the unsharp version of a pair is compatible is known as the
degree of compatibility [1]. Theorem 1 suggests that there is
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no concept like degree of broadcasting similar to degree of
compatibility. In other words broadcastability of observables
cannot be quantified in this way!

One immediate corollary of Theorem 1 is as follows:
Corollary 1. If a compatible pair (Ap, Bq ) is the unsharp

version of an incompatible pair (A, B) for some p, q ∈ (0, 1]
then the pair (Ap, Bq ) is not broadcastable.

As we already know that there exist incompatible pairs
of observables which have a nonzero compatibility region,
we conclude from the Corollary 1 that Od

broad,XY ⊂ Od
comp,XY .

Similarly, it is easy to prove the following:
Corollary 2. If the pair (A, B) is broadcastable, then the

pair (Ap, Bq ) is broadcastable for all p, q ∈ [1, 0].
Our, next proposition is very important and describes the

relation between broadcasting of a compatible pair and broad-
casting of its joint observable.

Proposition 3. For any compatible pair (A, B) ∈ Od
comp,XY ,

if the joint observable is broadcastable by a channel � ∈
Cd

broad, then the pair is also broadcastable by the same
channel �.

Proof. Let the pair (A, B) ∈ Od
XY be compatible and G ∈

OX×Y be the joint observable of it. Therefore for all x ∈ X
and y ∈ Y ,

A(x) =
∑

y

G(x, y); B(y) =
∑

x

G(x, y). (17)

Suppose that G is broadcastable by � ∈ Cd
broad. Therefore,

Tr[ρA(x)] = Tr[ρ
∑

y

G(x, y)]

=
∑

y

Tr[ρG(x, y)]

=
∑

y

Tr[�(ρ)G(x, y) ⊗ I]

= Tr

(
�(ρ)

∑
y

G(x, y) ⊗ I

)

= Tr[�(ρ)A(x) ⊗ I]. (18)

Similarly, one can prove that

Tr[ρA(x)] = Tr[�(ρ)I ⊗ A(x)], (19)

Tr[ρB(y)] = Tr[�(ρ)B(y) ⊗ I], (20)

Tr[ρB(y)] = Tr[�(ρ)I ⊗ B(y)]. (21)

Hence, the proposition is proved.
The immediate corollary of above proposition is as

follows:
Corollary 3. If a compatible pair is not broadcastable, then

its joint observable is also not broadcastable.
We clarify this through our next example.
Example 1. Consider unsharp versions of a pair of spin- 1

2
observables along the x and y direction respectively with
unsharpness parameter λ = 1√

2
. This pair is compatible

[18]. But from Corollary 1, we get that this pair is not
broadcastable. Now, the joint observable of this pair is G =
{ 1

2 |+ �n1〉〈+ �n1|, 1
2 |− �n1〉 〈− �n1| , 1

2 |+ �n2〉 〈+ �n2| , 1
2 |− �n2〉 〈− �n2|},

where �n1 = (1, 1, 0) and �n2 = (1,−1, 0). Therefore,
from Corollary 3 we get that this joint observable is not
broadcastable. It should be noted that G is not informationally
complete.

Therefore, Corollary 1 and Corollary 3 together with ex-
ample 1 enable us to write down the following theorem:

Theorem 2. (no-broadcasting theorem for a single in-
formationally incomplete POVM).There exist some infor-
mationally incomplete POVMs which are not individually
broadcastable.

This theorem immediately raises a question: What is the
minimum amount of extracted information which prohibits
quantum broadcasting of observables? We keep this as an
open question. Broadcasting is the weaker version of cloning,
and therefore Theorem 2 is a generalization of the no-cloning
theorem for a single POVM given in [13].

Now, we define nondisturbing quantum channels with re-
spect to an observable.

Definition 8. A channel � : S (H) → S (H) is nondisturb-
ing with respect to an observable A if for all ρ ∈ S (H),

Tr[ρA(x)] = Tr[�(ρ)A(x)] ∀ x ∈ �A (22)

or, equivalently,

�∗[A(x)] = A(x) ∀ x ∈ �A. (23)

A channel is nondisturbing for a set of observables iff it is
nondisturbing for all observables in that set. Now, we prove
our next proposition.

Proposition 4. If the observable A is broadcastable by the
channel � and if � : S (H) → S (H) is a nondisturbing chan-
nel with respect to A then A is also broadcastable by � ◦ �.

Proof. The observable A is broadcastable by �. Then for
all ρ ∈ S (H) and for all x ∈ �A

Tr[(� ◦ �)(ρ)A(x) ⊗ I] = Tr[�(�(ρ))A(x) ⊗ I]

= Tr[�(ρ)A(x)]

= Tr[ρA(x)] (24)

Similarly one can prove that

Tr[(� ◦ �)(ρ)I ⊗ A(x)] = Tr[ρA(x)]. (25)

Therefore, A is broadcastable by � ◦ �.
For an observable, in this way, one can get the set of

different broadcasting channels that broadcast the observable.
It is an open question whether this set has the highest element,
i.e., a broadcasting channel in this set from which all other
broadcasting channels that can broadcast the observable, that
can be constructed through concatenation with nondisturbing
channels. It is also an open question whether this set has the
lowest element i.e., a broadcasting channel in this set which
can be constructed from all other broadcasting channels that
broadcast the observable through concatenation with nondis-
turbing channels.

The results similar to Theorem 1, Corollaries 1–3, and
Propositions 3 and 4 can be similarly shown to hold for one-
side broadcastable pairs of observables.
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B. Geometric properties of different layers of classicality

In this section, we discuss the geometric properties of the
layers of classicality. Suppose χXY ⊆ Od

XY is a set of pairs of
observables with outcome set X and Y respectively. Then we
denote the set of broadcasting channels which can broadcast
all pairs of observables in the set χ as 
d

broad(χXY ). Similarly,
for a set of broadcasting channels ξ ⊆ Cd

broad, we denote the set
of all pairs of observables with outcome set X and Y respec-
tively, which can be broadcast by all broadcasting channels in
the set ξ as Od

broad,XY (ξ ). So, clearly ∪�∈Cd
broad

Od
broad,XY (�) =

Od
broad,XY .
Proposition 5. For any pair of observables (A, B) ∈ Od

XY ,

d

broad[{(A, B)}] is convex.
Proof. Suppose both broadcasting channels �1 and �2 can

broadcast the pair (A, B). Then, for all p ∈ [0, 1], x ∈ X and
ρ ∈ [S (H)],

Tr{[p�1 + (1 − p)�2](ρ)A(x) ⊗ I}
= pTr[�1(ρ)A(x) ⊗ I] + (1 − p)Tr[�2(ρ)A(x) ⊗ I]

= pTr[ρA(x)] + (1 − p)Tr[ρA(x)]

= Tr[ρA(x)]. (26)

In a similar way, one can easily prove that for all p ∈ [0, 1],
x ∈ X , y ∈ Y , and ρ ∈ [S (H)]

Tr{[p�1 + (1 − p)�2](ρ)I ⊗ A(x)} = Tr[ρA(x)] (27)

and

Tr{[p�1 + (1 − p)�2](ρ)B(y) ⊗ I}
= Tr{[p�1 + (1 − p)�2](ρ)I ⊗ B(y)}
= Tr[ρB(y)]. (28)

Therefore, the broadcasting channel �′ = p�1 + (1 − p)�2

can broadcast the pair (A, B) for all p ∈ [0, 1].
Similarly, we prove our next proposition:
Proposition 6. For any channel � ∈ Cd

broad, the set
Od

XY,broad(�) is convex.
Proof. Suppose both the pairs (A1, B1) ∈ Od

broad,XY and
(A2, B2) ∈ Od

broad,XY are broadcast by the same channel �.
Then for all p ∈ [0, 1], x ∈ X , and ρ ∈ [S (H)]

Tr{�(ρ)[pA1(x) + (1 − p)A2(x)] ⊗ I}
= pTr[�(ρ)A1(x) ⊗ I] + (1 − p)Tr[�(ρ)A2(x) ⊗ I]

= pTr[ρA1(x)] + (1 − p)Tr[ρA2(x)]

= Tr{ρ[pA1(x) + (1 − p)A2(x)]}. (29)

In a similar way, one can easily prove that for all p ∈ [0, 1],
x ∈ X , y ∈ Y , and ρ ∈ [S (H)]

Tr{�(ρ)I ⊗ [pA1(x) + (1 − p)A2(x)]}
= Tr{ρ[pA1(x) + (1 − p)A2(x)]} (30)

and

Tr{ρ[pB1(y) + (1 − p)B2(y)]}
= Tr{�(ρ)I ⊗ [pB1(y) + (1 − p)B2(y)]} (31)

= Tr{�(ρ)[pB1(y) + (1 − p)B2(y)] ⊗ I}. (32)

So, � can broadcast the pair [pA1 + (1 − p)A2, pB1 + (1 −
p)B2] for all p ∈ [0, 1].

Therefore, Od
broad,XY is the union of these convex sets.

Now, suppose (A1, B1) ∈ Obroad,XY and (A2, B2) ∈ Obroad,XY

are two pairs of observables. Let λ be an arbitrary number and
λ ∈ [0, 1]. Then consider another pair of observables (Aλ, Bλ)
such that Aλ = λA1 + (1 − λ)A2 and Bλ = λB1 + (1 − λ)B2.
Then the following theorem holds:

Theorem 3. If two pairs (A1, B1) ∈ Obroad,XY and
(A2, B2) ∈ Obroad,XY are not broadcastable by the same
channel, i.e., if 
d

broad({(A1, B1), (A2, B2)}) = ∅ where ∅ is a
null set, then for all p, q ∈ [0, 1] and p �= q,


d
broad[{(Ap, Bp), (Aq, Bq)}] = ∅.

Proof. Suppose (Aλ, Bλ) is broadcastable for all λ ∈ [0, 1]
by the same broadcasting channel �. Then for all λ ∈ [0, 1],
x ∈ X and ρ ∈ [S (H)],

Tr{ρ[λA1(x) + (1 − λ)A2(x)]}
= Tr{�(ρ)[λA1(x) + (1 − λ)A2(x)] ⊗ I} (33)

= Tr{�(ρ)I ⊗ [λA1(x) + (1 − λ)A2(x)]} (34)

and

Tr{ρ[λB1(x) + (1 − λ)B2(x)]}
= Tr{�(ρ)[λB1(x) + (1 − λ)B2(x)] ⊗ I} (35)

= Tr{�(ρ)I ⊗ [λB1(x) + (1 − λ)B2(x)]}. (36)

Now, let

Tr[ρA1(x)] − Tr[�(ρ)A1(x) ⊗ I] = p1(x), (37)

Tr[ρA2(x)] − Tr[�(ρ)A2(x) ⊗ I] = q1(x), (38)

Tr[ρB1(y)] − Tr[�(ρ)B1(y) ⊗ I] = r1(y), (39)

Tr[ρB2(y)] − Tr[�(ρ)B2(y) ⊗ I] = s1(y), (40)

and

Tr[ρA1(x)] − Tr[�(ρ)I ⊗ A1(x)] = p2(x), (41)

Tr[ρA2(x)] − Tr[�(ρ)I ⊗ A2(x)] = q2(x), (42)

Tr[ρB2(y)] − Tr[�(ρ)I ⊗ B1(y)] = r2(y), (43)

Tr[ρB2(y)] − Tr[�(ρ)I ⊗ B2(y)] = s2(y). (44)

Now it is to be noted that for all i ∈ {1, 2} and x ∈ X and
y ∈ Y , the numbers p1(x), qi(x), ri(y), si(y) are the differences
of probabilities and all of these are independent of λ and
depend on � and ρ. Therefore, moduli of them are less than
or equal to 1. It is also to be noted that as � cannot broadcast
individual pairs (A1, B1) and (A2, B2) simultaneously, and
therefore for all i ∈ {1, 2} and x ∈ X and y ∈ Y , the numbers
p1(x), qi(x), ri(y), si(y) simultaneously cannot be zero. Now
suppose one of those numbers, say for example p1(x) �= 0,
for some x ∈ X . Then from Eqs. (33), (37), and (38) we have
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for all λ ∈ [0, 1]

λp1(x) = (1 − λ)(−q1),

p1(x) = (λ − 1)

λ
(q1), (45)

| p1(x) |=| (1 − λ)

λ
|| q1 | . (46)

So, if q1(x) = 0 the above equation is satisfied only for λ = 0.
Now suppose q1(x) �= 0. Then, the right-hand side of Eq. (46)
will vary with λ. But the left-hand side of Eq. (46) is indepen-
dent of λ and will not change. So, Eq. (46) can be satisfied
only for a particular value of λ and cannot be satisfied for all
λ ∈ [0, 1].

Furthermore, note that for a particular channel of �, for
λ <

|q1(x)|
1+|q1(x)| , the right-hand side of Eq. (46) is greater than

1. Therefore, since | p1(x) |� 1, Eq. (33) cannot be satisfied
for all λ � |q1(x)|

1+|q1(x)| . Therefore, for any one or more than one
of the numbers p1(x), qi(x), ri(y), si(y) for all i ∈ {1, 2} and
x ∈ X and y ∈ Y to be greater than 0, one can similarly prove
that Eqs. (33)–(36) can be satisfied simultaneously at most
for a particular value of λ ∈ [0, 1]. Therefore, a broadcasting
channel � can broadcast the pair (Aλ, Bλ) at most for a partic-
ular value of λ. Hence, the theorem is proved.

Our next proposition will clarify the geometric property of
Od

broad,XY and the other layers.
Proposition 7. Od

broad,XY , Od
1-side-broad,XY , Od

mut-nondist,X,Y

and Od
nondist,XY are not convex, in general.

Proof. We prove this by showing a counterexample. We
know that for two Bloch vectors �n1 and �n2

[ �n1.�σ , �n2.�σ ] = 2i( �n1 × �n2).�σ . (47)

{σi|i = 1, 2, 3} are Pauli matrices. We denote the eigenbasis
of σz and σx as {|0〉 , |1〉} and {|+〉 , |−〉} respectively. Now
consider two observables A1 and A2 acting on two dimensional
Hilbert space such that

A1(1) = 1
2 |0〉 〈0| , (48)

A1(2) = 1
2 |1〉 〈1| , (49)

A1(3) = 3
8 |0〉 〈0| + 1

8 |1〉 〈1| , (50)

A1(4) = 1
8 |0〉 〈0| + 3

8 |1〉 〈1| (51)

and

A2(1) = 1
2 |+〉 〈+| , (52)

A2(2) = 1
2 |−〉 〈−| , (53)

A2(3) = 1
8 |+〉 〈+| + 3

8 |−〉 〈−| , (54)

A2(4) = 3
8 |+〉 〈+| + 1

8 |−〉 〈−| . (55)

Again, consider two sharp spin 1
2 observables B1 and B2

acting on two dimensional Hilbert space such that

B1(1) = |0〉 〈0| ; B1(2) = |1〉 〈1| , (56)

B2(1) = |+〉 〈+| ; B2(2) = |−〉 〈−| . (57)

Clearly, both of the pairs (A1, B1) and (A2, B2) are commuta-
tive and mutually commuting and therefore, both of the pairs
are individually broadcastable.

Now, let A′ = 1
2 A1 + 1

2 A2 and B′ = 1
2 B1 + 1

2 B2. We know
that a pair of qubit observables are broadcastable iff those
observables are commutative and mutually commuting [14].
If we show that A′ is not commutative then the pair (A′, B′) is
not broadcastable.

Now, it is to be noted that

A′(1) = 1

2

[
1

2
|0〉 〈0| + 1

2
|+〉 〈+|

]

= 1

8
[2.I + (σz + σx )]. (58)

Similarly,

A′(3) = 1

2

[
3

8
|0〉 〈0| + 1

8
|1〉 〈1| + 1

8
|+〉 〈+| + 3

8
|−〉 〈−|

]

= 1

16
[4.I + (σz − σx )]. (59)

Therefore, using Eq. (47) we get [A′(1), A′(3)] �= 0. Hence,
we have proved that O2

broad,X1Y1
is not convex, where X1 =

{1, 2, 3, 4} and Y1 = {1, 2}. Several other counterexamples
exist to prove this proposition. Now as the pairs (A1, B1),
(A2, B2), and (A′, B′) are the pairs of nontrivial qubit ob-
servables, from Proposition 1, we get that O2

1-side-broad,X1Y1
,

O2
mut-nondist,X1,Y1

and O2
nondist,X1Y1

are also not convex. This is
one of the essential differences between compatibility and any
other layer of classicality in geometric properties.

There may be some other differences in geometric proper-
ties. But it needs further investigation to find that out.

From the proof of Propositions 5 and 6 and Theorem 3 it is
clear that similar results hold for one-side broadcasting.

Below in Table I, the comparison of several properties of
the different layers of classicality has been presented.

C. Relations among the layers of classicality

Before investigating relations among different layers of
classicality let us define some strict nonoverlapping layers of
classicality.

Definition 9. Let (A, B) ∈ OXY be a pair of observables.
Then

(1) the pair is called weakly compatible if the pair is com-
patible, but not nondisturbing,

(2) the pair is called weakly nondisturbing if the pair is
nondisturbing, but not mutually nondisturbing,

(3) the pair is called weakly mutually nondisturbing if the
pair is mutually nondisturbing, but not one-side broadcastable,

(4) the pair is called weakly one-side broadcastable if the
pair is one-side broadcastable, but not broadcastable.

These layers in Definition 9 are the strips between two suc-
cessive layers of classicality and can be easily visualized from
Fig. 1. Let us now investigate the relation between broadcast-
ing and one-side broadcasting. In the following theorems and
proposition we will see that specific concatination relations
between the broadcasting channels decide the resident of the
pair in a particular layer. We start with our next theorem.
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TABLE I. Comparison of transitivity property, convexity property, and existence of the concept of degree of the layers (i.e., the highest
value of unsharp parameter for which the unsharp version of a pair reside in a particular layer) is presented in this table. ( �) indicates that a
particular property is satisfied by a layer or a concept exist for that layer, (×) indicates the opposite to that of (�) and (?) indicates that it is not
known whether a particular property is satisfied by a layer or a concept exists for that layer.

Name of the layers Transitivity property Convexity property Degree of the layer

Broadcastable pairs × (Prop. 2) × (Prop. 7) × (Th. 1)
One-side Broadcastable pairs × (Prop. 2) × (Prop. 7) × (similar to Th. 1)
Mutually nondisturbing pairs × (Prop. 2) × (Prop. 7) ?
Nondisturbing pairs × (Prop. 2) × (Prop. 7) ?
Compatible pairs × (Prop. 2) � (Ref. [16]) � (Ref. [1])

Theorem 4 (broadcasting and one-side broadcasting).
Consider a pair (A, B) ∈ Od

XY and also suppose that A is
broadcastable by �1 and B is broadcastable by �2. Then
the pair is at least one-side broadcastable if there exist two
channels �,� ∈ Cd such that �2 = (� ⊗ �) ◦ �1, where
� ∈ Cd is a nondisturbing channel with respect to A and
� ∈ Cd is an arbitrary channel. Along with this, if the
pair is also not broadcastable, then it is weakly one-side
broadcastable.

Proof. A is broadcast by �1. We know that dual channels
are unital. Then for all x ∈ X , and ρ ∈ S (H) we have

Tr[�2(ρ)A(x) ⊗ I] = Tr[(� ⊗ �)�1(ρ)A(x) ⊗ I]

= Tr{�1(ρ)(� ⊗ �)∗[A(x) ⊗ I]}
= Tr(�1(ρ){�∗[A(x)] ⊗ �∗(I)})

= Tr[�1(ρ)A(x) ⊗ I]

= Tr[ρA(x)]. (60)

Now B is broadcast by �2. Then for y ∈ Y and ρ ∈ S (H),

Tr[ρB(y)] = Tr[�2(ρ)I ⊗ B(y)]. (61)

From Eqs. (60) and (61), we get that the pair (A, B) is one-side
broadcastable.

Before, we investigate the relation between one-side broad-
casting and nondisturbance, let us write down the proposition
which is originally proved in [14].

Proposition 8. An observable A ∈ Od
X can be measured

without disturbing an observable B ∈ Od
Y iff there exists a d ′

dimensional ancilla Hilbert space K, a channel � : S (H) →

FIG. 1. Different layers of classicality.

S (K ⊗ H), and an observable A′ ∈ Od ′
X acting on the ancilla

Hilbert space K such that for any state ρ ∈ S (H), x ∈ X , and
y ∈ Y , we have

Tr{ρ[A(x)]} = Tr[�(ρ)A′(x) ⊗ I], (62)

Tr{ρ[B(y)]} = Tr[�(ρ)I ⊗ B(y)]. (63)

Now let us investigate the connection between broadcast-
ing and nondisturbance. Our next theorem states one of the
possible relations.

Theorem 5 (broadcasting and nondisturbance). If A ∈ Od
X

is broadcastable by the broadcasting channel �1 ∈ Cd
broad and

B ∈ Od
Y is broadcastable by the broadcasting channel �2 ∈

Cd
broad, then A can be measured without disturbing B if �2 is

locally changeable to �1. Along with this, if the pair is also
not mutually nondisturbing, then it is weakly nondisturbing.

Proof. If �2 is locally changeable to �1 then there exist
two channels �1, �2 ∈ Cd such that

�1 = (�1 ⊗ �2) ◦ �2. (64)

Since A is broadcastable by �1, for all ρ ∈ S (H) and for all
x ∈ X

Tr[ρA(x)] = Tr[�1(ρ)A(x) ⊗ I]

= Tr[(�1 ⊗ �2) ◦ �2(ρ)A(x) ⊗ I]

= Tr{�2(ρ)�∗
1 [A(x)] ⊗ �∗

2 (I)}
= Tr{�2(ρ)�∗

1 [A(x)] ⊗ I)}. (65)

Since B is broadcast by �2, all ρ ∈ S (H) and for all y ∈ Y

Tr[ρB(y)] = Tr[�2(ρ)I ⊗ B(y)]. (66)

Choosing A′ = {A′(x)} = {�∗
1 [A(x)]} and from Eqs. (65)

and (66) and Proposition 8 we get that the pair (A, B) is a
nondisturbing pair. Hence, the theorem is proved.

From Theorem 5 we immediately get our next proposition.
Proposition 9 (broadcasting and mutual nondisturbance).

If A ∈ Od
X is broadcastable by the broadcasting channel

�1 ∈ Cd
broad and B ∈ Od

Y is broadcastable by the broadcasting
channel �2 ∈ Cd

broad, then A and B are at least mutually
nondisturbing if �2 and �1 are locally interchangeable.
Along with this, if the pair is also not one-side broadcastable,
then it is weakly mutually nondisturbing.

The results similar to Theorem 5 and Proposition 9 hold if
A and B are one-side broadcastable by �1 and �2 respectively
to two different sides.
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We obtained connections between different layers of classi-
cality. To find out more connections similar to the connections
derived in this subsection, it needs further investigation.

IV. CONCLUSION

We have studied the physical and geometric properties
of different layers of classicality. We have shown that such
properties of different layers of classicality have differences as
well as similarities. In particular, we have shown that (i) none
of the layers of classicality respect transitivity property, (ii) the
concept like degree of broadcasting similar to degree of
compatibility does not exist, (iii) there exist informationally
incomplete POVMs that are not individually broadcastable,
(iv) a set of broadcasting channels can be obtained through
concatenation of broadcasting and nondisturbing channels,
(v) unlike compatibility, other layers of classicality are not
convex, in general. Finally, we have obtained connections
among different layers of classicality. All of our results are
valid for all finite dimensions except Propostion 7. It is not
known whether Proposition 7 is valid for the dimensions more
than 2.

This work opens up several avenues of research on the
compatibility of POVMs and the other layers of classicality.

First, it is not known whether the set of all broadcasting
channels that broadcast a particular observable has the greatest
or the lowest element. Second, we do not know which layers
are open or closed among the layers of classicality, except for
compatibility. Third, we do not know whether the set of all
nondisturbing pairs of observables and the set of all mutually
nondisturbing pairs of observables are nonconvex in higher
dimensions. It will be also interesting to construct witnesses
and resource theory for the different layers. Fourth, till now
we do not have a full set of connections among different layers
of classicality and also do not have the full set of mathematical
properties. Fifth, it is possible to generalize at least some of
our results for a set of n observables with n > 2.

An important avenue for future research is to find out how
some of these layers of classicality provide advantages over
other layers of classicality in several information-theoretic
tasks.
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