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Unconventional quantum correlations of light emitted by a single atom in free space
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We present an approach to engineer the photon correlations emerging from the interference between an input
field and the field scattered by a single atom in free space. Nominally, the inefficient atom-light coupling causes
the quantum correlations to be dominated by the input field alone. To overcome this issue, we propose the use
of separate pump and probe beams, where the former increases the atomic emission to be comparable to the
probe. Examining the second-order correlation function g(2)(τ ) of the total field in the probe direction, we find
that the addition of the pump formally plays the same role as increasing the coupling efficiency, even though the
physical atom-light coupling efficiency remains unchanged. We show that one can tune the correlation function
g(2)(0) from zero (perfect antibunching) to infinite (extreme bunching) by a proper choice of pump amplitude.
We further elucidate the origin of these correlations in terms of the transient atomic state following the detection
of a photon, and show that these correlations can be observed under realistic conditions.
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I. INTRODUCTION

Despite its apparent simplicity, the interference between an
optical field incident on a single atom and the field scattered
by such a quantum nonlinear element gives rise to a wealth
of phenomena. For example, it can produce strong bunch-
ing or antibunching of the reradiated fields [1–3], or yield
a “quantum aperture” for light with a rich spatial structure
of quantum photon correlations [3]. It can also give rise to
nontrivial stimulated emission statistics at the quantum level
[4], induce multiphoton bound states in scattering [5,6], or
produce photon-number-dependent propagation delays [7]. To
realize the majority of these effects, however, it is necessary to
achieve highly efficient interactions between individual pho-
tons and the atom, such that the incident light and rescattered
fields become comparable in strength, leading to a large inter-
ference.

Unfortunately, the single photon-atom interaction effi-
ciency is intrinsically weak in free space. For a single incident
photon focused to an area A and with a wavelength λ reso-
nant with the transition of a two-level atom, the interaction
efficiency scales ∼λ2/A [3]. However, the diffraction limit
(A � λ2) and subtleties associated with tight focusing [8,9]
constrain this interaction probability to be about ∼10% in
current experiments [10–12]. For such low coupling efficien-
cies, the total field is instead dominated by the (classical)
input field. Thus far, the only routes towards unity coupling
efficiency have involved either high-finesse cavities [13,14]
or waveguides with strong-field confinement [15,16].

In this work, we present an approach to observe and manip-
ulate quantum interference effects between an incoming field
and a single free-space atom, even in the low coupling regime.

*daniel.goncalves@icfo.es

The key idea is to use two separate pump and probe fields
propagating in spatial modes that only significantly overlap at
the atomic position (Fig. 1) [17]. Then, the total transmitted
light collected in the probe direction consists of the input field
and the quantum rescattered field, which contains contribu-
tions from both pump and probe beams. By tuning the pump
strength, the total scattered field can become comparable to
the probe amplitude, allowing for rich correlations to emerge.
In particular, we show that, as far as the transmitted inten-
sity and the second-order field correlation function g(2)(τ ),
the addition of the pump formally plays the same role as
increasing the coupling efficiency, even though the physical
efficiency of probe photons interacting with the atom remains
the same. This can be used to tune between fully antibunched
[g(2)(0) → 0] and extremely bunched [g(2)(0) → ∞] second-
order correlation functions of the total field. We also provide
an interpretation of the physical origin of these correlations
from the atomic state perspective. Finally, we also present
some considerations to observe these effects under realistic
experimental conditions.

II. THEORETICAL MODEL

Generally, our goal will be to calculate the spatiotemporal
properties and correlations of a quantum field, as it propagates
and interacts with an atom as in Fig. 1, for which we briefly
present our theoretical formalism here. First, we consider the
dynamics of an ideal, two-level atom with ground state |g〉
and excited state |e〉 driven by a resonant input field with Rabi
frequency � representing the combination of classical probe
and pump input beams. The time evolution of the quantum
atomic state ρ̂ obeys the master equation

˙̂ρ = − i

h̄
[Ĥ, ρ̂] + �0

2
(2σ̂ geρ̂σ̂ eg − σ̂ eeρ̂ − ρ̂σ̂ ee), (1)
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FIG. 1. Conceptual scheme of the proposed technique. Two co-
herent, continuous beams (pump and probe) illuminate resonantly a
single atom in a “Maltese cross” configuration. Along the transmitted
direction of the probe beam, the total field consists of the coherent
sum of the incident probe field (small blue arrow) and the quantum
field rescattered by the atom, which contains contributions from
both the probe and pump beams (small and large yellow arrows,
respectively). A sufficiently large pump beam allows the rescattered
field to be comparable to the incident probe in intensity, despite a
low collection efficiency η of emitted photons in the transmitted
direction. This enables strong quantum correlations to emerge in the
collected field.

where �0 is the free-space spontaneous emission rate and
σ̂ ab = |a〉〈b| are atomic operators with {a, b} ∈ {e, g}. The
Hamiltonian Ĥ from Eq. (1) contains the interaction term
between the atom and a resonant, quantum driving field. Ex-
plicitly, it takes the form Ĥ = −h̄(�σ̂ eg + H.c.) in the laser’s
rotating frame. Whereas the spontaneous emission term of
Eq. (1) implicitly encodes the loss of atomic excitation in
the form of radiated photons, the explicit spatiotemporal
properties of this rescattered field can be found through the
input-output relation [18,19]

Êout(r) = Êin(r) + μ0ω
2
geG0(r, ra, ωge) · dge σ̂ ge, (2)

where Êin(r) is the input field operator and ra the position
of the atom. The quantity dge is the dipole matrix ele-
ment associated to the transition |g〉 ↔ |e〉 with frequency
ωge and is connected to �0 through the relation �0 =
|dge|2ω3

ge/(3π h̄ε0c3) [20]. G0(r, ra, ωge) is the Green’s func-
tion in free space, which encodes the field emitted by a
pointlike dipole source and satisfies the electromagnetic wave
equation [21][

(∇ × ∇×) − ω2
ge

c2
1

]
G0(r, r′, ωge) = δ(r − r′)1. (3)

Its explicit form is given by

G0(r, r′, ωge) = eik0R

4πR

[(
1 + i

k0R
− 1

k2
0R2

)
1

−
(

1 + 3i

k0R
− 3

k2
0R2

)
R ⊗ R

R2

]
, (4)

where R = |r − r′| and k0 = ωge/c. The tensor nature of the
Green’s function accounts for the vectorial nature of both the
dipole source orientation and the emitted field. Equation (2)

states that the total field can be decomposed into an incident
field and a field rescattered by the atom, an idea well known
in classical optics. Importantly, however, such a relation also
holds true as an operator equation. In particular, it enables
the quantum correlations of the output field Êout(r) to be
calculated in terms of the input field and atomic state [the
latter being encoded in the solution to Eq. (1)].

Although Eq. (2) is formally true, measuring the fields at a
single point r is not typical from an experimental perspective.
One commonly used detection modality consists of collect-
ing the transmitted light through the atom with an optical
imaging system, which projects the total field into a certain
spatial mode. To provide a specific example, in Fig. 1, the
probe field might consist of a focused Gaussian beam, while
in the transmitted direction, light is collected back into the
same Gaussian mode. Assuming that the input and detection
spatial mode Edet(r) are the same, one can project the operator
Êout(r) from Eq. (2) into this preferred mode to obtain (see the
Appendix) [22]

Êdet = Êin,det + i
√

η�0 σ̂ ge, (5)

where Êin,det is the input field in the detection mode. Here,
we have rescaled the field operators such that 〈Ê†

detÊdet〉 rep-
resents the total number of photons per unit time. According
to Eq. (5), the total field Êdet is the coherent sum of the input
field and the field rescattered by the atom, which allows for
interference phenomena to emerge. The second term in Eq. (5)
only accounts for the fraction of atomic emission captured by
the detector, as the atom continues to spontaneously emit light
into all directions (not only the specific mode we measure),
yielding the atomic relaxation in Eq. (1). As discussed in the
Appendix, the validity of Eq. (5) requires that the local phase
of the detection mode at the atomic location is gauged away
into the definition of σ̂ ge itself. From a practical perspective,
this is equivalent to enforcing that the Rabi frequency associ-
ated with the detection mode is always chosen to be real and
positive. The projection of the scattered field into the detection
mode is encoded in a single parameter, η, which physically
describes the collection efficiency of a single emitted photon
into this mode. By time-reversal symmetry, it also provides
the interaction efficiency between the atom and an incoming
resonant photon [23,24]. In both cases, η is a purely geometric
quantity that only depends on the overlap between a specific
mode and the dipole radiation pattern, and is thus independent
from the strength of the fields.

The formal procedure to obtain η given some detection
mode is described in the Appendix. As an example, let us con-
sider a Gaussian beam of waist w0 polarized in the direction
of the dipole matrix element. The spatial dependence of said
Gaussian mode is given by [20]

E (ρ, ζ ) = E0
w0

w(ζ )
e−ρ2/w(ζ )2

e−i[k0ζ+�(ζ ,ρ)] (6)

in the paraxial approximation. Here, ρ is the radial distance
from the center axis of the beam and ζ is the coordinate
along the direction of propagation. By conveniently choosing
the atomic position to coincide with the focal point, we find
the well-known result η ≈ 3λ2/8π2w2

0 (see the Appendix)
[3]. One could go beyond the paraxial approximation to ac-
count for different corrections, such as the distortion of the
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polarization due to tight focusing of the beams [9] or details
related to the focusing lens [8]. However, for small values of
η, i.e., low focusing, the paraxial approximation agrees very
well with full vector solutions [25]. In any case, our results
below will be given in terms of η to be as general as possible,
and thus are independent of such considerations.

III. PUMP-PROBE SCHEME

Having introduced a rather general formalism to calculate
the properties of the quantum field, we now apply it specifi-
cally to the pump-probe scenario introduced earlier. As a first
step, we explore how the pump modifies the transmission of
light in the probe mode.

A. Transmission in the collection direction

Following the discussion from Sec. II, our strategy will be
to first obtain the atomic state driven by the total field [Eq. (1)]
and use it to construct field correlations according to Eq. (5).
Although the single-atom density matrix can be readily solved
in general, here we focus on the weak driving regime where
|�| � �0, which already contains the interesting physics. In
this limit, to lowest order, the steady-state solution of Eq. (1)
is ρ̂eg ≈ 2i�/�0 for the atomic coherence and ρ̂ee ≈ |ρ̂eg|2 for
the excited population. Their specific values depend on the
Rabi frequency of the total field driving the atom, which is
the admixture of the pump and the probe contributions, � =
�pump + �probe. As previously discussed, by convention and
for Eq. (5) to be valid, we impose �probe > 0 to be real and
positive, while allowing �pump = |�pump|eiφ to be complex.

Once the atomic state is known, we calculate the transmis-
sion of light in the probe mode. We assume that the pump
beam is in a completely orthogonal mode to the probe, such
that its contribution to the detected field in Eq. (5) only comes
via the atomic scattered field. We define the transmission coef-
ficient T as the ratio between intensities seen in the detection
mode and the probe input, i.e., T = 〈Ê†

detÊdet〉/〈Ê†
in,detÊin,det〉.

It can be shown that, for normally ordered correlation func-
tions and coherent state inputs, the input field operator Êin,det

in Eq. (4) can be replaced by the square root of its corre-
sponding coherent state photon flux

√
�p [26], according to

our normalization for the operators. Substituting Eq. (5) into
the definition for the transmission coefficient, we find

T = 1 − 2
√

η�0
Im{ρ̂eg}√

�p
+ η�0

ρ̂ee

�p
, (7)

which explicitly depends on the atomic coherence and pop-
ulation in the excited state, for which we substitute the
aforementioned values in the weak driving regime. The re-
sulting expression contains both �probe and the probe photon
flux �p, which are related through η�p = |�probe|2/�0 (see
the Appendix). With this, it is straightforward to show that

T = |1 − 2�|2, (8)

where � = η�/|�probe| is an effectively enhanced cou-
pling parameter that depends on three quantities: the ratio
|�pump|/|�probe|, the pump-probe relative phase φ, and the
free-space atom-photon coupling efficiency η.
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FIG. 2. Transmission spectra of a weak, coherent probe beam as
a function of the laser detuning � from the atomic resonance, in units
of the free-space decay rate �0. (a) Transmission spectrum with-
out the pump. We take a realistic coupling efficiency of η = 0.05,
consistent with typical experimental values. (b) Same as (a) but now
with the additional pump beam, with pump-probe relative phase
φ = 0. The pump amplitude is tuned to obtain different effective
coupling efficiencies � = {η, 0.25, 0.5, 1.1} (colors from light to
dark blue). We note a total extinction of the resonant transmission
for � = 0.5 and transmission higher than 100% for � > 1.

We now discuss the implications of Eq. (8) starting with
the case without the pump beam, where the transmission
takes the well-known value T = |1 − 2η|2 for single-atom
resonant transmission [2,12,27]. For small η, light is only
weakly attenuated as the atom scatters a small fraction of
the incoming photons into arbitrary directions. As a result,
interference between incident and scattered fields in Eq. (5)
is necessarily destructive and T � 1. In the hypothetical (but
unrealistic [9]) case that the probe mode could be made to
cover an entire half-space of solid angle, and moreover match
the atomic dipole emission pattern, the coupling efficiency
would reach its theoretical maximum value η = 1/2 for the
setup in Fig. 1, yielding perfect attenuation T = 0. Inter-
estingly, by introducing the pump field, the parameter � is
equivalent to a renormalized coupling efficiency for φ = 0. In
particular, even if η is small, one can tune �pump to obtain
� = 1/2, achieving the previous perfect attenuation T = 0.
Note that T = 0 does not imply that the total field of Eq. (2)
generally has zero intensity in the forward direction. Rather,
the zero transmission into the detection (probe) mode only
implies that the total field is orthogonal to the Gaussian de-
tection mode, while the total field may continue to transport
energy in the forward direction, e.g., in higher-order Laguerre-
Gauss modes. This is allowed because the atomic radiation
pattern is only partially matched to the Gaussian mode. We
emphasize that the calculations throughout this work have
been performed in the weak driving regime, and thus this
attenuation is a purely linear optical phenomenon. Physically,
since the pump and probe have the same frequency, they
are indistinguishable from the standpoint of the atom, which
only sees their combined amplitude. The total driving field
then induces an oscillating atomic dipole moment dge〈σ̂ ge〉,
whose radiated field into the detection mode perfectly and
destructively interferes with the input probe beam (Fig. 1).
Of course, the addition of a sufficiently strong pump can also
increase the total number of photons in the collection direction
to exceed the number of input probe photons, causing T > 1.

The ability to tune the effectively enhanced coupling �

is illustrated in Fig. 2, where we plot the spectrum for
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the transmission coefficient T , first for no pump (�pump =
0) and a coupling efficiency η = 0.05 similar to the one
measured in the single-atom experiment of Ref. [12]
[Fig. 2(a)]. We have generalized the above calculations to
allow for a nonzero detuning � = ωp − ωge between the in-
coming probe and atomic resonance frequency ωge [Eq. (8) is
obtained for � = 0]. A minimum transmittance on resonance
of T ≈ 80% is predicted, as seen in experiments. In Fig. 2(b),
we then increase � to {0.25, 0.5, 1.1} by increasing the pump
amplitude. One can observe the complete attenuation of trans-
mission for � = 1/2, and also the bump in transmission T >

1 for values of � > 1.

B. Photon number correlations

Having discussed the effects of the pump beam on the
transmission spectra, we continue with the second-order cor-
relation function g(2)(τ ), which characterizes the relative
likelihood of detecting two photons separated by a time delay
τ and is defined as

g(2)(τ ) = 〈Ê†
det(0)Ê†

det(τ )Êdet(τ )Êdet(0)〉
|〈Ê†

det(0)Êdet(0)〉|2 , (9)

where the denominator can be obtained from Eq. (8) us-
ing 〈Ê†

det(0)Êdet(0)〉 = T �p. The numerator of Eq. (9) is
calculated by moving to the Schrödinger picture, where it
physically describes a process in which, starting from the
steady-state density matrix ρ̂ss, a photon is detected at time
τ = 0, which projects the atom into a new conditional state
ρ̂ ′(0) = Êdetρ̂ssÊ

†
det/Tr(Êdetρ̂ssÊ

†
det ). Note that the annihilation

operator Êdet is the coherent sum of the probe and the scattered
field as represented by the atomic lowering operator. The
resulting interference and detection of a photon gives rise to a
nontrivial state, which in particular is not just ρ̂ ′(0) = |g〉〈g|,
as would be the case if a purely scattered photon was detected.
The numerator of Eq. (9) then corresponds to the intensity
emitted by the system, Tr[Ê†

detÊdetρ̂
′(τ )], as this transient

density matrix evolves in time τ under Eq. (1), eventually
returning back to the steady state. It is straightforward to show
that

g(2)(τ ) = e−�0τ

[∣∣∣∣ 2�

1 − 2�

∣∣∣∣
2

− e�0τ/2

]2

, (10)

within the weak driving approximation. The form of Eq. (10)
has been previously derived for the case of no pump field
(� = η) [2,12,28], and remains unchanged in the presence
of a pump, with the coupling efficiency replaced by � =
η�/|�probe|. That is, from the standpoint of transmission
[Eq. (8)] and also second-order correlation function [Eq. (10)],
the addition of a pump beam plays exactly the same role as
achieving a higher coupling efficiency, within the weak driv-
ing regime and assuming mutually orthogonal pump-probe
spatial modes. This constitutes the central result of this work.

Next, we study the g(2)(τ ) within different regimes of
interest using Eq. (10). For no pump beam (� = η) and
low coupling efficiency of η = 0.05, the statistics of the to-
tal detected field are naturally dominated by the one from
the coherent input probe, such that g(2)(τ ) ≈ 1 [Fig. 3(a)].
On the other hand, by tuning the pump such that � =
1/2, one can achieve extreme bunching at zero time delay,

0 5 10
Delay 0

0

5

10

g(
2)
(
)

0 5 10
Delay 0

0.98

0.99

1

g(
2)
(
)

0 5 10
Delay 0

0

0.5

1

g(
2)
(
)

0 5 10
Delay 0

0

0.5

1

1.5

g(
2)
(
)

(a) (b)

(c)(c) (d)

FIG. 3. Second-order correlation function g(2)(τ ) of the transmit-
ted field for a weak, coherent probe beam, as a function of time delay
τ scaled by the free-space decay rate �0. In (a) the pump amplitude
is set to zero and we take an experimentally realistic atom-light cou-
pling efficiency of η = 0.05. Due to the low coupling efficiency, the
transmitted field mostly consists of the incident coherent field, and
thus g(2)(τ ) ≈ 1 at all times τ . In (b) and (c), a nonzero pump yields
an effectively enhanced coupling efficiency of � = 0.3 and � = 0.4
(respectively), giving rise to nontrivial photon correlations. In (d) we
consider the case of � = 10, where a pump beam much stronger
than the probe causes the total field correlations to be dominated by
the atomic scattered field, which is trivially antibunched. Light blue
regions correspond to notably antibunched correlations (g(2) < 0.5),
while light yellow is used to indicate large photon bunching (g(2) >

10).

g(2)(0) → ∞. More precisely, an exact calculation shows that
g(2)(0) ∝ (�0/�)4, as the Rabi frequency is reduced. The
large bunching coincides with the suppression of the linear
transmission T = 0 in the denominator of Eq. (9). Physically,
with the complete cancellation of the linear response, the
remaining photons detected in g(2) are those arising from non-
linear processes, where the atom acts as a frequency mixer and
the rescattered photons propagate past the atom in a correlated
fashion [29,30]. Furthermore, in cases where strong bunching
is observed at τ = 0, a perfect antibunching g(2)(τ ) = 0 of
the photon correlations can be found at later delay times τA =
(4/�0) ln|2�/(2� − 1)| [Figs. 3(b) and 3(c)]. The expression
for τA holds for the parameter regime 1/4 � � < 1/2 and,
in particular, for � = 1/4, one finds perfect antibunching at
τA = 0. As we discuss later, this can be understood from
the transient atomic state following the detection of the first
photon, which happens to instantaneously emit light with an
amplitude and phase that cancels the probe beam, before re-
laxing back to equilibrium. Finally, for large values of � � 1,
the scattered field dominates over the probe, giving rise to
the characteristic antibunching of the pure atomic emission
[Fig. 3(d)]. Note that � can be arbitrarily large without sat-
urating the atomic response. In particular, for a given weak
pump, one can always find a sufficiently weaker probe such
that � is large and the weak driving approximation is still
valid.
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FIG. 4. Second-order correlation function g(2)(0) as a function
of the coupling efficiency η, the pump-probe relative phase φ, and
the amplitude ratio |�pump/�probe|. In (a) we fix η = 0.05 and plot
g(2)(0) as a function of |�pump/�probe| and φ. In (b) we show again
the values of g(2)(0) but now fixing φ = 0 and exploring different η.
Additionally, we show the beam waist w0 associated to the values
of η assuming a spatial Gaussian detection mode within the parax-
ial approximation. As extreme values of bunching are possible, we
represent all the values g(2)(0) � 10 by the same color.

Overall, a proper tuning of the pump field allows one to
switch from completely antibunched to extremely bunched
photon correlations. While thus far we considered a fixed
relative pump-probe phase φ = 0, we can alternatively plot
the g(2)(0) for varying amplitude |�pump| and relative phase,
as shown in Fig. 4(a) (for a fixed η = 0.05). It can be seen that
the strong antibunching and bunching features exist within a
reasonable tolerance of the relative phases and amplitudes.
Likewise, in Fig. 4(b), we consider a fixed relative phase
φ = 0 and vary η. For reference, we also provide the beam
waist w0 corresponding to this coupling efficiency, assuming
a paraxial, Gaussian detection mode (where η = 3λ2/8π2w2

0).

IV. CONNECTION WITH THE TRANSIENT
ATOMIC STATE

In this section, we present an alternative description for the
origin of the second-order correlations, now from the atomic
state perspective. As shown in the previous section, starting
from the steady state, the detection of a photon at t = 0
projects the atom into the new conditional state ρ̂ ′(0) (which
in general is different from the ground state). With this, g(2)(τ )
is then related to the average intensity of the conditioned total
transmitted field since g(2)(τ ) = 〈Ê†

detÊdet〉ρ̂ ′(τ )/T , with ρ̂ ′(τ )
obeying Eq. (1). It is helpful to explicitly write out the solution
to the transient atomic coherence,

ρ̂ ′
ge(τ ) = −2i�

�0

(
1 + 2�

1 − 2�
e−�0τ/2

)
, (11)

where we again neglect terms of order �2. The population
in the excited state can be obtained through ρ̂ ′

ee(t ) = |ρ̂ ′
ge(t )|2

within the weak driving approximation. From Eq. (11), the
atomic coherence of the new state right after the detection of
a photon reads ρ̂ ′

ge(0) = −2i�/[�0(1 − 2�)]. Then, for no
pump and small η, one can see that ρ̂ ′

ge(0) ≈ ρ̂ss
ge as the first

photon measurement barely affects the atom. For � = 1/4
(perfect antibunching), the atom is projected into a conditional
state whose scattered field cancels the input probe amplitude
at τ = 0, as can be confirmed by substituting the conditional
atomic coherence ρ̂ ′

ge(0) into Eq. (5). If � > 1/4, the condi-

tional total field has the opposite sign at τ = 0 compared to
its steady-state value. Thus, as it relaxes back to equilibrium,
g(2)(τ ) becomes antibunched at τ = τA, when the conditional
total field switches sign and passes through zero.

Exactly at � = 1/2, T = 0 for the system in its steady state
[see Eq. (8)], as the scattered field completely cancels the in-
put probe at the linear optics level. This implies that individual
photons cannot be transmitted through the atom. Instead, the
only transmission events for weak driving consist of photon
pairs, which are frequency mixed by the atom. The individual
photons of this pair have no well-defined phase, but are fre-
quency correlated with each other [29,30]. This lack of phase
is reflected in the conditional atomic density matrix. In this
case, the linear approximation ρ̂ ′

ge(0) = −2i�/[�0(1 − 2�)]
breaks down, and an exact calculation reveals that the atom is
completely mixed, with ρ̂ ′

ee(0) = ρ̂ ′
gg(0) = 1/2.

V. EXPERIMENTAL CONSIDERATIONS

Thus far, our analysis has been restricted to idealized
conditions, such as a two-level atomic structure and fixed
efficiency η (indicating the absence of atomic motion within
the beam). Here, we analyze more carefully the roles of un-
certainty in atomic position and realistic atomic hyperfine
structure. First, we address the effect of randomness in the
atomic position, which will necessarily arise from the finite
trap extent, nonzero motional temperature, and even quan-
tum zero-point fluctuations. To be specific, we consider that
both the probe and pump fields are focused Gaussian beams,
with spatial profile described by Eq. (6). In particular, we
take the propagation directions of the probe and pump beams
to be along y and z, respectively. We will then calculate
and plot the transmission T and second-order correlation
function g(2)(0) for displacements of the atomic position in
the two-dimensional y-z plane, so that, in Eq. (6), (ρ, ζ ) is
(−z, y) for the probe and (y, z) for the pump [see Fig. 5(c)].
Formally, all previous results remain the same. However,
the effective coupling parameter �(rd ) and probe coupling
efficiency η(rd ) now become position-dependent, according
to �(rd ) = η(rd )�(rd )/|�probe(rd )| and η(rd ) = 3|Edet(rd ) ·
d|2/2k2

0w
2
0|Edet(0)|2.

Figure 5 shows the spatially dependent transmission T (rd )
and second-order correlation function g(2)(t = 0; rd ), i.e.,
Eqs. (8) and (10), respectively, for different displacements
rd = (�y,�z) of the atomic position within the y-z plane.
For concreteness, we choose the beam waists of the pump
and probe beams to be w0 ≈ 0.9λ such that the coupling
efficiency at the origin η(0) = 0.05. We further choose the
pump beam intensity so that the effective coupling parameter
�(0) = 1/2 at the origin. Then, placing the atom at the origin,
the linear transmission of the probe is completely suppressed
and g(2)(0; 0) is maximal (divergent). In Figs. 5(b) and 5(c),
it can be seen that all interesting features in transmission and
g(2)(0; rd ) gradually become washed out for atomic displace-
ments greater than the beam waist �y,�z � w0. Additionally,
a much finer interference fringe pattern appears. This arises
from the spatially varying relative phases between the pump
and the probe fields. Near the origin, constant relative phases
and maximum relative phase gradients are obtained along
the lines �z = �y and �z = −�y, respectively. Defining the
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FIG. 5. (a) Schematic representation of an atom displaced by an
amount rd = (�y, �z) from the origin, which also constitutes the
common focal point of the probe and pump beams propagating along
y and z, respectively. (b),(c) Transmission T (rd ) (b) and second-order
correlation function g(2)(0; rd ) (c) for different atomic displacements
rd = (�y, �z). The amplitude, beam waists, and phase of the pump
and probe fields are chosen such that η(0) = 0.05 and �(0) = 1/2
at the focal point. Central regions of (b) and (c) are also shown
magnified.

rotated coordinate ζ− = (y − z)/
√

2 along the direction of the
phase gradient, it can be seen [Figs. 5(b) and 5(c)] that a
position uncertainty of �ζ− ≈ λ/10 allows one to observe
strong suppression of the transmission and large bunching
in the entire spatial region. In the case of the D2 line of
87Rb, such localization could be achieved, for instance, with
a realistic [17,31] trap frequency of ω = 2π × 100 kHz and a
motional temperature of T = 20 μK.

Having discussed the external degrees of freedom, next we
refine our model for the atomic internal levels. Instead of a sin-
gle ground and excited state, most atoms have a richer internal
structure involving several hyperfine levels. In particular, we
consider the case when the dynamics of a multilevel atom
can effectively be restricted to a single ground- and excited-
state manifold with total hyperfine angular momenta Fg and
Fe = Fg + 1, respectively. By choosing Fg to be the maximum
allowed value, excitation to Fe necessarily results in emission
back to Fg, such that the atomic population always remains
in this manifold. We illustrate this in Fig. 6(a) in the case
of the D2 line of 87Rb, where Fg = 2 and Fe = 3. The label
for the atomic states is completed with the projection of their
angular momentum along the z axis, such that we use |Fg, mg〉
for the ground states and |Fe, me〉 for the excited ones, with
me(g) ∈ [−Fe(g), Fe(g)]. The ground and excited states couple
following the selection rule me = mg + q, where q = {0,±1}
denotes the angular momentum of the photon involved in the
transition [32]. We define ε̂q as the polarization of said photon
expressed in the complex spherical basis

ε̂q =
⎧⎨
⎩

q = 1, σ+= − (x + iy)/
√

2,

q = 0, σ0= z,
q = −1, σ−=(x − iy)/

√
2.

(12)

FIG. 6. (a) Energy levels of the maximum angular momentum
ground- and excited-state manifolds of 87Rb, with Fg = 2 and Fe = 3,
respectively. Each manifold has 2Fg(e) + 1 hyper-fine levels labeled
by mg(e) ∈ [−Fg(e), Fg(e)]. The dashed lines indicate the allowed decay
paths of the excited states, while the blue lines represent the transi-
tions driven by a strong pump field with σ+ polarization. For clarity,
the transitions of the x-polarized probe field are not indicated here. In
the steady state, the strong pump nearly perfectly restricts the popu-
lation within the cycling transition involving states |Fe = 3, me = 3〉
and |Fg = 2, mg = 2〉 (golden line). (b) Illustration of the most rele-
vant states. The strong pump restricts most of the population to the
cycling transition |Fe = 3, me = 3〉 → |Fg = 2, mg = 2〉, as stated
earlier. The weak probe (red) has polarization x = (σ− − σ+)/

√
2,

while the pump field (blue) is σ+ polarized. Under the conditions
relevant to our scheme, the amount of population driven out of the
two-level subspace, to |Fe = 3, me = 1〉, is negligible. (c) Transmis-
sion T (blue) and second-order correlation function g(2)(0) (green)
for a multilevel atom as a function of the pump-probe amplitude
ratio. The solid lines are obtained from Eqs. (8) and (10) after substi-
tuting the coupling parameter η̄ and taking into account the suggested
pump and probe polarizations. The dashed lines are obtained with a
numerical simulation considering all the hyperfine levels in (a). In
the simulations, we take η̄ = 0.025.

To recover the results derived in the ideal two-level picture,
we propose the polarization scheme illustrated in Fig. 6(b),
where the pump and probe fields have polarizations σ+ and
x = (σ− − σ+)/

√
2, respectively. In this configuration, the

strong pump field (which is needed anyway for our proposed
scheme) also serves to optically pump the atomic population
into the cycling transition |Fe, Fe〉 ↔ |Fg, Fg〉 [see Figs. 6(a)
and 6(b)]. In other words, the atomic Hilbert space is effec-
tively restricted to a two-level subspace, which enables one to
directly apply our previous two-level analysis to an excellent
approximation. The degree to which the system retains a two-
level nature can be estimated by the ratio of populations in the
|Fe, Fe〉 and |Fe, Fe − 2〉 excited states, with the latter being
weakly populated due to the partial σ− polarization compo-
nent from the probe beam. This ratio is roughly ∼|CFg

Fe
(ET ·

σ+)|2/|CFg

Fe−2(ET · σ−)|2. Here, ET = Epump + Eprobe is the to-
tal field driving the atom and C

mg
me are the Clebsch-Gordan

coefficients associated to the transitions |Fg, mg〉 ↔ |Fe, me〉.
For 87Rb, the squared ratio of the Clebsch-Gordan coefficient
is |C2

3 |2/|C2
1 |2 = 15 [33], and, furthermore, the pump intensity

needs to be approximately ∼102 larger than the probe to
achieve the desired phenomena. The amount of population
not residing in the restricted two-level subspace can then
realistically be on the level of ∼10−3.
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Since the multilevel atom now behaves as an effective two-
level system, the transmission T and second-order correlation
function g(2)(0) can be approximated by Eqs. (8) and (10),
respectively. However, because of the probe polarization, the
coupling efficiency η̄ and probe Rabi frequency �probe are
reduced by a factor of two and

√
2, respectively, compared to

the ideal case of a probe beam polarized along the two-level
transition (Sec. III). In Fig. 6(c), we plot T and g(2)(0) from
Eqs. (8) and (10) as a function of the ratio |�pump|/|�probe|,
after substituting η̄. For this calculation, we assume that the
atom is fixed at the origin and we take the beam waists such
that the coupling efficiency is η̄ = 0.025 (or η = 0.05 for an
ideal probe polarization). To quantitatively verify the validity
of this simplified, effective two-level model, we have also per-
formed a density-matrix calculation using the whole Fg = 2
and Fe = 3 manifolds of the D2 line in 87Rb. The master
equation of the system [Eq. (1)] and the total field input-output
equations [Eqs. (2) and (5)] can be readily generalized to the
multilevel case following Refs. [32,34], which we do not ex-
plicitly write here to avoid a significant increase in notational
complexity. It can be seen that the full master equation and
the modified effective two-level description produce excellent
agreement, thus justifying the latter model.

VI. CONCLUSIONS

We have described a scheme in which a single, laser-
illuminated atom can produce strongly nonclassical photon
correlations in the total field. Considering two laser beams
that meet at the atom, we find scenarios in which the de-
tected atomic contribution can easily be made comparable
in strength to the detected laser contribution. We show that
the effect of the second beam, which acts as a pump, is in
some scenarios formally equivalent to an increased atom-light
coupling efficiency. This allows one to achieve correlations as-
sociated with coupling efficiencies beyond what is practically
possible, and even beyond what is physically possible, i.e.,
above 100%. We expect that our method can be immediately
applied to observe interesting quantum behavior in existing
experiments where single atoms are coupled to tightly focused
beams. It would also be interesting in the future to explore
more broadly whether other single-atom, quantum scattering
phenomena can be effectively “amplified” by similar tech-
niques.
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APPENDIX: DERIVATION OF THE
MODE-PROJECTED OPERATORS

Here we derive the projection of Êout(r), Eq. (5) in the
main text, starting from Eq. (2), following closely the ar-
guments in Ref. [22]. The quantized electromagnetic field
can be expressed as a combination of plane-wave operators
of the form Êk,ε̂k, j (r) = E0(k)uk,ε̂k, j (r)âk,ε̂k, j , labeled by the
wave-vector k and the orthonormal polarizations ε̂k, j with j =
{1, 2} and k · ε̂k, j = 0. Here, we define uk,ε̂k, j (r) = e−ik·r ε̂k, j

as the plane-wave spatial mode, âk,ε̂k, j is the associated photon
annihilation operator, and E0(k) is a normalization factor,
whose specific form is not relevant here. For a fixed |k| = k0,
one can alternatively construct a field operator Êα (r) based on
any superposition of plane waves of the same |k|,

Êα (r) = E0(k0)âαEα (r), (A1)

where the associated spatial mode reads

Eα (r) = k2
0

(2π )2

∑
j=1,2

∫ 2π

0
dφ

∫ π

0
sin θ dθ cα,θ,φ, j

× e−ik0(x sin θ cos φ+y sin θ sin φ+z cos θ )ε̂k0, j . (A2)

Here, we have utilized the spherical coordinates kx =
k0 sin θ cos φ, ky = k0 sin θ sin φ, kz = k0 cos θ , and dVk =
k2

0 sin θ dθ dφ to express the linear combination as an integral
over solid angle. The scalar product (mode overlap) between
two arbitrary spatial modes Eα (r) and Eβ (r) is defined as the
two-dimensional integral over any fixed plane z = const,

〈Eα|Eβ〉 ≡
∫∫

z=const
d2r E∗

α (r) · Eβ (r), (A3)

where the plane-wave modes fulfill the orthonormality rela-
tion

〈uk0,φ′,θ ′, j′ |uk0,φ,θ, j〉 = (2π )2δ j j′

k2
0sinθ

δ(θ − θ ′)δ(φ − φ′). (A4)

The spatial mode overlap from Eq. (A3) can be related to
the electromagnetic field power P defined as the integral of
the z component of the Poynting vector in the plane z = 0.
Explicitly,

Pα = 2ε0c
∫

z=0
d2r E∗

α (r) · Eα (r) = 2ε0c 〈Eα|Eα〉. (A5)

From here, the field operators can be conveniently renor-
malized such that expectation values of the form 〈Ê†

α Êα〉
are in units of photons per unit time. To do so, we start
by considering a field Êdet(r) in the spatial detection mode
Edet(r). Multiplying the fields by the normalization con-
stant N , we impose that 〈NÊ†

det NÊdet 〉 ≡ Pdet/h̄ωge yielding
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N = √
2ε0/h̄k0Fdet, where Fdet = |〈Edet|Edet〉|. This normal-

ization will be implicit for the rest of this section.
Next, we apply the previous ideas to evaluate the projection

of the atomic scattered field operator Êsc(r) [second term
in Eq. (2)] into any desired detection mode Edet(r), using
Eq. (A2) and Eq. (A3), by writing both the Green’s function
and detection mode in a plane-wave expansion [22]. This
gives, within the previous normalization,

〈Edet|Êsc〉 = idge

√
k0

2h̄ε0Fdet
E∗

det(ra) · d σ̂ ge, (A6)

where E∗
det(ra) is the conjugate of the amplitude of the spa-

tial detection mode evaluated at the atomic position ra. We
note that, although the mode function Edet(r) can be ar-
bitrarily rescaled by a global coefficient, this freedom is
eliminated in Eq. (A6) through the normalization constant
Fdet, thus making the result of the overlap clearly defined.
In the case that Edet(ra) ∝ eiθ (ra ) contains a complex phase
at the atomic location, we will remove this phase by apply-
ing a unitary transformation Û = eiθ (ra )/2σ̂ gg + e−iθ (ra )/2σ̂ ee

to all atomic operators. At the level of the transformed
Hamiltonian Ĥ → Û ĤÛ †, this has the effect of making the
Rabi frequency associated with the detection mode real and
positive.

Now, we will show that Eq. (A6) can be written in an even
simpler way, involving only the collection efficiency η defined
as the probability that a photon emitted by the atom is mea-
sured in the detection mode. For convenience, we consider
the scenario where the atom starts in the excited state and it is
not driven by any field, such that ρ̂ee(t ) = e−�0t and a single
photon is emitted as t → ∞. The explicit value of η is then
given by the time integral of the overlap from Eq. (A6),

η =
∫ ∞

0
dt |〈Edet|Êsc(t )〉|2 = 3π

2k2
0

|Edet(ra) · d|2
Fdet

. (A7)

For a detection mode that matches exactly the radiation pat-
tern of a point dipole over 4π (all solid angle), one obtains
a maximum of η = 1. We notice that Eq. (A7) allows us to
establish the relation

√
�p = |�probe|/

√
η�0 from the main

text, as �p = 2ε0c|〈Ep|Ep〉|/h̄ωge for the probe beam in the
detection mode. Substituting the collection efficiency η from
Eq. (A7) into Eq. (A6), we arrive at Eq. (5) in the main text.
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