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Entanglement preparation and nonreciprocal excitation evolution
in giant atoms by controllable dissipation and coupling
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We investigate the dynamics of a giant atom (or atoms) in a waveguide QED scenario, where the atom
couples to the coupled resonator waveguide via two sites. For a single-giant-atom setup, we find that the atomic
dissipation rate can be adjusted by tuning its size. For the two-giant-atom system, the waveguide will induce
the controllable individual and collective dissipation as well as effective interatom coupling. As a result, we can
realize theoretically the robust entangled state preparation and nonreciprocal excitation evolution. We hope our
study can be applied in quantum information processing based on a photonic and acoustic waveguide setup.
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I. INTRODUCTION

The giant atom, which can be realized by superconducting
qubits (artificial atoms), is a new component in the field of
quantum optics [1]. Since the size of the giant atom can
be comparable to the wavelength of light, the traditional
dipole approximation breaks down in the light-atom interac-
tion. As a result, the giant atom is nonlocally coupled to the
waveguide via multiple connecting points and the interfer-
ence effect between these points will dramatically modulate
the collective behavior of the atoms. In this community, the
mutual control between the photon and atom has been attract-
ing increasing attention both theoretically and experimentally
[2–11].

The coupled resonator waveguide (CRW) has been widely
studied in a photon-based quantum network [12]. On the
one hand, it supplies a channel for the traveling photon with
tunable group velocity, and the single- [13,14] or few-photon
scattering [15,16] has been used to construct the photon
device, such as a quantum transistor [17], router [18], and
frequency converter [19]. On the other hand, due to its exotic
energy band, the CRW provides a structured environment for
the atom to form the atom-photon dressed state and control
the dissipation or decoherence of the atom [20]. Meanwhile,
as a data bus, the CRW can also induce the effective coupling
between remote atoms [21–23] and is therefore widely used
in quantum information processing.

In the giant-atom–CRW coupled system, we have shown
that the size of the giant atom can serve as a sensitive con-
troller to regulate the single-photon transmission and photonic
bound state in the waveguide [24]. The further question is
how to control the dissipation and indirect interaction between
the giant atoms by their own size when being subject to the
environment which consists of the CRW.

To tackle this issue, we first consider a system consisting
of a single giant atom, which couples to a CRW via two
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distant sites. Within the Born-Markovian approximation, we
show that the dissipation rate of the giant atom can be equal
to or smaller than that of a conventional small atom or even
surprisingly achieves zero, depending on the size of the atom.
It is then generalized to the system consisting of two giant
atoms. We find that the collective decoherence and effective
interaction are accompanied by an individual dissipation and
all of these processes are finely controllable. By making all of
the waveguide-induced dissipation zero, we propose a robust
scheme to realize the entanglement preparation. More inter-
estingly, when only the collective dissipation is suppressed,
we can realize a parity-time (PT )-like symmetry and nonre-
ciprocal excitation evolution for a fixed giant atom. However,
the excitation transmission between them is reciprocal, which
is dramatically different from that in the quantum system with
time-reversal symmetry broken [25–28].

The rest of the paper is organized as follows. In Sec. II
we present the single-giant-atom model and discuss its con-
trollable dissipation due to the coupling to the waveguide. In
Sec. III we generalize to the two-atom setup and investigate
the applications in entangled state preparation and nonre-
ciprocal excitation evolution. In Sec. IV we provide a short
summary and discussion.

II. CONTROLLABLE DISSIPATION
FOR A SINGLE GIANT ATOM

As sketched in Fig. 1(a), the system we consider consists
of an array of an Nc → ∞ coupled-resonator waveguide and
a two-level system. Here we consider a giant-atom scenario,
where the two-level system couples to the waveguide via two
sites. In what follows we refer to such a two-level system as a
giant atom. The atom-waveguide coupled system considered
can be realized in superconducting quantum circuits, which is
demonstrated in Fig. 1(b). Here the LC circuits (LCCs) serve
as the resonators and the transmon qubit serves as the two-
level system, that is, the giant atom. The capacities couple the
resonators as well as the resonators and the transmon. The

2469-9926/2021/104(1)/013720(8) 013720-1 ©2021 American Physical Society

https://orcid.org/0000-0002-5609-1058
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.013720&domain=pdf&date_stamp=2021-07-21
https://doi.org/10.1103/PhysRevA.104.013720


HONGWEI YU, ZHIHAI WANG, AND JIN-HUI WU PHYSICAL REVIEW A 104, 013720 (2021)

FIG. 1. (a) Sketch of the waveguide QED setup, where a giant
atom is coupled to a photonic lattice via the n1th and n2th sites.
(b) Effective circuit diagram of the device.

Hamiltonian of the system is written as H = Hc + HI , where
(h̄ = 1)

Hc = ωc

∑
j

a†
j a j − ξ

∑
j

(a†
j+1a j + a†

j a j+1), (1)

HI = �|e〉〈e| + g
[(

a†
n1

+ a†
n2

)
σ− + H.c.

]
. (2)

Here ωc is the frequency of the resonators, a j is the bosonic
annihilation operator on site j, ξ is the hopping strength be-
tween the nearest resonators, σ± are the usual Pauli operators
of the giant atom, and � is the transition frequency of the giant
atom between the ground state |g〉 and the excited state |e〉. We
have considered that the giant atom couples to the waveguide
via the n1th and n2th resonators with coupling strength g.
We have performed the rotating-wave approximation in the
interresonator and atom-waveguide coupling Hamiltonian.

Introducing the Fourier transformation aj =∑
k akeik j/

√
Nc, the Hamiltonian of the waveguide Hc

can be written in a diagonal form Hc = ∑
k ωka†

kak , where
the dispersion relation is given by ωk = ωc − 2ξ cos k. The
waveguide therefore supports a single-photon continual band
which is centered at ωc with a width of 4ξ . In this sense, the
waveguide supplies a structured environment for the giant
atom. When the giant atom is outside the waveguide in the
frequency domain, the dissipation will be suppressed due to
the dispersive coupling to the waveguide. In contrast, when
the transition frequency of the giant atom is located inside the
waveguide and far away from the upper and lower edges of
the band, the initial excited atom will undergo an exponential
decay in population. In this sense, the frequency of the giant
atom can be used to control its dissipation dynamics via the
trivial resonant mechanism. However, we will show here that
the interference effect induced by the intrinsic character of the
giant atom makes its size another controller, even when the
atomic frequency is inside the energy band of the waveguide,
for example, when the giant atom is resonant with the bare
resonator in the waveguide.

To obtain the master equation for the density matrix of
the giant atom, we work in the momentum representation
and interaction picture. Then the atom-waveguide coupling

Hamiltonian is expressed as [20]

HI (t ) = g
2∑

i=1

[σ+E (ni, t )ei�t + σ−E†(ni, t )e−i�t ], (3)

where E (ni, t ) = 1√
Nc

∑
k (e−iωkt eikni ak ). With the Born-

Markovian approximation, the master equation is formally
written as [29]

ρ̇(t ) = −
∫ ∞

0
dτ Trc{[HI (t ), [HI (t − τ ), ρc ⊗ ρ(t )]]}. (4)

In what follows we will consider that the giant atom is reso-
nant with the bare resonator, that is, � = ωc. In this situation,
after some direct calculations as shown in Appendix A, the
master equation is finally simplified as

ρ̇ = −i�[|e〉〈e|, ρ] + (A + A∗)σ−ρσ+ − Aσ+σ−ρ

− A∗ρσ+σ−, (5)

where

A = g2

ξ
(1 + eiπN/2), (6)

with N = |n1 − n2| characterizing the size of the giant atom,
that is, the distance between the two-atom–CRW connecting
points.

This shows that the dissipation of the giant atom can
be tuned on demand by changing its size. For example,
when N = 4m + 2 with integral m = 0, 1, 2, . . ., the dissi-
pation rate is A = 0, which implies that the atom will not
undergo dissipation and decoherence. Therefore, we can re-
alize a decoherence protection via a giant-atom setup even
when it is located inside the waveguide in energy and this
protection is not possible in a traditional small-atom scheme,
which interacts with only one site. On the other hand, when
N = 4(m + 1), the dissipation rate of the giant atom becomes
J = 2g2/ξ , which is the same as that in the small-atom setup
when the atom-waveguide coupling strength is 2g. Finally,
when the size of the giant atom satisfies N = 2m + 1, A =
g2(1 ± i)/ξ becomes a complex number, with the real part
representing the decay rate J0 = J/2 and the imaginary part
δ0 = ±J0 representing the atom-waveguide coupling inducing
frequency shift. In the typical waveguide system consisting of
superconducting circuits, where the interresonator coupling
strength can be achieved by ξ/2π = 100 MHz [30], it is
easy to work in the parameter regime of δ0 	 |2ξ |, where
the modified frequency of the giant atom is still inside the
single-photon band of the waveguide and we can still describe
the dynamics of the atom via the master equation (5).

The underlying physics in the above discussion is that the
waveguide serves as a structured environment, which induces
the dissipation of the giant atom. As a result, the evolution of
the excited-state population yields

Pe(t ) = |〈|e〉〈e|〉| = e−2 Re(A)t (7)

for the initial excited giant atom.
For N = 3 and 4 where Re(A) 
= 0, we plot the curve of

Pe(t ) by neglecting the small atomic intrinsic dissipation in
Fig. 2(a). Here the solid lines are the approximate results ob-
tained by Eq. (7) and the dashed lines are the numerical results
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FIG. 2. Evolution of the excited-state population Pe(t ). The
dashed and solid lines in (a) are the approximate analytic re-
sults in Eq. (7) and the exact numerical results, respectively (see
Appendix B). The parameters are � = ωc, Nc = 4000, κ/ξ = 6 ×
10−3, and (a) and (b) g/ξ = 0.05 and (c) g/ξ = 0.15. The intrinsic
decay rate for the giant atom is taken as γ1/ξ = 3 × 10−4 in (b) and
(c).

obtained by including a small loss rate κ for each resonator
(see Appendix B for a detailed description of the numerical
calculations). The results in Fig. 2(a) show good agreement
between the approximate and the numerical treatment for the
atom-waveguide coupling strength g = 0.05ξ . Furthermore,
Eq. (7) implies that Pe(t ) = e−2g2t/ξ for N = 3 and Pe(t ) =
e−4g2t/ξ for N = 4. Therefore, the atom for N = 4 decays

faster than that for N = 3, which is also clearly demonstrated
in Fig. 2(a). Our further simulations (not shown here) show
that Eq. (7) works well even when the atom-waveguide cou-
pling strength achieves g/ξ = 0.2, below which the numerical
result is nearly independent of N .

On the other hand, for N = 2, 6, 10, . . ., the Markovian
master equation (5) with (6) tells us the atom will not decay by
coupling to the waveguide channel. Thus, the main dissipation
comes from intrinsic decay, which is induced by the coupling
to the surrounding environment except the waveguide. Then
the population yields Pe(t ) = e−γ1t , where γ1 is the intrinsic
decay rate. It is therefore necessary to investigate when the
high-order non-Markovian effects will dominate the intrinsic
decay. To this end, we show the full numerical dynamics for
the above N in Figs. 2(b) and 2(c) as well as the dynamics with
only the intrinsic dissipation for comparison. Here the dashed
lines are the results obtained by omitting the intrinsic decay,
that is, the giant atom does not couple to the other environ-
ments except for the waveguide. The solid lines are the results
obtained by considering only the intrinsic decay, but without
that induced by the waveguide channel. It is obvious that the
numerical dynamics (dashed lines) depends dramatically on
N and the excited-state population decay becomes faster as
N increases. For a weak atom-waveguide coupling strength
(g/ξ = 0.05) in Fig. 2(b), the decay induced by the waveguide
channel for N = 2, 6, 10 is dominated by the intrinsic decay
on a long timescale with γ1/ξ = 3 × 10−4, that is, the dashed
lines are above the solid lines. By increasing g while fixing
γ1, we show in Fig. 2(c) that the waveguide-channel-induced
decay will surpass intrinsic decay even for N = 2, which is
the smallest value allowed by A = 0, for g/ξ = 0.15. In this
situation, the high-order or non-Markovian effect becomes
more important than the error source intrinsic to the giant
atom and the dashed lines are below the solid lines.

III. TWO-GIANT-ATOM SETUP

To explore the potential application of the giant atom in
the quantum information processing, we generalize the above
discussion to the setup consisting of two giant atoms. Then
the total Hamiltonian for the system is

H2 = Hc + �(|e〉1〈e| + |e〉2〈e|) + g(a†
n1

σ−
1 + a†

n2
σ−

1 + H.c.)

+ g(a†
m1

σ−
2 + a†

m2
σ−

2 + H.c.), (8)

which implies that the first atom couples to the waveguide at
the n1th and n2th sites, while the second atom couples to the
waveguide at the m1th and m2th sites. Similar to the treatment
for the single giant atom, we can obtain the master equation
as

ρ̇ = −i[H, ρ] +
2∑

i, j=1

�i j

2
(2σ−

j ρσ+
i − σ+

i σ−
j ρ − ρσ+

i σ−
j ),

(9)

where the coherent coupling between the two atoms is de-
scribed by the Hamiltonian

H =
2∑

i=1

(
� + Uii

2

)
|e〉i〈e| + U12

2
(σ+

1 σ−
2 + H.c.). (10)
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In the above equations, we have defined Ui j := 2 Im(Ai j ) and
�i j := 2 Re(Ai j ); in addition,

A11 = g2

ξ
(1 + ei(π/2)|n1−n2|), (11a)

A22 = g2

ξ
(1 + ei(π/2)|m1−m2|), (11b)

A12 = A21 = g2

2ξ

2∑
i, j=1

ei(π/2)|ni−mj |. (11c)

This shows that the individual dissipation rate (�11 and �22)
and frequency shift (U11 and U22) of the two giant atoms are
determined by the size of each giant atom. Furthermore, the
waveguide can also serve as a data bus to induce the interac-
tion and collective dissipation between two giant atoms, for
which the rates are given by U12 and �12, respectively. They
are determined by both the size of the two giant atoms and
their relative locations. Taking advantage of the tunable nature
of Ai j by the formulation of the giant atom, we will show
two applications in quantum information processing in what
follows.

A. Entangled state preparation

As the first application, we discuss the entangled state
preparation. We can appropriately choose n1, n2, m1, and m2

such that �11 = �22 = U11 = U22 = �12 = 0 and U12 = 2J =
4g2/ξ are satisfied. In this situation, the waveguide will only
induce the interaction between the two giant atoms. As a
result, the master equation in the rotating frame defined by
the free term of atoms is reduced to ρ̇ = −i[H0, ρ], with

H0 = J (σ+
1 σ−

2 + σ+
2 σ−

1 ). (12)

The initial state is prepared as |ψ (0)〉 = |e; g〉, which repre-
sents that the first atom is in the excited state while the second
one is in the ground state. At an arbitrary moment t , the wave
function of two-giant-atom system becomes

|ψ〉 = cos(Jt )|e; g〉 − i sin(Jt )|g; e〉. (13)

Choosing the evolution time t = π/(4J ), we can achieve the
maximum entangled state |ψ〉 = (|e; g〉 − i|g; e〉)/

√
2.

In the above entangled state preparation scheme, we have
only considered the effect of the waveguide. In fact, the atoms
also inevitably interact with the external environment. In such
a case, the dynamics of the system is governed by the master
equation

ρ̇ = −i[H0, ρ] + γ1

2

2∑
i=1

(2σ−
i ρσ+

i − σ+
i σ−

i ρ − ρσ+
i σ−

i )

+ γ2

2

(
σ z

1ρσ z
1 + σ z

2ρσ z
2 − 2ρ

)
. (14)

Here the first line represents the unitary evolution mediated
by the waveguide and the dissipation or decoherence process
with rate γ1, which is the same as that in the preceding section.
The second line represents the pure dephasing process with
rate γ2.

In superconducting circuits, the LCCs serve as the res-
onators and the transmon serves as the giant atom. In
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FIG. 3. Fidelity of entangled state preparation: (a) fidelity based
on the master equation and (b) and (c) fidelity as a function of γ1 (γ2)
for different γ2 (γ1), where γ1 and γ2 are given in units of J .

recent experiments, the coupling strength between the near-
est LCCs can be achieved by ξ/2π = 100 MHz [30]
and the light-matter interaction has been achieved in the
ultrastrong-coupling and deep strong-coupling regimes in the
superconducting circuit QED system [31,32]. The transition
frequency of the giant atom and the eigenfrequency of the
LCCs are both on the order of several gigahertz and the
atom-waveguide coupling strength easily achieves the order of
megahertz, so the waveguide inducing an atom-atom coupling
strength J = 2g2/ξ is on the order of megahertz. Moreover,
the intrinsic decoherence time of the superconducting qubit
(for example, the transmon) is achieved by T1 = 20 μs and
T ∗

2 = 10 μs [33] or even longer [34], which implies that
γ1/2π � 8 kHz and γ2/2π � 16 kHz, that is, γ1/J and γ2/J
are on the order of 10−3–10−2. In Fig. 3(a) we plot the fidelity
as a function of γ1 and γ2 based on the above master equation.
It shows that, even for γ1 = 0.1J and γ2 = 0.2J , the fidelity is
still higher than 92%.

In our consideration, the effect of the external environment
is much smaller than that induced by the waveguide, that
is, (γ1, γ2) 	 J . Up to the first order of γ1/J and γ2/J , the
fidelity for the entangled state preparation is approximated as

F =
√

〈ψ |ρ
(

t = π

4J

)
|ψ〉 ≈ 1 − π

8J
γ1 − π

16J
γ2. (15)

This shows that the coupling to the external environment is
harmful for the entangled state preparation in our system
and the decoherence process dominates the pure dephasing
process in decreasing the fidelity. In Figs. 3(b) and 3(c) we
compare the fidelity obtained from the master equation (solid
lines) and that from the approximated expression (dashed
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lines) in Eq. (15). The fidelity shows a linear dependence on
γ1 as well as γ2, and the agreement between them implies the
validity of Eq. (15).

In the above discussion we have chosen the fixed geometry
configuration for the giant atoms, that is, the fixed size for
each giant atom and the distance between them. In such a
situation, the waveguide only induces the effective interac-
tion between the two giant atoms, but without dissipation.
One may also investigate the steady-state entanglement by
including a continuous weak driving laser such that the en-
tanglement will show an oscillatory dependence on the size
of the giant atoms and the distance between them. The under-
lying physics is similar to that of the two-small-atom setup
[21]. However, such driven-dissipation induced entanglement
is beyond the discussion in this work.

B. Nonreciprocal excitation evolution

Next, let us discuss the application in demonstrating the
PT -like symmetry physics and nonreciprocal excitation evo-
lution. In contrast to the entangled state preparation scheme,
here we set U11 = U22 = �12 = 0 and U12 = 2J , that is, the
two atoms effectively interact with each other and undergo
individual dissipations. The dynamics is then governed by the
master equation (in the rotating frame)

ρ̇ = −i[H0, ρ] + �11

2
(2σ−

1 ρσ+
1 − σ+

1 σ−
1 ρ − ρσ+

1 σ−
1 )

+�22

2
(2σ−

2 ρσ+
2 − σ+

2 σ−
2 ρ − ρσ+

2 σ−
2 ), (16)

where the Hamiltonian H0 is given in Eq. (12).
We now consider that only one atom is excited initially and

explore the evolution of the excited probability at the same
atom. When the initial excitation is at the first atom, that is,
|ψ1(0)〉 = |e; g〉, the excited probability is obtained as

P1(t ) = Tr[|e〉1〈e|ρ1(t )]

= e−δt/2

2K
[(�2 − 8J2)M+(t ) +

√
K�M−(t ) − 16J2],

(17)

where ρ1(t ) is the density matrix at time t , δ = �11 + �22,
� = �11 − �22, and

K = �2 − 16J2, (18)

M±(t ) = e−√
Kt/2 ± e

√
Kt/2. (19)

It immediately follows that the excited probability decays
with time due to the dissipation of the two atoms. However,
the decay behavior is also dependent on the competition
between the dissipation and coupling. For the situation of
|�| < 4J , P1(t ) will undergo a small oscillation during the
decay, while the oscillation will disappear as |�| > 4J; the
different behaviors can be observed clearly in Fig. 4(a), where
the dynamical evolution of the population is plotted for dif-
ferent �11 and �22. The change from the oscillation decay to
nonoscillation decay can be physically explained by the PT -
like symmetry phase transition. To understand it intuitively,
we describe the system by the non-Hermitian Hamiltonian
phenomenologically by neglecting the jump term in the mas-
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FIG. 4. (a) Trapping population P1(t ). (b) Demonstration of non-
reciprocal excitation trapping. The parameters for (b) are �11 = 0
and �22 = 2J .

ter equation [Eq. (16)]. In this sense, the effective Hamiltonian
which governs the dynamics can be written as

Heff = J (σ+
1 σ−

2 + σ+
2 σ−

1 ) − i�11

2
|e〉1〈e| − i�22

2
|e〉2〈e|. (20)

In the single-excitation subspace, the eigenfrequencies are

ω± = −i
δ

4
±

√−K

4
. (21)

This shows that the system will undergo a PT -like phase tran-
sition as K moves from a negative value to a positive value.
In the PT -like symmetry phase with K < 0 (|�| < 4J), the
imaginary parts of ω± coincide but the real parts differ, with
M+ ∼ cos(αt/2) and M− ∼ sin(αt/2) for α = √|K|. As a
result, the dynamics shows an oscillation. In the PT -like
symmetry-broken phase with K > 0 (|�| > 4J), the real parts
of ω± disappear and the imaginary parts differ, with M+ ∼
cosh(αt/2) and M− ∼ sinh(αt/2), corresponding to a pure
decay dynamical behavior.

We would like to point that, in our scheme, the atom is
resonant with the resonators in the waveguide; therefore, the
size of each giant atom and the relative location between
them make it possible to control the effective interaction and
collective or individual dissipation. In the experiments based
on a superconducting qubit, the nonlocal coupling between
the giant atom and the transmission line can be realized by
the capacitance, and two or even more coupling points have
been achieved so far [10,11]. On the other hand, the previous
calculations show that �11 and �22 can only be taken as 0 or
2J , so the nonzero � only yields |�| = 2J < 4J . That is, we
can only work in the PT -like symmetry phase and observe
the oscillation decay in our system. Meanwhile, we have used
the non-Hermitian Hamiltonian Heff to analyze PT -like phase
transition physics from the viewpoint of the eigenfrequency.
As for the dynamics, the non-Hermitian Hamiltonian only
works well in the single-excitation subspace, which implies
that the jump term in the master equation will not have an ef-
fect. However, this is not the case for multiple excitations. For
example, when the initial state is prepared as |ψ (0)〉 = |e; e〉,
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the correct dynamics behavior can be given by the master
equation but not Heff , because the trace preservation is broken
by the non-Hermitian terms.

We now consider that the second atom is initially excited
with |ψ2(0)〉 = |g; e〉. Then the excitation probability for the
same atom becomes

P2(t ) = Tr[|e〉2〈e|ρ2(t )]

= e−δt/2

2K2
[(�2 − 8J2)M+(t ) −

√
K�M−(t ) − 16J2],

(22)

where ρ2(t ) is the density matrix.
We plot the comparison between P1(t ) and P2(t ) in

Fig. 4(b) for the parameters used in our giant-atom scheme. It
clearly shows a nonreciprocal evolution in that P1(t ) 
= P2(t ).
This fact can also be observed by the different signs before
the second term of the second lines in Eqs. (17) and (22). This
implies that the different decay rates of the two atoms lead to
nonreciprocal excitation evolution.

Interestingly, and dramatically different from the unidi-
rectional transmission in most of the PT -symmetric system
[27,28], here we observe a reciprocal excitation transmission,
that is,

T = Tr[|e〉2〈e|ρ1(t )] = Tr[|e〉1〈e|ρ2(t )]

= 4J2

K
e−δt/2(eKt/2 + e−Kt/2 − 2). (23)

It is obvious that the excitation transmission rate T depends
on K via �2, but the excitation populations P1(t ) and P2(t )
depend not only on �2, but also �. As a result, the latter shows
nonreciprocal behavior but the former is reciprocal.

IV. CONCLUSION

We have investigated the controllable dissipation of a gi-
ant atom and its potential applications in a waveguide QED
system. We showed that the decay rate of the giant atom can
be well controlled by changing its size, that is, the distance
between two points connecting with the waveguide. With
state-of-the-art experimental feasibility, we proposed a robust
entangled state preparation scheme. More interestingly, for
a two-giant-atom setup, we found nonreciprocal excitation

evolution for fixed atoms but reciprocal transmission between
them.

We should point out that the controllable dissipation and
effective interaction via tuning the size of the giant atom
have also been studied in the waveguide with a linear disper-
sion relation [4,21]. In contrast, here we focused on a lattice
waveguide model with a nonlinear dispersion relation [35].
The intersite coupling ξ , which modulates the group velocity
of the photons in the waveguide (vg = ∂ωk/∂k = 2ξ sin k),
is also a sensitive parameter to control the dissipation and
interaction [see Eqs. (6) and (11)]. Meanwhile, for our model,
the waveguide forms an energy band and the non-Markovian
effect will dominant when the atom is resonant with the edge
of waveguide band in energy [36,37], which is not possible in
the linear waveguide. The other origin of the non-Markovian
effect comes from the time delay of the photon transmission
[3,6] between the two connecting points, which may appear
in the waveguide with both a linear and a nonlinear dispersion
relation. However, these non-Markovian effects are beyond
the scope of the present work.

In addition, the realization of the giant atom is limited
not only in the photonic waveguide, but also in the acoustic
system [38–41] and has been proposed theoretically in a cold-
atom system [9]. Therefore, we hope that our investigation
has potential application in quantum information processing
in these physical systems.
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APPENDIX A: MASTER EQUATION

In the main text we gave the final master equation for a
single-giant-atom setup as Eq. (5); in this Appendix we will
give some detailed derivations. Under the Markov approxima-
tion and working in the interaction picture, the formal master
equation for a quantum open system reads [29]

ρ̇(t ) = −
∫ ∞

0
dτ Trc{[HI (t ), [HI (t − τ ), ρc ⊗ ρ(t )]]}. (A1)

In our system, the interaction Hamiltonian is given in Eq. (3)
and the master equation yields

ρ̇(t ) = −
∫ ∞

0
dτ Trc{[HI (t ), [HI (t − τ ), ρc ⊗ ρ(t )]]}

= −
∫ ∞

0
dτ Trc[HI (t )HI (t − τ )ρc ⊗ ρ(t )] +

∫ ∞

0
dτ Trc[HI (t )ρc ⊗ ρ(t )HI (t − τ )]

+
∫ ∞

0
dτ Trc[HI (t − τ )ρc ⊗ ρ(t )HI (t )] −

∫ ∞

0
dτ Trc[ρc ⊗ ρ(t )HI (t − τ )HI (t )]. (A2)

Since we are working at zero temperature, the CRW is in the vacuum state initially. Therefore, we will have
Trc[E†(ni, t )E (n j, t − τ )ρc] = 0 and Eq. (A2) becomes (returning to the Schrödinger picture)

ρ̇ = −i�[|e〉〈e|, ρ] + (A + A∗)σ−ρσ+ − Aσ+σ−ρ − A∗ρσ+σ−, (A3)
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where [20]

A = g2
∫ ∞

0
dτ ei�τ Trc

×
(∑

i, j

E (ni, t )E+(n j, t − τ )ρc

)

= g2
∑
i, j

∫ ∞

0
dτ ei�τ Tr[E (ni, t )E+(n j, t − τ )ρc]

= g2
∑
i, j

∫ ∞

0
dτ

ei�τ

Nc

× Tr

(∑
k,k′

e−iωkt eikni akeiωk′ (t−τ )e−ik′n j a†
k′ρc

)

= g2
∑
i, j

∫ ∞

0
dτ

1

Nc

∑
k

(e−i(ωk−�)τ e−ik(n j−ni ) )

= g2
∑
i, j

∫ ∞

0
dτ

1

Nc

Nc−1∑
n=0

e−i�cτ

× e−2π i(n j−ni )n/Nc e2iξ cos(2π/nNc )τ

= g2
∑
i, j

∫ ∞

0
dτ

e−i�cτ

Nc

Nc−1∑
n=0

e−2π i(n j−ni )n/Nc

×
∞∑

m=−∞
imJm(2ξτ )ei2πnm/Nc

= g2
∑
i, j

∫ ∞

0
dτ e−i�cτ i|ni−n j |J|ni−n j |(2ξτ )

= g2
∑
i, j

1

2ξ
eiπ |ni−n j |/2

= g2

ξ
(1 + eiπ |n1−n2|/2). (A4)

In the above calculations, we have considered that the giant
atom is resonant with the bare cavity (�c := ωc − � = 0) and
we used the formula∫ ∞

0
dτ Jm(aτ ) = 1

|a| . (A5)

APPENDIX B: NUMERICAL SIMULATION
OF A SINGLE-GIANT-ATOM SYSTEM

In this Appendix we will outline the procedure of the nu-
merical simulation for the dissipation of a single giant atom. In
the main text we derived analytically the master equation un-
der the Markov approximation by considering the waveguide
as a structured environment. The underlying physics behind
the Markov approximation is that the environment loses its
memory and remains in its initial state during the time evolu-
tion. Physically speaking, an excited giant atom will decay to
the ground state with the emission of a photon. The emitted
photon will then travel along the waveguide. To guarantee
the validity of the Markov approximation, the emitted photon
must leave the atomic regime and never return. To fulfill such
a condition, we choose the atomic frequency to be resonant
with the bare resonator such that the group velocity of the
emitted photon achieves its maximum value, which makes the
photon quickly leave the atom-waveguide connecting points.
Meanwhile, we try to enlarge the length of the waveguide and
induce a small decay for each resonator to stop the emitted
photon from returning to the atomic regime. In the numerical
simulation, we adopt a non-Hermitian manner by phenomeno-
logically expressing the Hamiltonian as

H = (ωc − iκ )
∑

j

a†
j a j − ξ

∑
j

(a†
j a j+1 + H.c.)

+�|e〉〈e| + g
[(

a†
n1

+ a†
n2

)
σ− + H.c.

]
, (B1)

where κ is the decay rate for each resonator in the waveguide.
Then the excited amplitude of the giant atom is obtained
numerically as

P(t ) = |〈ψ (0)|e−iHt |ψ (0)〉|2, (B2)

where |ψ (0)〉 = |e, G〉 represents that the giant atom is in the
excited state while all of the resonators in the waveguide are in
their vacuum states. In the numerical simulation (see Fig. 2),
we have chosen the length of the waveguide as Nc = 4000
and the decay rate for each resonator as κ/ξ = 6 × 10−3.
We have also checked that for Nc = 3000–5000 and κ/ξ =
(3 × 10−3)–(1.2 × 10−2), the numerical results are nearly un-
changed.
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