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Insights into Fano-type resonance fluorescence from quantum-dot–metal-nanoparticle molecules
with a squeezed vacuum
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Metal nanoparticles (MNPs) possess the intriguing property of enhancing and limiting the energy of light
field to subwavelength scale, which have attracted extensive attention in physics, chemistry, and life sciences.
Meanwhile, squeezing is a general concept in quantum optics and can be used to engineer matter interaction
scenarios. Here we consider an artificial hybrid molecule consisting of an MNP interacting with a semiconductor
quantum dot (QD), combining with a squeezed reservoir. Using experimentally realistic parameters for the
MNP-QD architecture and fully quantized approach, we theoretically explore the optical properties of the
hybrid molecule driven by an external applied laser field via probing the resonance fluorescence in the steady
state. We show that in this way it is possible to engineer and control the peak-value magnitudes, widths, and
shapes of the resonance fluorescence spectra under the influence of the squeezed vacuum field without the
need for the strong-coupling condition between the MNP and QD. In particular, some interesting phenomena
in rich spectral responses are attainable, including Fano-type resonance fluorescence, fluorescence quenching,
fluorescence narrowing, and fluorescence enhancement. Our method can also be extended to other nanoscopic
structures, such as a plasmonic nanoantenna coupled to an emitter. These unique line shapes obtained here may
have potential applications in developing quantum plasmonic platforms and sensitive on-chip devices such as
optical switches and sensors.

DOI: 10.1103/PhysRevA.104.013717

I. INTRODUCTION

It is known that localized surface plasmons (LSPs) are
nonpropagating excitations generated by the coupling of
conduction electrons in metal nanoparticles (MNPs) of sub-
wavelength size with an external electromagnetic field, which
are essentially owing to the collective oscillation of the free
electrons in the conduction band near the Fermi level on
the metal surface driven by the electromagnetic field [1–3].
When the frequency of the external electromagnetic field is
close to that of the LSP, the localized surface plasmon res-
onance (LSPR) occurs, which results in the energy of the
electromagnetic field being effectively transformed into the
electromechanical energy of the free electrons on the metal
surface [4]. Thus, an intriguing capability of the MNP is their
ability to concentrate and enhance the optical energy at the
nanoscale by supporting the LSPRs [5,6].

The concentration of light energy at nanometer level en-
ables the MNP to be used as metallic nanocavity [7], which
not only overcomes the limitation of half wavelength size
of the conventional optical cavities, but also facilitates the
scalable and ultracompact integration compared with the
conventional micron-size optical cavities [8–10]. Strong elec-
tromagnetic field localization and enhancement in or near
the MNP can significantly enhance the light-matter inter-
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action, which has received extensive attention in a wide
range of contexts [11–15], such as surface-enhanced Raman
scattering [16,17], biosensing [18], and so on. The inter-
action between the MNP and gain system is an important
subject in photonics and optoelectronics [19]. Among them,
the hybridization of the MNP and solid-state quantum dot
(QD) can produce fascinating optical phenomena, including
Fano resonance [2,20–22], tailored resonance fluorescence
or spontaneous emission [23–31], controlled quantum statis-
tics [2,8,32–37], cloaking [38], squeezing [39,40], and so
on, which has many potential applications in ultrasensitive
spectroscopy [41], nanoscale refractive index sensing [8],
biosensors [18,42], spaser [7,43,44], optoelectronic nanode-
vices [45–49], single photon source [50–56], and other fields.
The hybrid MNP-QD system not only has the high openness
that can cause the interference between the scattered fields of
the MNP and QD [2,8], but also has the controllability that
can manipulate the optical properties by adjusting their size
and structure [3,57]. Nowadays, the improved nanofabrication
methods can efficiently control the shape of the MNP and the
arrangement of the MNP ensembles, and provide the possi-
bility to flexibly customize specific molecular-MNP coupling
[58,59], which increase the feasibility of experimental imple-
mentation of the hybrid MNP-QD system model.

For the spherical MNP, its electromagnetic characteristics
can be reflected by its angular momentum, i.e., n [29]. When
the dimension of the MNP is assumed to be much smaller
compared to the incident light wavelength λ (rm � λ, with
rm being the MNP radius), the dipole approximation is valid
due to the optical response of the MNP can be determined
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by the dipole mode (n = 1). However, when the QD is too
close to the MNP, the higher modes (n > 1) need to be taken
into account, which leads to rich optical effects, for example,
quantum statistics control [8], strong coupling and quenching
[29], and so on. Similar to the literatures [2,3,9], we study only
the dipole-dipole interaction between the MNP and QD in the
hybrid system, so the situation of occurring multimode effects
should be avoided [60–63]. Besides, in order to ensure that
there is no direct tunneling between the MNP and QD, the QD
must be placed at a distance of more than 2 nm from the MNP
surface (d − rm > 2 nm, with d being the center-to-center
distance between the MNP and QD) [2,9,64]. In the following
discussion, we consider the case where the QD is placed at
a distance greater than 2rm from MNP, which is sufficient to
ignore the high-order multipole and avoid the direct tunneling
effect.

The nonclassical electromagnetic field state–squeezed
state can be produced in many nonlinear optical processes
[65–71], which has a wide range of applications in quantum
information processing, ultrasensitive electronics and quan-
tum metrology [72]. Previously, the interaction between a
squeezed vacuum and atomic systems has been studied widely
[73–75], and many interesting optical phenomena have been
obtained, such as anomalous resonance fluorescence [76],
subnatural linewidth narrowing [74,77], two-photon excita-
tion [78–81], and so on. Since the standard technique for
producing a squeezed vacuum has been available for decades
[81,82], it is feasible to explore the interaction of nonclas-
sical light with matter using existing laboratory techniques.
Among growing interest in employing quantum states of light
in nanoplasmonic applications, several groups [83–85] have
experimentally reported that both surface plasmon polaritons
(SPPs) and LSPs are capable of coherently transducering the
single-mode and multimode squeezed states of light, where
the squeezing loss equivalent to the plasmonic loss can be
modeled by an effective beamsplitter interaction. Even though
the decoherence caused by collisions among millions of elec-
trons that constitute the plasmons, quantum properties through
SPPs and LSPs, for example, the quadrature squeezed vacuum
states [83] and intensity-difference squeezed states [84] of
plasmonic modes, can be basically preserved in the photon-
SPP(LSP)-photon conversion process. To our knowledge, no
further theoretical or experimental work has been done to
investigate the optical properties of hybrid MNP-QD systems
driven by a squeezed vacuum field, which has inspired the
current research.

In this work, we study the optical fluorescence properties
of the hybrid MNP-QD molecule under the influence of a
squeezed vacuum field, focusing on the weak-coupling regime
of MNP-QD. Under the excitation of an external applied field,
the MNP as an open nanocavity can lead to the interference
between the MNP and QD scattered light in the hybrid system.
The previous studies [86–90] have clearly shown that engi-
neering the vacuum fluctuations can be utilized to control the
strength and the range of matter interactions. Consequently,
the key element of our approach is a squeezed vacuum field
that achieves the squeezed-vacuum-enhanced MNP-QD in-
teractions [87,89]. In the absence of the squeezed vacuum
field, the steady-state emission power spectral density (i.e.,
fluorescence spectrum) of the hybrid molecule presents a

monotonic Lorentzian-like profile. Contrarily, in the presence
of the squeezed vacuum field, the generated fluorescence
spectra can exhibit rich and typical characteristics under re-
alistic conditions. In detail, it is found that the introduction
of the squeezed vacuum field can engineer and tailor the
peak-value magnitudes, widths, and shapes of the resonance
fluorescence. In addition, the results also indicate that, by
properly adjusting the system parameters, such as the squeez-
ing parameter, the frequency detuning between the MNP and
QD, the center-to-center distance between the MNP and QD,
the MNP radius, and the polarization direction of the applied
electromagnetic field, we can succeed in catching some inter-
esting phenomena in the emission power spectra, including
Fano-type resonance fluorescence, fluorescence quenching,
fluorescence narrowing, and fluorescence enhancement. We
also assess the feasibility of the scheme using currently avail-
able technology. As an alternative scheme with nanoscale
footprint, this work provides more adjustable parameters (de-
grees of freedom) for us to control the emission power spectra,
which can be expected to find potential applications in on-
chip photonic devices such as optical switches, low-threshold
lasers, and sensitive sensors.

The remainder of the paper is organized as follows: In
Sec. II, starting from describing the physical model of the
hybrid MNP-QD system under consideration, the total Hamil-
tonian of the hybrid system is given. Subsequently, the
quantum master equation of the hybrid MNP-QD system is
yielded. Furthermore, we derive the expression of the total
polarization operator which contains the key information we
need. In Sec. III we briefly demonstrate the experimental
feasibility and the choice of a set of system parameters of
the hybrid MNP-QD molecule. In Sec. IV we analyze and
discuss in detail the dependence of the optical properties of the
hybrid MNP-QD system on the system parameters. Finally,
conclusions are given Sec. V.

II. THEORETICAL MODEL AND BASIC EQUATIONS

As depicted schematically in Fig. 1, we consider a hybrid
molecule composed of a two-level QD and a spherical MNP
with radius rm. The MNP and QD are separated by a center-
to-center distance d and embedded in a homogenous dielectric
medium with permittivity εb. The hybrid molecule is subject
to both an external driving field Edri = E0e−iωd t + c.c. (E0

being the amplitude, ωd being the angular frequency, and c.c.
denoting the complex conjugation) and a broadband squeezed
vacuum Esqu. The polarization of the applied external electric
field is along the axis joining the MNP and QD structure.

The MNP has the excellent optical property that can
support the LSPs, enabling it to enhance and focus optical
fields to the subwavelength ranges [1]. For single-valence
plasmonic metals (such as silver, gold, copper, alkaline met-
als), the skin depth ls of the metals is about 25 nm over
the entire optical region [4]. About small-scale MNP with
rm � ls, the external light field can penetrate the whole
MNP and drive the collective oscillations of electrons, which
enables the MNP to localize the electromagnetic energy
in the form of electromechanical energy at the nanoscale.
For the magnitude of the MNP is much smaller than the
wavelength λ of the incident light (rm � λ) (it is obvious
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FIG. 1. Schematic of the hybrid system composed of a spherical
MNP and a QD embedded in a homogeneous dielectric medium with
relative permittivity εb (vacuum here, εb = 1). Both the MNP and the
two-level QD (with the excited state |e〉 and the ground state |g〉, ωx

being the transition frequency of the QD) are driven by an external
electric field Edri. In order to more clearly describe the polarization
direction of the applied electric field, we define the major axis of
the hybrid MNP-QD system as parallel to the z axis. Besides, the
hybrid system also interacts with a squeezed vacuum Esqu. In the
hybrid MNP-QD system, there is no direct tunneling interaction
between the MNP and QD. The coupling between the LSP in MNP
and the exciton in QD is due to the long-range Coulomb interaction,
which causes the formation of hybrid molecule and promotes energy
transfer [13,21]. The coupling strength between the MNP and QD is
parameterized by g. Other symbols are defined and explained in the
main text.

that the condition rm � λ is automatically satisfied when
rm � ls), the quasistatic approximation is an effective approx-
imation method to solve the interaction between the MNP and
incident light field [91].

The quasistatic approximation allows that the incident light
field is approximately uniform over the entire MNP sphere,
considering only the time dependence of the oscillating elec-
tromagnetic field and ignoring its spatial dependence. In the
quasistatic regime, it is effective to treat the MNP as an ideal
dipole for the reason that the incident field can couple only
to the dipole moment of the MNP but not to higher order
multipoles [2,8]. When considering the hybrid MNP-QD sys-
tem, the dipole approximation is still valid when the distance
between the MNP and QD is far enough. On the other hand,
the QD can be viewed as a pointlike two-level system with
the excited state |e〉 and the ground state |g〉 (see the inset
of Fig. 1). Driven by the external laser, the QD senses the
superposition field which is composed of the external electric
field and the polarized electric field generated by the MNP. At
the same time, the polarized electric field caused by the QD
will also be felt by the MNP, resulting in the self-feedback
formation between these fields in the hybrid MNP-QD system.
In the hybrid system, we use the coupling mechanism of the
dipole-dipole interaction between the LSP in the MNP and
the exciton in the QD to investigate the optical response of the
whole system driven by the external field.

Under the excitation of an external electric field Edri, the
total Hamiltonian of our coupled quantum system in the dipole
and rotating-wave approximations can be written as

Htot = H0 + Hint + Hdri. (1)

The specific meanings of each term in Eq. ( 1) are listed as
follows.

The first term on the right-hand side (RHS) of Eq. (1), as-
sociated with the unperturbed Hamiltonian H0 of the isolated
MNP and QD, can be expressed as

H0 = h̄ωma†a + h̄ωxσ
†σ, (2)

where ωm is the surface plasmon resonance frequency of the
MNP. The spatial dielectric function of the MNP is given by

εm(ω) = ε∞ − ω2
p

ω2+iκω
, resulting in the relation ωm = ωp√

2εb+ε∞
.

Here ωp is the plasma frequency of the metal, ε∞ is the
ultraviolet permittivity of metal, and εb is the relative permit-
tivity of the homogenous dielectric that the hybrid MNP-QD
system is embedded. The corresponding derivation about ωm

is carried out in Appendix A. a† and a are the creation and
annihilation operators for the MNP plasmonic field mode,
satisfying the bosonic commutation relation [a, a†] = 1. To
keep the notation as simple as possible, we removed the hat of
the operator. |e〉 and |g〉 represent the excited and ground states
of the two-level QD. σ † = |e〉〈g| and σ = |g〉〈e| are the dipole
raising and lowering operators of the two-level QD, satisfying
the fermionic anticommutation relation {σ †, σ } = 1. ωx is
the transition frequency of the QD exciton-to-ground states
|e〉 ⇔ |g〉, where the energy of the ground state |g〉 is set as
zero for the sake of simplicity. Also, the zero-point energy for
the free MNP Hamiltonian has been ignored, which is allowed
because it gives only a relative shift and does not modify the
MNP-QD system dynamics under study.

The second term on the RHS of Eq. (1), associated with the
dipole-dipole interaction Hamiltonian Hint between the MNP
and QD, can be written as

Hint = ih̄g(a†σ − aσ †), (3)

where g is the coupling strength between the MNP plasmonic
field mode and the two-level QD, following the relationship
h̄g = με. Here μ is the transition dipole moment of the
two-level QD, which is assumed to be real without loss of
generality. The positive-frequency component of the dipole
response field created by the surface plasmon mode of the
MNP oscillating as e−iωt felt by the QD, E+

m = iεa is due to
the induced polarization of the MNP under the external field.
The derivation of the specific expression of the coefficients g
and ε above is given in Appendix B.

The third term on the RHS of Eq. (1) accounts for the
dipole interaction of the MNP and QD with the external driv-
ing field Edri, yielding

Hdri = −E0μ(σ †e−iωd t + σeiωd t )

− E0(χa†e−iωd t + χ∗aeiωd t ), (4)

where E0 is the amplitude of the external driving field, ωd is
the frequency of the external driving field, and χ is the dipole
moment of the MNP.

In order to eliminate the time dependence in the Hamilto-
nian under the Schrödinger picture, we can convert it into the
interaction picture by applying an unitary manipulation. To do
this, we translate the above total Hamiltonian (1) of the hybrid
MNP-QD system into a rotating reference frame (interaction
picture) with respect to the external driving field frequency
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ωd . For this purpose, the unitary operator is chosen as

U (t ) = e−iωd t (a†a+σ †σ ). (5)

And then, through the unitary transformation formula,
namely,

He f f = U †(t )HtotU (t ) − ih̄U †(t )
∂U (t )

∂t
, (6)

we can finally derive a time-independent effective Hamil-
tonian of the system in the interaction picture after some
algebra, in the form of

He f f = h̄
ma†a + h̄
xσ
†σ + ih̄g(a†σ − aσ †)

− E0μ(σ † + σ ) − E0(χa† + χ∗a), (7)

where the notation 
m = ωm − ωd represents the detuning of
the plasmon resonance frequency ωm of the MNP from the
frequency ωd of the external driving laser. 
x = ωx − ωd =
ωm + 
 − ωd represents the detuning of the exciton reso-
nance frequency ωx of the two-level QD from the frequency
ωd of the external driving laser. Here the notation 
 = ωx −
ωm is the detuning of the exciton resonance frequency ωx of
the two-level QD from the plasmon resonance frequency ωm

of the MNP.
It is pointed out that the above Hamiltonian (1) charac-

terizes a closed quantum system, which does not consider
any losses of the MNP-QD system due to the interaction
with the external environment. In reality, when taking into
account the influence of the environment or reservoir, the
system will be coupled with the environment to construct
an open quantum system of irreversible dynamics. In the
present study, we mainly concentrate on the hybrid system
interacting with a squeezed vacuum Esqu (see Fig. 1), which
can be achieved by the action of the unitary squeezing oper-
ator S(ξ ) = exp[ 1

2 (ξ ∗a2 − ξa†2)] on the vacuum state, rather
than the vacuum or thermal reservoir [76]. Above ξ ≡ reiφ

represents the squeezing parameter, in which the squeezing
strength r describes the degree of squeezing and its value
range is 0 � r < ∞ and the squeezing angle φ represents the
direction of squeezing and its value range is 0 � φ � 2π [92].

In order to treat the incoherent processes and describe the
complete dynamics of the MNP-QD system with the density
matrix operator ρ, we can employ the Lindblad master equa-
tion under the Born-Markovian and secular approximations
[92]

dρ

dt
= − i

h̄
[H, ρ] + Lfield(ρ) + LQD(ρ), (8)

where

Lfield(ρ) = N
κ

2
(2a†ρa − aa†ρ − ρaa†)

+ (N + 1)
κ

2
(2aρa† − a†aρ − ρa†a)

− M
κ

2
(2aρa − aaρ − ρaa)

− M∗ κ

2
(2a†ρa† − a†a†ρ − ρa†a†) (9)

and

LQD(ρ) = N
γ

2
(2σ †ρσ − σσ †ρ − ρσσ †)

+ (N + 1)
γ

2
(2σρσ † − σ †σρ − ρσ †σ )

− M
γ

2
(2σρσ − σσρ − ρσσ )

− M∗ γ

2
(2σ †ρσ † − σ †σ †ρ − ρσ †σ †)

+ γd ph

2
(2σ †σρσ †σ − σ †σρ − ρσ †σ ). (10)

Above, the effect of the squeezed vacuum field is represented
by the parameters N , M, and φ, respectively. These are closely
related to the squeezing parameter ξ ≡ reiφ in the following
way [92]: N = sinh2(r) and M = sinh(r) cosh(r)e−iφ , with N
being the mean number of photons in the squeezed vacuum
and M denoting the intensity of the two-photon correla-
tion [93]. The squeezed vacuum reservoir degenerates into
an ordinary vacuum reservoir when N = |M| = 0. And the
squeezed vacuum reservoir degenerates into a normal thermal
radiation reservoir when N 
= 0 and |M| = 0 [94]. In order
to achieve the maximum effects of squeezing, we assume
|M| = √

N (N + 1), which is the maximum allowable value
of |M| [76]. In what follows, we will explore the influence
of the squeezed vacuum on the optical properties of the hy-
brid MNP-QD system with the squeezing strength r and the
squeezing phase φ as the variables. Here κ = κr + κnr and γ

are the decay rates of the MNP and the QD, respectively. κr is
the radiation loss caused by radiation to the far field, and κnr is
the nonradiation loss caused by Ohmic loss. Last, γd ph is the
dephasing rate of the QD.

Starting from the quantum master equation, the coupled
equation of motion for the expectation values of the MNP
plasmonic field can be obtained as

∂

∂t
〈a〉 = ∂

∂t
Tr(aρ) = Tr

(
a

∂

∂t
ρ

)
. (11)

By substituting Eqs. (7) and (8) into Eq. (11), and using the
appropriate commutation relations, we can find

∂

∂t
〈a〉 = −

(
i
m + κ

2

)
〈a〉 + g〈σ 〉 + iE0χ

h̄
. (12)

In the same way as above, the coupled equation of motion
for the expectation value of the excitonic transition operator
determining the QD polarization can be yielded as

∂

∂t
〈σ 〉 = ∂

∂t
Tr(σρ) = Tr

(
σ

∂

∂t
ρ

)
, (13)

from which, after a series of calculations, we can get

∂

∂t
〈σ 〉 = −

[
i
x + (2N + 1)

γ

2
+ γd ph

2

]
〈σ 〉 − g〈a〉

+ 2g〈aσ †σ 〉 + iE0μ

h̄
(1 − 2〈σ †σ 〉)

− M∗γ 〈σ †〉. (14)
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From Eq. (12), we can achieve the analytical solution of a
in the steady state by setting the left side of Eq. (12) to zero,

〈a〉 = g〈σ 〉
i
m + κ

2

+ iE0χ

h̄
(
i
m + κ

2

) . (15)

In the weak driving field limit, the number of excitons in
QD can be approximately neglected, i.e., 〈σ †σ 〉 � 1, we can
acquire

〈σ 〉 = −g〈a〉 + iE0μ

h̄ − M∗γ 〈σ †〉
i
x + (2N + 1) γ

2 + γd ph

2

. (16)

In Appendix B we compare the results of the described
system under the quantum framework with those predicted
by the classical theory. To this end, we can figure out the
parameters g and χ , with the relations

g = Sαμ

d3

√
3r3

mη

4πε0h̄
, (17)

χ = −iεb

√
12ηε0π h̄r3

m. (18)

After the determination of both g and χ , the expression of
the total polarization operator P can be determined accord-
ingly by

P = χ∗a + μσ. (19)

The resonance fluorescence of the hybrid MNP-QD system
of interest is yielded by the power spectral density. Given the
first-order correlation function 〈P†(τ )P(0)〉, we can define the
corresponding power spectral density, which is calculated as
the Fourier transformation of the first-order correlation func-
tion [92,95],

S(ω) =
∫ +∞

−∞
〈P†(τ )P(0)〉e−iωτ dτ, (20)

in the steady state (t → ∞). With this, the fluorescence
spectrum S(ω) is evaluated by using the quantum regression
theorem [96] and further by solving numerically the full mas-
ter equation (8) within a truncated space, as discussed more
fully in Sec. IV. The analytical results are too complicated to
compute here. Finally, worth to note is that all the calcula-
tions are performed in the rotating frame at the driving field
frequency ωd .

III. EXPERIMENTAL FEASIBILITY CONSIDERATION
WITH CURRENT TECHNOLOGY

The experimental feasibility of the physical model and a
series of selected system parameters are commented in this
section. Semiconductor QDs, known as artificial atoms, have
discrete energy spectra. Among them, colloidal QDs as a
subset of semiconductor nanocrystals, can be chemically syn-
thesized by means of inexpensive and scalable, wet-chemical
synthetic procedures [97]. The colloidal QDs produced by this
method have the advantages of smaller particle size (typically
1–10 nm in radius) and improved surface passivation. For
example, the colloidal CdSe QDs can significantly inhibit
surface trapping and their emission wavelengths can be tuned
across the entire visible spectrum [98]. Since the particle size
is closely related to the band gap energy of the colloidal QDs

and advanced semiconductor synthesis methods can support
the colloidal QDs with tunable size and shape [97], which
provides a prerequisite for us to achieve the required near res-
onance between the QD and silver (Ag) MNP by selecting the
colloidal CdSe QD of appropriate size. As shown in Ref. [99],
single colloidal CdSe QD with 1 nm size has an energy gap of
about 2.9 eV. Again, one, two and multiple CdSe QDs can be
prepared and manipulated in the experiments [100,101].

Advanced electron-beam lithography and template-
stripping technology can be used to fabricate the Ag MNP
[102,103]. Using chemically synthesized components and
directed assembly, i.e., self-assembly scheme based on the
DNA origami technique [22,104–106], the QD can be placed
in the vicinity of the MNP at a controllable nanometer
scale distance [107]. The MNP-QD distance in the hybrid
molecule can be determined by the number of DNA base
pairs, and the size of MNP can be manipulated using hydroxyl
amine as the reducing agent [108]. This precise arrangement
enables us to form a controllable hybrid molecule, which
increases the possibility of studying the MNP-QD coupling
in detail. Alternatively, using the technique of atomic force
microscope (AFM) nanomanipulation [109], the MNP-QD
hybrid molecule also can be assembled into a well-controlled
geometry, which enables us to customize the size of individual
structures and manipulate the QD position within the
nanometer range. As shown in Ref. [110], using AFM
nanomanipulation, the experimental method for positioning a
single Au nanoparticle near a CdSe QD to construct a hybrid
nanostructure with variable geometry has been proposed.
Under a femtosecond-pulsed laser excitation, a single
colloidal CdSe QD (average core radius: 2.6 nm) interacting
with the LSPR of an Ag nanoparticle has been experimentally
reported [111]. These findings above can satisfy the involved
requirements needed for realizing our proposal. Compared
with the traditional cavity quantum electrodynamics (QED)
system, this flexible ultracompact hybrid molecule in
nanoscale has the advantage of low-cost assembly methods.

Next, as early as the 1990s, scientists mastered the stan-
dard methods of experimental preparation of squeezed states,
which can be exploited to reduce the experimental noise be-
low the shot-noise limit [68]. With the increasing application
of nanoscale plasmonics, including subwavelength photonic
circuits and nanometer imaging, growing interest in coupling
quantum light sources to plasmonic elements has been stimu-
lated [83–85]. It is naturally proposed whether squeezed states
can be applied to surface plasmon with picosecond decay and
decoherence. To explore this problem, Huck et al. used a
squeezed vacuum state to excite an electron resonance on the
surfaces of a metallic gold waveguide to form a SPP [83]. And
they demonstrated the transduction of single mode squeezed
light into SPP despite linear loss and decoherence in the plas-
monic mode. Besides, in order to demonstrate the viability of
coupling quantum information into surface plasmons, Lawrie
et al. also provided the demonstration of the transduction
of a squeezed light source into LSPs [84]. This fulfills our
requirement for squeezing the plasmonic vacuum of an MNP.
For more details about the squeezed surface plasmons in the
experiment, we refer the reader to Refs. [83–85].

Before proceeding any further, for the calculations we
choose the parameters of the Ag MNP according to the

013717-5



SHEN, WU, LI, AND WU PHYSICAL REVIEW A 104, 013717 (2021)

FIG. 2. (a) The coupling strength g between the MNP and QD
and the modulus of the complex dipole moment χ of the MNP as a
function of the MNP-QD center-to-center distance d when rm = 7
nm. (b) The coupling strength g between the MNP and QD and
the modulus of the complex dipole moment χ of the MNP as a
function of the MNP radius rm when d = 14 nm. Other unspecified
system parameters have been set to Sα = 2, μ = 0.7e nm, εb = 1,
ωp = 7418.71 meV, κ = 53.28 meV, and ε∞ = 4.6, respectively. In
each pane, the blue solid line corresponds to the left axis, and the
dashed red line corresponds to the right axis.

previous experiments [112,113]. Ag is preferred as a mate-
rial for plasmonic devices due to its relatively low surface

plasmon damping. The Drude model εm(ω) = ε∞ − ω2
p

ω2+iκω

can be used to describe the dielectric function of the
Ag MNP, where the related parameters are the ultraviolet
permittivity ε∞ = 4.6 [29], the bulk plasma frequency ωp =
7418.71 meV (corresponding to the MNP resonance fre-
quency ωm = 2887.73 meV), and the total decay rate κ =
53.28 meV, unless otherwise stated. The relevant parameters
of the two-level QD are set to be the dipole moment μ =
0.7 e nm, the spontaneous emission decay rate γ = 0.05 meV,
and the dephasing rate γd ph = 0.005 meV [2,20]. A weak
driving field with intensity I = ε0cE2

0 /2 = 1 W/cm2 is ap-
plied to drive the hybrid MNP-QD system embedded in the
vacuum, εb = 1.

In Eqs. (17) and (18), the relationship between the coupling
strength g and the system parameters as well as the relation-
ship between the dipole moment χ and the system parameters
is presented. In order to more intuitively depict them, we plot
the coupling strength g and the modulus of the complex dipole
moment χ of the MNP versus the MNP-QD center-to-center
distance d in Fig. 2(a). As shown in Fig. 2(a), the coupling
strength g decreases monotonically with the increase of d and
diminishes to a small value g = 1.824 meV when d = 24 nm.
Since the dipole moment χ of the MNP is independent of d ,
the change of |χ | appears as a straight line that keeps its value
constant. Figure 2(b) displays the dependence of the coupling
strength g between the MNP and QD and the modulus of the
complex dipole moment χ of the MNP on the MNP radius
rm. As can be easily seen from Fig. 2(b), both the coupling
strength g and the modulus of complex dipole moment χ

of the MNP show a monotonically increasing trend with the
increase of the MNP radius rm, which is apparent because both
of them are proportional to the third half power of rm, r3/2

m .
It is worth mentioning that the decay rate κ of the MNP

in our model is tens of meV. Referring to Fig. 2(a), it can
be seen that the coupling strength g between the MNP and
QD changes in a small range from 0 to 10 meV within
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FIG. 3. The fluorescence spectra for Sα = 2, μ = 0.7 e nm, rm =
7 nm, d = 14 nm, εb = 1, γ = 0.05 meV, γd ph = 0.005 meV, φ = 0,
I = 1 W/cm2, 
m = 0 meV, and 
 = 0 meV. Six panels show six
different squeezing amplitudes: (a) r = 0; (b) r = 0.01; (c) r = 0.1;
(d) r = 0.5; (e) r = 1; and (f) r = 2, respectively.

the achievable parameter range. This means that g < κ/2,
namely, the optical properties of nanoscale plasmon-exciton
QED system are studied under the weak-coupling regime of
MNP-QD, which makes the actualization of our scheme more
experimental friendly.

IV. NUMERICAL RESULTS AND DISCUSSIONS ABOUT
THE EMISSION FLUORESCENCE SPECTRA

In this section, we numerically in detail shed light on dy-
namic optical responses, i.e., resonance fluorescence, of the
hybrid system which contains an Ag spherical MNP and a
colloidal CdSe QD using experimentally realistic parameters.
First, we analyze how the squeezing strength r modifies the
emission power spectra. As shown in Fig. 3, the shape of
the spectral line depend sensitively upon the value of the
squeezing strength r. In the absence of the squeezed vac-
uum field [i.e., r = 0 as shown in Fig. 3(a)], the emission
spectrum displays a nearly symmetric Lorentzian-like pro-
file. However, when the squeezed vacuum field is applied,
the shape of the spectral line changes obviously even if the
squeezing strength r is taken as a small value. We can observe
that the emission spectrum presents a three-peaked structure
with the central peak having a narrow line in Fig. 3(b). At
the same time, the intensity of the emission spectrum in-
creases by more than four orders of magnitude, which implies
that the emission spectrum is quite sensitive to the variation
of the squeezed vacuum field. Compared with Fig. 3(b), when
the squeezing strength r increases from 0.01 to 0.1, the line
shape of the three peak distribution does not change, but the
intensity of the emission spectrum increases by nearly two
orders of magnitude in Fig. 3(c). When the squeezing strength
is equal to r = 0.5, the emission spectrum presents a nearly
symmetrical three-peak distribution, and the position of two
dips is elevated as shown in Fig. 3(d). For the case of the
squeezing strength r = 1, the two peaks on both sides of the
central peak in the emission spectrum become less obvious in
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FIG. 4. Schematic illustration of the evolution from the bare-
state scenario to the dressed-state picture with three nondegenerate
transitions under excitation.

Fig. 3(e). When the squeezing strength increasing to r = 2,
the emission spectrum exhibits the line shape where the two
peaks on both sides disappear and only the central peak with
high strength narrow line exists in Fig. 3(f). Throughout the
six panels presented in Fig. 3, the overall trend that the in-
tensity of the emission spectra increases with the increase of
the squeezing strength r is captured. Thus, it is evident that
the squeezing strength can determine the width of the spectral
line, the number of the emission peaks, and the peak-value
magnitudes of the emission spectrum. Overall, the obtained
results show that the introduction of the squeezed vacuum can
significantly change the optical fluorescence properties of the
hybrid system.

In fact, all interactions, which are relevant for atomic and
condensed matter physics, are mediated by quantum fluctu-
ations of the electromagnetic field vacuum. For this reason,
the squeezed vacuum (controlling the vacuum fluctuations)
can be utilized as a resource for engineering the strength
and the range of matter-field interactions. Similarly, acting
as a mold, the squeezed vacuum imprints its squeezing fea-
ture to our MNP-QD scheme. According to the previous
studies in Refs. [89,114], we can conclude qualitatively that
the coupling strength g between the MNP plasmonic field
mode and the two-level QD significantly increases with the
squeezing parameter r. As a consequence, in the presence
of the squeezed field, the spectrum of the fluorescence is
dramatically altered and the intensity of the fluorescence is
considerably enhanced even in the weak-coupling regime of
MNP-QD. We have performed extensive numerical calcula-
tions, all results support this claim, but it is difficult to prove
quantitatively and analytically.

On the other hand, this is a key feature of the dynamic
Stark splitting effect (see Fig. 4), which originates from the
above-mentioned strong coherent coupling between the MNP
plasmonic field mode and the two-level QD. Figure 4 shows
the evolution from the bare states to the dressed states for ap-
propriate values of the squeezing parameter (e.g., 0 < r � 1).
It is easy to find that in the dressed-state quadruplet there are
four radiative transitions, in which two degenerate ones (see
green arrow in Fig. 4), namely, three nondegenerate transi-
tions [75]. Together they form the three-peaked emission: a
central peak and two sidebands at moderate squeezing values
as displayed in Figs. 3(b)–3(e). Yet it is worth pointing out
that, for sufficiently strong squeezing as shown in Fig. 3(f),
this well-behaved structure is completely destroyed. Specifi-
cally, the central peak is drastically raised whereas the original
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FIG. 5. The normalized fluorescence spectra for Sα = 2, μ =
0.7 e nm, rm = 7 nm, d = 14 nm, εb = 1, γ = 0.05 meV, γd ph =
0.005 meV, r = 0.1, φ = 0, 
m = 0 meV, and I = 1 W/cm2. Four
panels show four different frequency detunings between the plasmon
resonance frequency of the MNP and the exciton resonance fre-
quency of the QD: (a) 
 = 0 meV; (b) 
 = −10 meV; (c) 
 = −20
meV; and (d) 
 = −80 meV, respectively.

two sidebands are slowly increased and are too small to be
emerged with respect to the central peak in the large squeezing
limit. So a typical single-peaked line shape is generated in the
fluorescence spectrum.

In the analysis above, we consider the resonant case for the
two frequencies of the MNP (ωm) and the QD exciton (ωx):
ωm = ωx, namely, 
 = 0. However, for the exciton resonance
frequency (ωx) of the two-level QD (such as a CdSe QD) far
below the plasmon resonance frequency ωm of the MNP (such
as an Ag MNP) due to the QD size, it is worth exploring
the situation where the MNP and QD are not resonant, i.e.,

 
= 0. In view of this, we consider the impact of the fre-
quency detuning 
 between the plasmon resonance frequency
of the MNP and the exciton resonance frequency of the QD
on the emission spectra S(ω). As shown in Fig. 5(a), when the
QD resonates with the MNP, we can find that there are three
peaks, of which the peaks on both sides have normal width,
while the peak in the middle has narrow width. In order to
clarify the role of the QD, the black dashed line in Fig. 5(b) de-
picts the emission spectrum without the QD as a comparison.
In Fig. 5(b) we can clearly see that a symmetric Lorentzian
profile exists in the emission spectrum in the absence of the
QD [see black dashed line in Fig. 5(b)]. However, in the pres-
ence of QD, quantum interference between two competing
optical pathways can arouse the occurrence of the Fano-type
resonance fluorescence, from a physical point of view. Specif-
ically, the basic excitations in MNP are surface plasmons with
quasicontinuous spectrum (i.e., a broad response line), while
the excitons in QD are discrete interband excitons (i.e., a sharp
response line). When the exciton energy is near the plasmon
peak, the coupling effect between the exciton and plasmon is
enhanced, and the Fano interference between the quasicon-
tinuous excitation of MNP and the discrete excitation of QD,
where these two responses overlap, leads to the asymmetric

013717-7



SHEN, WU, LI, AND WU PHYSICAL REVIEW A 104, 013717 (2021)
(a

rb
. u

ni
ts

)

FIG. 6. The fluorescence spectra as a function of the frequency ω

for the three different MNP-to-QD distances d = 14 nm (blue dotted
line), d = 18 nm (magenta dashed line), and d = 24 nm (yellow
solid line). The other parameters used here are Sα = 2, μ = 0.7 e nm,
rm = 7 nm, εb = 1, γ = 0.05 meV, γd ph = 0.005 meV, r = 0.1, φ =
0, I = 1 W/cm2, 
m = 0 meV, and 
 = −30 meV, respectively.

Fano line shape. The squeezing can enhances this effect. In
Fig. 5(b) the whole emission spectrum splits into three peaks
and the emission spectrum is highly suppressed for particular
frequency (near the resonance frequency of the QD). The
fluorescence dip resulting from the high suppression is re-
garded as Fano dip [see the green arrow in Fig. 5(b)]. While,
in the case of slightly lower energy, the enhancement of the
emission spectrum caused by the constructive interference can
be observed [see blue solid line in Fig. 5(b)]. The fluorescence
peak caused by the high enhancement is called Fano peak [see
the magenta arrow in Fig. 5(b)]. When the frequency detuning

 = −20 meV, the height of the left peak exceeds the central
peak, and the smaller peak on the right becomes less obvious
in Fig. 5(c). When further increasing the frequency detuning
to 
 = −80 meV, the left peak evolves into an ultranarrow
line with the enhanced height, and there is a fluorescence
quenching point near the resonance frequency of the QD in
Fig. 5(d). The peak on the right almost disappears, and the
curve on the right tends to be smooth. Meanwhile, the loca-
tion of the left two peaks moves away from each other, and
the linewidth on the right widens, visibly to the naked eye.
According to what has been analyzed above, we can reach the
conclusion that the frequency detuning between the resonance
frequency of the MNP and the resonance frequency of the QD
has an obvious impact on the spectral line shape, the spectral
line width, and the number of the emission peaks in the hybrid
MNP-QD system.

Subsequently, we look into the modification of the emis-
sion spectra by suitably varying the center-to-center distance
d between the MNP and QD. From the previous information
given in Fig. 2(a), it can be concluded that the coupling
strength g between the MNP and QD decreases with the
continuous separation of the MNP and QD, while the dipole
moment χ of the MNP is not affected by d . For the con-
venience of comparison, we plot the emission spectra with
the frequency ω as the variable under the three different
d as shown in Fig. 6. Here d = 14 nm (blue dotted line),
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FIG. 7. (a) Two-dimensional plot for the normalized fluores-
cence spectra as a function of the squeezing strength r and the
frequency ω. (b) The normalized fluorescence spectra as a function
of the frequency ω for the two different squeezing strength r = 0 (red
dashed line) and r = 0.1 (blue solid line). Lines are normalized by
the maximum peak value of each line. The other system parameters
have been set to Sα = 2, μ = 0.7e nm, rm = 7 nm, d = 14 nm,
εb = 1, γ = 0.05 meV, γd ph = 0.005 meV, φ = 0, I = 1 W/cm2,

m = 0 meV, and 
 = −10 meV, respectively.

d = 18 nm (magenta dashed line), and d = 24 nm (yellow
solid line) correspond to g = 9.189 meV, g = 4.324 meV,
and g = 1.824 meV, respectively. When d = 14 nm (see blue
dotted line in Fig. 6), the spectrum shows an asymmetric
Fano line shape. With the increase of the distance d , the left
resonance peak blue shifts slightly and gradually evolves into
an ultranarrow peak along with the increase of its height. The
height of the peak on the right is basically unchanged, but the
position of the right peak red shifts slightly. The position of
the Fano dip is gradually elevated, which indicates that the
destructive interference between the MNP and QD weakens
with the increasing of the distance d .

Figure 7(a) displays a color-scale two-dimensional map of
the emission spectra against the squeezing strength r and the
frequency ω. In Fig. 7(a), a dark purple line (near ω − ωd =
−10 meV) across the spectrum indicates that the emission
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spectra are strongly suppressed at these positions. While the
bright colored areas (shown in red, magenta, blue, cyan, and
green) on both sides of the dark purple line show that the
emission spectra are strongly enhanced in these areas. In
order to reveal the role of the squeezed vacuum more conve-
niently, we plot the emission spectra S(ω) as a function of the
frequency ω for the two different squeezing strength [selected
from Fig. 7(a)] r = 0 (red dashed line) and r = 0.1 (blue solid
line) in Fig. 7(b). As shown in Fig. 7(b), the emission spec-
trum displays a Lorentzian-like profile in the absence of the
squeezed vacuum field (r = 0, see red dashed line). Whereas
in the presence of the squeezed vacuum field [i.e., r = 0.1, see
blue solid line in Fig. 7(b)], the Fano resonance effect occurs,
which is manifested as the emission spectrum splitting into
three peaks. When the squeezing strength r = 0.1, the Fano
dip with strong suppression appears at the position where
the peak appears in the case of r = 0. And the Fano peak
with strong enhancement emerges at the left shoulder of the
Fano dip. Interestingly, we can see an additional shallow Fano
profile at the right shoulder.

The key features contained in Figs. 7(a) and 7(b) are
summarized in the following: (1) with the increase of the
squeezing strength, the peak-value magnitudes of the spectral
line also increase; (2) in the presence of the squeezed vacuum,
the hybrid MNP-QD system can support the Fano-type reso-
nance fluorescence, which has strong spectral enhancement
and suppression in a wide range owing to the constructive and
destructive interference. The above results signify that some
interesting phenomena can be obtained in the rich spectral re-
sponses due to the introduction of the squeezed vacuum, e.g.,
sharp asymmetric fluorescence, fluorescence enhancement,
and fluorescence suppression. In addition, we can design and
control the peak-value magnitudes of the resonance fluores-
cence spectra under the influence of the squeezed vacuum.

Next, in order to further explore the effect of the MNP
radius rm on the emission spectra S(ω), we also plot the
emission spectra S(ω) versus the frequency ω for the four
different rm in Fig. 8. As described in Eqs. (17) and (18),
the coupling strength g between the MNP and QD and the
dipole moment χ of the MNP are strongly dependent on
the MNP radius rm, as shown by the fact that they are both
proportional to the third half power of rm. Here we increase
rm from 1 nm to 7 nm every 2 nm with a fixed d = 14 nm,
accompanied by the constant increase of g and χ . It can be
clearly seen from Fig. 8(a) that only an ultranarrow spectral
line exists in the emission spectrum when rm = 1 nm. At
this time, the interaction between the MNP and QD is very
weak (i.e., g = 0.6753 meV) and the dipole moment of the
MNP is very small (i.e., |χ | = 0.4962 e nm), which leads to
only an ultranarrow line near the QD resonance frequency
in the emission spectrum. As the MNP radius increases to
rm = 3 nm, the right peak with the MNP resonance frequency
as the center frequency begins to appear. An asymmetric
Fano profile emerges in the emission spectrum in Fig. 8(b).
With the further increase of the MNP radius rm, the height
of the right peak is enhanced obviously due to the increase
of the coupling strength g between the MNP and QD and the
dipole moment χ of the MNP. And the width of the left spec-
tral line is slightly wider in Fig. 8(c). When the MNP radius
rm = 7 nm, the left peak width becomes wider, the height of
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FIG. 8. The normalized fluorescence spectra for Sα = 2, μ =
0.7 e nm, d = 14 nm, εb = 1, γ = 0.05 meV, γd ph = 0.005 meV, r =
0.1, φ = 0, I = 1 W/cm2, 
m = 0 meV, and 
 = −30 meV. Four
panels show four different MNP radius: (a) rm = 1 nm; (b) rm = 3
nm; (c) rm = 5 nm; and (d) rm = 7 nm, respectively.

the central peak increases significantly, and an insignificant
small peak appears on the right side in Fig. 8(d). From the
analysis above, we find that tuning the MNP radius rm, thus
changing the magnitude of the coupling strength between
the MNP and QD and the dipole moment of the MNP [see
Eqs. (17) and (18)], can tailor and control the line shape of the
emission spectrum, which determines both the width of the
spectrum line and the number of the emission peaks.

Finally, we discuss the effect of the orientation of the ex-
ternal applied field on the emission spectrum. We previously
investigate the situation where the polarization of the incident
field is along the major axis of the hybrid MNP-QD system

(a
rb

. u
ni

ts
)

FIG. 9. The fluorescence spectra for μ = 0.7e nm, rm = 7 nm,
d = 14 nm, εb = 1, γ = 0.05 meV, γd ph = 0.005 meV, r = 0.1, φ =
0, I = 1 W/cm2, 
m = 0 meV, and 
 = −30 meV. For comparison,
we consider the two different orientation parameters: Sα = 2 (blue
solid line) and Sα = −1 (red dashed line), respectively.
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(cf. Fig. 1), i.e., Sα = 2. Now we turn to the scenario where
the polarization of the incident field is orthogonal to the major
axis of the MNP-QD system, i.e., Sα = −1. When Sα = 2, the
spectral line manifests an obvious Fano resonance line-shape
profile with high spectral enhancement and suppression (blue
solid line in Fig. 9). Nevertheless, compared with the case of
Sα = 2, the spectral suppression occurs at the same position
in both cases, but the degree of the spectral enhancement is
inhibited for the case of Sα = −1 (red dashed line in Fig. 9).
The effect of Fano interference is weakened, resulting in a
significantly reduced enhancement of the emission spectrum.
This indicates that the polarization direction of the external
applied field can be used to engineer the fluorescence spec-
trum of the hybrid MNP-QD system.

V. CONCLUSIONS

In summary, we have demonstrated the feasibility of uti-
lizing quantum squeezed reservoir to engineer and control
the optical fluorescence spectra of the MNP-QD molecule
by applying an external driving field. Based on the quantum
master-equation approach and experimentally achievable pa-
rameters for the MNP-QD QED system, our obtained in-depth
results indicate that some desired spectral features such as
sharp asymmetric Fano-type resonance fluorescence, fluores-
cence quenching, fluorescence narrowing, and fluorescence
enhancement can be caught in the emission spectra by appro-
priately modulating the squeezing parameter, the frequency
detuning between the MNP and QD, the center-to-center dis-
tance between the MNP and QD, the MNP radius, and the
polarization direction of the external applied field. Besides, in
this way we show that the number of the fluorescence peaks
as well as the positions of the fluorescence quenching can
be also adjusted. Alternatively, these optical properties of the
hybrid system achieved here can work in the weak-coupling
regime of MNP-QD, which makes the implementation of
this proposal more experimental friendly. The tunability of
the fluorescence spectra ensures the potential availability of
the flexible ultracompact hybrid MNP-QD system in related
applications, such as sensing, lasing, switching, and optical
modulator. We hope that our results could stimulate experi-
mental implementations on Fano-type resonance fluorescence
with a squeezed vacuum.
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APPENDIX A: DERIVATION OF THE SURFACE PLASMON
RESONANCE FREQUENCY ωm of the MNP

In this Appendix we provide details about the formula for
the surface plasmon resonance frequency ωm of the MNP.
When the size of the spherical MNP is much smaller than
the wavelength of incident light (rm � λ), the quasistatic
approximation can be used to solve the scattering problem
of the MNP. Due to the small size of nanostructures, we as-
sume that the applied driving field is spatially uniform, which
means that the phase of the driving field at any given time is
approximately the same in the whole volume of the MNP. The
dipole approximation can be used to describe the properties
of the single MNP effectively and conveniently. Besides, it is
well known that the dielectric under the external field driving
can induce additional electric field due to the polarization,
and the enhancement factor of the electric field is propor-
tional to the polarizability α. In this case, the polarizability
of the MNP in the electrostatic field can be used to represent
its polarizability in the incident electric field. Therefore, the
polarizability of the MNP can be expressed as [115]

α = 4πr3
m

εm(ω) − εb

εm(ω) + 2εb
, (A1)

where rm is the radius of the MNP, εb is the dielectric constant
of the environment where the hybrid MNP-QD system is em-
bedded, and the dielectric function of the MNP can be given
by the Drude model

εm(ω) = ε∞ − ω2
p

ω2 + iκω
; (A2)

here ε∞ is the ultraviolet permittivity of silver, ωp is the
plasma frequency, and κ is the damping rate of silver, re-
spectively. For general media, the above expression (A1) has
nothing special, but it can display a very interesting phe-
nomenon for the surface plasmons, which is completely based
on the fact that the real part of the dielectric function of the
surface plasmon is negative [4]. Mathematically, the point
where the polarizability α of the MNP reaches an infinity
value corresponds to the denominator of Eq. (A1) close to
zero, which means that |εm(ω) + 2εb| approaching to zero
is required. Physically, the so-called LSPR occurs when the
polarization of the MNP α is large, which is also the reason
for the field amplification both inside and near the MNP. In
addition, the materials exhibit good plasmonic properties if
the two conditions (1) Re[εm(ω)] < 0 and (2) Im[εm(ω)] �
−Re[εm(ω)] are satisfied simultaneously [3,4], where Re[·]
denotes the real part of the magnitude enclosed in square
brackets and Im[·] the imaginary part. Note that the above-
mentioned conditions are valid, e.g., for silver in the most
of the visible region. In this scenario, the requirement of the
LSPR can be simplified as the Fröhlich condition [1]

Re[εm(ω)] = −2εb. (A3)

Based on the above analysis, it is reasonable to give the
expression of the surface plasmon resonance frequency of the
MNP

ωm ≈ ωp√
2εb + ε∞

, (A4)

as claimed in the main text.
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APPENDIX B: DERIVATION OF THE FORMULAS
(17) AND (18)

When the hybrid system is excited by an external electric
field polarized along the system axis joining the MNP and QD
structure, the oscillating electric field felt by the MNP is a
superposition of the input field Edri and the dipole response
field EQD of the QD. In the electrostatic approach, according
to the Laplace equation for the electric potential ∇2� = 0, the
electric potential � can be obtained by using the boundary
conditions. And the expression of the electric field can be
further calculated according to the formula E = −∇�, with
the forms

Eins = 3εb

εm(ω) + 2εb
Ein, (B1)

Eout = Ein + Em, (B2)

where Eins and Eout represent the electric fields inside and
outside the MNP sphere, respectively. Above, Ein contains the
external input field Edri and the dipole response field EQD gen-
erated by the QD, which has the form of Ein = Edri + EQD. In
the case that the radius of the MNP sphere is far less than the
wavelength of the incident plane wave (rm � λ), it is effective
to represent the MNP as the ideal dipole in the quasistatic
region [1,116]. Therefore, the electric field Em generated by
the MNP outside the sphere can be expressed as

Em = SαPMNP

4πε0εbd3
, (B3)

where Sα is the orientation parameter set to 2 (or −1) if the
external driving field Edri is polarized along (or perpendicular
to) the major axis of the hybrid MNP-QD system. ε0 and εb

are the vacuum dielectric constant and the relative dielectric
constant of the background medium, respectively. d is the
center-to-center distance between the MNP and QD. PMNP is
the dipole moment of the MNP, which can be written as

PMNP = 4πε0εbβr3
mEin. (B4)

If we consider only the positive frequency part of the dipole
moment of the MNP, it has the following form:

P+
MNP = 4πε0εbβr3

m

(
E0 + SαP†

QD

4πε0εbd3

)
, (B5)

where β is the Clausius Mossotti factor of the MNP, indicated
by

β = εm(ω) − εb

εm(ω) + 2εb
. (B6)

According to the expression of the dielectric function of the

MNP εm(ω) = ε∞ − ω2
p

ω2+iκω
given in Eq. (A2), we carry out

the first-order Taylor expansion of Re[εm(ω)] around ωm and
utilize the Fröhlich condition in Eq. (A3) to obtain [2]

β ∼= 3iεbη

i(ωm − ω) + κ
2

, (B7)

where the parameter η is yielded by the formula η =
{ dRe[εm (ω)]

dω
|ω=ωm}−1 = [ω2

p+κ2(2εb+ε∞ )]2

2(2εb+ε∞ )
3
2 ω3

p

and the decay rate of

the MNP is contributed by κ = 2ηIm[εm(ωm)].
When we substitute Eq. (B7) into Eq. (B4) and further

substitute the obtained result into Eq. (B3), then consider only
the part where the electric field oscillates with e−iωt , we can
get the classical expression for the positive frequency part of
the electric field generated by the MNP:

E+
m = 3iεbηSαr3

m(
i
m + κ

2

)
d3

(
E0 + SαP†

QD

4πε0εbd3

)
. (B8)

The expectation value of the dipole response field gener-
ated by the surface plasmon of the MNP can be obtained by
using the master equation, whose positive frequency compo-
nent is

〈E+
m 〉 = iε〈a〉 = ih̄g2〈σ 〉

μ
(
i
m + κ

2

) + −gχE0

μ
(
i
m + κ

2

) . (B9)

Comparing the expectation value of the MNP electric field
[Eq. (B9)] in the quantum form with the surface plasmon
field produced by the MNP [Eq. (B8)] felt by the QD in the
classical form, and considering only the positive frequency
coefficient, we can arrive at

g = Sαμ

d3

√
3r3

mη

4πε0h̄
, (B10)

χ = −iεb

√
12ηε0π h̄r3

m, (B11)

i.e., Eqs. (17) and (18). Due to the relationship h̄g = με [3],
we can naturally give the expression for ε = h̄g

μ
= h̄Sα

d3

√
3r3

mη

4πε0 h̄ .
In addition, we can get a more in-depth result by directly
comparing Eq. (B5) with Eq. (15), i.e., P+

MNP = χ∗〈a〉.
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