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Coherent perfect absorption (CPA) was introduced as a classical optics phenomenon of a standing-wave
absorption by a subwavelength film. In this paper, we develop a theory of CPA of quantized standing waves
taking account of a subwavelength thickness of the absorber. This approach allows us to merge all known
quantum effects of CPA under a single theory and introduce other regimes of CPA including CPA of NOON
states with arbitrary number of entangled photons, orthogonally squeezed vacuum states, continuous variable
entangled states, and Schrödinger cat states. Detailed analysis of the quantum regime of CPA sheds light
on fundamental aspects of quantum light dissipation and its practical implementation in quantum optics and
quantum information.
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I. INTRODUCTION

Coherent perfect absorption (CPA) is a time-reversed pro-
cess of a lasing where full absorption of classical light
is achieved by coherent illumination of an absorber [1–3].
Importantly, an absorber of a subwavelength thickness can
operate between the regimes of total absorption and total
transmission [4]. Explanation of this phenomenon is given in
a standing-wave picture: if absorber is placed at antinode of
the standing wave, enhanced dissipation of light takes place,
and if absorber is placed at node of the standing wave, no
interaction happens since total electric field is equal to zero.
Light-by-light control [4], all-optical switching [5], signal
modulation [6,7], dark-pulse generation [8], and coherent am-
plifier [9] are clearly explained in this picture.

In contrast, the quantum regime of CPA, where thin ab-
sorber is coherently illuminated by quantum light, lacks this
clarity of explanation. The outcome of CPA process strongly
depends on the quantum state of light. For instance, “classi-
cal” modulation between the regimes of total absorption and
total transmission takes place for a single-photon state [10,11]
while probabilistic zero- or two-photon absorption may take
place for two-photon states [12–14]. Developed theoretical
models of CPA of quantum light [15–17] describe the prob-
lem in terms of quantized traveling waves [Fig. 1(a)], where
subwavelength thickness of the absorber is not taken into ac-
count. Moreover, either bosonic [15] or fermionic [13] second
quantization formalism is required depending on the quantum
states under consideration. Despite the lack of a clear picture
of the underlying processes, the quantum regime of CPA is of
great interest for applications in quantum optics and quantum
information. CPA provides a robust approach for quantum
states control including quantum states filtering [16–18],
manipulation of quantum light correlations [12–15,19], and
implementation of the anti-Hong-Ou-Mandel effect [20]. Re-
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cently, the mechanism of distributed CPA of quantum light
was proposed for deterministic generation of entanglement
in multinodal quantum networks [21]. From a fundamental
point of view, the quantum regime of CPA provides insights
on the process of quantum light absorption including local
[10,11,22] and nonlocal [23] photon absorption control, prob-
abilistic two-photon and deterministic one-photon absorption
of two-photon states [12,14,20]. Further development of this
research field requires clear explanation of quantum effects of
CPA.

In this paper, we develop a theory describing CPA of
quantum light in a unified and simple manner. We con-
sider the problem in a proper basis of quantized standing
waves [Figs. 1(b) and 1(c)], taking account of a subwave-
length thickness of the absorber. Our approach allows us
to merge all known quantum effects of CPA under a single
theory and introduce other regimes of CPA including CPA of
NOON states with arbitrary number of entangled photons, or-
thogonally squeezed vacuum, continuous variable entangled,
Schrödinger cat states. The theory developed here reveals a
common nature between classical and quantum regimes of
CPA. To emphasize similarities of these two regimes of CPA,
we describe both effects in a parallel way. First, we describe
the classical regime of CPA in the form where two traveling
waves are considered as a superposition of two standing waves
(Sec. II). Next, we build a general description of CPA of
quantum light (Sec. III). Finally, we apply our approach to
CPA of discrete (Sec. IV) and continuous variable (Sec. V)
quantum states.

II. CLASSICAL REGIME OF CPA

We consider a thin absorber as a symmetric four-port de-
vice characterized by amplitude transmission t and reflection
r coefficients with [4]

t = −r = 1/2. (2.1)
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FIG. 1. CPA in standing-waves picture. Input traveling waves
[thick red and thin blue lines in (a)] are decomposed into superpo-
sition of two standing waves [thick green and thin purple lines in
(b)]. One of the standing waves [dashed purple line in (c)] is fully
absorbed and the second one [solid green line in (c)] is not affected.
The survived standing wave feeds up two output traveling waves [thin
blue and thick red lines in (d)]. This process is shown in the form of a
diagram in (e): two input modes k and −k are transformed into modes
C and S by the first BS transformation; mode C is fully absorbed
by a beam block (black rectangular); the second BS transformation
results in output modes k and −k. Colors and line styles of modes in
(e) agree with corresponding colors and line styles of optical modes
in (a)–(d). This picture is valid for both classical (amplitudes without
hats) and quantum (operators in parentheses) fields evolution.

The intensity absorption coefficient under single-side il-
lumination is 1 − |t |2 − |r|2 = 1/2. Two counterpropagating
along z-axis classical waves [Fig. 1(a)], of the same polariza-
tion and frequency ω,

E (in)
k = E (in)

k ei(kz−ωτ ) + c.c., (2.2)

E (in)
−k = E (in)

−k e−i(kz+ωτ ) + c.c., (2.3)

illuminate the absorber. Here k = 2π/λ is a wave number, λ

is a wavelength, τ is a time variable, and E (in)
k and E (in)

−k are

complex amplitudes. Amplitudes E (out)
k and E (out)

−k of the output
traveling waves [Fig. 1(d)],

E (out)
k = E (out)

k ei(kz−ωτ ) + c.c.,

E (out)
−k = E (out)

−k e−i(kz+ωτ ) + c.c.,

are expressed through CPA transformation,(
E (out)

k

E (out)
−k

)
= HTR

CPA

(
E (in)

k

E (in)
−k

)
,

where the nonunitary matrix HTR
CPA describes the traveling

waves scattering at the absorber (2.1),

HTR
CPA = 1

2

(
1 −1

−1 1

)
.

Dissipation is explicitly contained in the scattering matrix
of the absorber and there are no restrictions on the energy
conservation. For the input waves with amplitudes of equal
moduli E0,

E (in)
k = E0eiθk , (2.4)

E (in)
−k = E0eiθ−k . (2.5)

The regime of total absorption,

E (out)
k = E (out)

−k = 0, (2.6)

holds if phase difference �θ ≡ θk − θ−k = 2πn (n =
0, 1, 2, . . .), while the regime of total transmission,

E (out)
k = E (in )

k , E (out)
−k = E (in)

−k , (2.7)

holds if �θ = (2n + 1)π . To explain these phenomena, we
consider the total input field,

E (in) = E (in)
k + E (in)

−k , (2.8)

as a superposition of two – cosine and sine – standing waves
[Fig. 1(b)],

E (in) =
√

2
[
�

(in)
C cos kz + i�(in)

S sin kz
]
e−iωτ + c.c. (2.9)

Equation (2.9) is derived by substituting (2.2) and (2.3)
into (2.8) and using Euler’s formula. It follows from (2.8)
and (2.9) that the traveling- and standing-wave amplitudes
are linked through the beam-splitter-like transformation (BS
transformation), (

�
(in)
C

�
(in)
S

)
= HBS

(
E (in)

k

E (in)
−k

)
, (2.10)

with the unitary matrix

HBS = 1√
2

(
1 1

1 −1

)
. (2.11)

From (2.4), (2.5), (2.10), and (2.11), the standing-wave
amplitudes are expressed as

�
(in)
C =

√
2E0ei(θk+θ−k )/2 cos

�θ

2
,

�
(in)
S = i

√
2E0ei(θk+θ−k )/2 sin

�θ

2
,

and one may redistribute the energy between the standing
waves by changing the relative phase of the input waves �θ .
Since the cosine wave is formed by the in-phase combination
of the input traveling waves,

cos kz ∼ eikz + e−ikz, (2.12)
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it is fully absorbed [compare with (2.4)]. The sine standing
wave, in contrast, is formed by the out-of-phase component of
the input traveling waves,

sin kz ∼ eikz − e−ikz, (2.13)

and it is not affected by the absorber [compare with (2.7)].
Similar to (2.8) and (2.9), the total output field can be written
as

E (out) = E (out)
k + E (out)

−k

=
√

2
[
�

(out)
C cos kz + i�(out)

S sin kz
]
e−iωτ + c.c.,

where the standing-to-traveling waves transformation is ex-
pressed as (

E (out)
k

E (out)
−k

)
= HBS

(
�

(out)
C

�
(out)
S

)
.

According to (2.12) and (2.13), CPA transformation of the
standing waves [Fig. 1(c)] is read as(

�
(out)
C

�
(out)
S

)
= HST

CPA

(
�

(in)
C

�
(in)
S

)

with the nonunitary matrix

HST
CPA =

(
0 0

0 1

)
. (2.14)

Finally, the classical regime of CPA is described as a result
of the following consecutive transformations:

(i) two counterpropagating traveling waves [Fig. 1(a)]
form two standing waves [Fig. 1(b)];

(ii) the cosine standing wave is fully absorbed, while the
sine wave is not affected [Fig. 1(c)];

(iii) the survived sine wave is split into two output travel-
ing waves [Fig. 1(d)].

This sequence of transformations can be written in a matrix
form as (

E (out)
k

E (out)
−k

)
= HBSHST

CPAHBS

(
E (in)

k

E (in)
−k

)
, (2.15)

where HBSHST
CPAHBS = HTR

CPA. It is convenient to depict this
process in a diagram form [Fig. 1(e)]. Here two input modes,
k (upper red line) and −k (bottom blue line), are mixed on the
first “virtual” beam-splitter (BS). The upper output mode C of
the BS (purple line) is fully absorbed, while the bottom mode
S (green line) feeds up one of the input ports of the second
virtual BS resulting in output modes k (upper red line) and
−k (bottom blue line).

The standing-wave picture leads us to important conclusion
that the absorber (2.1) can be implemented in a subwavelength
design only. We refer to the fact that the absorber can operate
in the regime of total transmission (2.7). Obviously, it can be
achieved iff the absorber is placed at the node of the standing
wave which requires a subwavelength thickness. This conclu-
sion is also valid for the absorber with t = r = 1/2 [15,16,24]
which has the opposite functionality: it is opaque for the sine
standing wave and transparent for the cosine standing wave.

III. QUANTUM REGIME OF CPA

The theory of the quantum regime of CPA can be built
similar to classical description. Electric field of the input and
output traveling light modes are expressed now through the
corresponding operators [25,26]:

Ê (in)
k = iE (q)â(in)

k ei(kz−ωτ ) + H.c.,

Ê (in)
−k = iE (q)â(in)

−k e−i(kz+ωτ ) + H.c.,

Ê (out)
k = iE (q)â(out)

k ei(kz−ωτ ) + H.c.,

Ê (out)
−k = iE (q)â(out)

−k e−i(kz+ωτ ) + H.c.,

where E (q) = √
h̄ω/2ε0V , h̄ is a reduced Planck constant, ε0 is

a vacuum permittivity, V is a quantization volume, and mode
amplitudes satisfy standard commutation relations:[

â(in)
k , â(in)†

k

] = [
â(in)

−k , â(in)†
−k

] = [
â(out)

k , â(out)†
k

]
= [

â(out)
−k , â(out)†

−k

] = 1,[
â(in)

k , â(in)†
−k

] = [
â(out)

k , â(out)†
−k

] = 0, (3.1)

and so on. Transformation of the traveling waves on the
absorber is nonunitary and, according to the fluctuation-
dissipation theorem, noise operators, f̂k and f̂−k , are appended
in order to validate (3.1),(

â(out)
k

â(out)
−k

)
= HTR

CPA

(
â(in)

k

â(in)
−k

)
+

(
f̂k

f̂−k

)
,

where commutation relations of noise operators, [ f̂k, f̂ †
k ] =

[ f̂−k, f̂ †
−k] = 1 − |t |2 − |r|2, are absorption dependent. Next,

we express total input Ê (in) and output Ê (out) fields in the basis
of quantized standing waves:

Ê (in) = Ê (in)
k + Ê (in)

−k

= E (q)
ST

[
Â(in)

C cos kz + iÂ(in)
S sin kz

]
e−iωτ + H.c.,

Ê (out) = Ê (out)
k + Ê (out)

−k

= E (q)
ST

[
Â(out)

C cos kz + iÂ(out)
S sin kz

]
e−iωτ + H.c.,

where E (q)
st = i

√
2E (q) and(

Â(in)
C

Â(in)
S

)
= HBS

(
â(in)

k

â(in)
−k

)
, (3.2)

(
â(out)

k

â(out)
−k

)
= HBS

(
Â(out)

C

Â(out)
S

)
(3.3)

with the matrix (2.11). Standard commutation relations stay
valid for amplitudes of the standing waves:[

Â(in)
C , Â(in)†

C

] = [
Â(in)

S , Â(in)†
S

]
= [

Â(out)
C , Â(out)†

C

]
= [

Â(out)
S , Â(out)†

S

] = 1,[
Â(in)

C , Â(in)†
S

] = [
Â(out)

C , Â(out)†
S

] = 0,
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and so on. By using (3.2) and (3.3), we may trace evolution of
the quantized standing waves:

Â(out)
C = f̂k + f̂−k√

2
≡ F̂C, (3.4)

Â(out)
S = â(in)

k − â(in)
−k√

2
= Â(in)

S , (3.5)

where only the noise operators contribute to the output ampli-
tude of the cosine wave (it ends up in a vacuum state), while
the sine wave experiences no changes. Full absorption of the
cosine wave imposes standard bosonic commutation relation
on the noise operator F̂C : [F̂C, F̂ †

C ] = 1. Boson-like behavior of
the noise operator enables full exchange of the quantum states
between the cosine wave and the absorber allowing quantum
light manipulation as it will be discussed in the following
sections. Transformations (3.4) and (3.5) can be written in a
matrix form with the matrix (2.14),(

Â(out)
C

Â(out)
S

)
= HST

CPA

(
Â(in)

C

Â(in)
S

)
+

(
F̂C

0

)
. (3.6)

Thus, to describe quantum regime of CPA we use the
following procedure:

(i) Switch the traveling waves basis [Fig. 1(a)] to the
standing-waves basis [Fig. 1(b)];

(ii) The cosine standing wave is fully absorbed while the
sine wave is not affected [Fig. 1(c)];

(iii) Mixture of the cosine wave in a vacuum state and the
sine wave in its initial state forms two output traveling waves
[Fig. 1(d)].

Due to the presence of the noise operator column in
(3.6), CPA transformation of quantum light cannot be written
in the form of matrix multiplication as (2.15) for classi-
cal light. Nevertheless, the sequence of transformations is
the same: beam-splitter-like transformation (3.2) followed by
CPA transformation (3.6), and finally, by beam-splitter-like
transformation (3.3). Accordingly, the diagram in Fig. 1(e) is
a valid representation of the quantum regime of CPA, where
the upper input port of the second beam-splitter is fed up with
a vacuum state now.

The theory of coherent perfect absorption developed here
is based on representation of monochromatic waves as a
combination of standing waves. In practice, the absorber is
illuminated by the wave packets rather than monochromatic
waves. Generalization of the theory for light modes of finite
duration can be done in the following way. A pair of con-
tinuum amplitude operators â(in)

k′ (ω′) and â(in)
−k′ (ω′) should be

defined for each spectral component ω′ with the wave num-
bers of opposite sign, |−k′| = k′ = c/ω′. Each pair of waves
with amplitudes â(in)

k′ (ω′) and â(in)
−k′ (ω′) excites the correspond-

ing pair of standing waves where the cosine wave is dissipated
while the sine wave is not affected. Dispersion (dependence
of optical response on frequency) of the absorber should be
considered [15]. If dispersion is negligible, single-mode the-
ory developed here holds. Dispersion of the typical coherent
perfect absorbers used in experiments is indeed negligible and
starts playing a noticeable role for very short (�10−20-fs)
pulses [27].

Deviation of the absorber optical response from (2.1)
does not change transformation of the sine wave amplitude,

Â(out)
S ∼ (t−r)Â(in)

S , since for any subwavelength absorber re-
lation t = 1 + r is valid [10,28] (absence of interaction at
the standing-wave node). In contrast, transformation of the
cosine wave amplitude, Â(out)

C ∼ (t + r)Â(in)
C , changes, and its

output state will be a mixture of input and vacuum states with
corresponding weights.

As it will be shown in the following sections, quantum
regimes of CPA may lead to generation of entanglement
between light and absorber. To observe and exploit these
phenomena, a system (atoms, plasmons, etc.) able to store
quantum states, rather than just dissipate the energy, should
be used as the absorber [21].

IV. CPA OF DISCRETE VARIABLE QUANTUM STATES

Depending on variables used, quantum optics and quantum
information appear in two forms: discrete and continuous
[29,30]. Discrete variable (DV) consideration is valid if opera-
tors of interest have discrete spectrum of eigenvalues—energy
of quantized oscillator and polarization of light are vivid ex-
amples. Dense coding [31,32], quantum teleportation [33,34],
quantum key distribution [35,36], quantum information pro-
cessing [37–39], quantum memory [40–45], and quantum
metrology [46] were proposed and demonstrated by exploiting
DV states, as well as an ability to realize quantum information
protocols in integrated design [47–49]. CPA of DV quan-
tum states may provide novel approaches for quantum light
control [10,11,22], manipulation of quantum states of light
[12,13,18], and light-matter interaction [21]. In this section,
we apply the developed theory of CPA to the case when DV
quantum states of light are used.

A. CPA of single-photon states

First, we consider CPA of a single photon with input trav-
eling waves carrying the path-entangled state:

|
〉k,−k = 1√
2

(|1〉k|0〉−k + ei�θ |0〉k|1〉−k ). (4.1)

Here, the term |1〉k|0〉−k describes a single photon pre-
sented in mode k and a vacuum state in mode −k, and so
on, and �θ is a phase difference between the wave-function
components. Since the standing waves appear as a result of
the BS transformation (3.2) of the traveling waves, we use the
following decomposition:

|1〉k|0〉−k → 1√
2

(|1〉C |0〉S + |0〉C |1〉S ), (4.2)

|0〉k|1〉−k → 1√
2

(|1〉C |0〉S − |0〉C1〉S ). (4.3)

By substituting them into (4.1), we find the wave function
of the standing waves (with accuracy to a common phase):

|�〉C,S = cos
�θ

2
|1〉C |0〉S − i sin

�θ

2
|0〉C |1〉S.

When the input traveling waves are in a symmetric super-
position state (�θ = 2πn), the photon is coupled to the cosine
standing wave only. The regime of deterministic photon ab-
sorption takes place [Fig. 2(a)]. Opposite, an antisymmetric
superposition state (�θ = (2n + 1)π ) of the traveling waves
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FIG. 2. CPA of single-photon states. (a) Symmetric state of
the input modes k and −k (input traveling waves) is coupled to
the mode C (the cosine standing wave) which is fully absorbed.
(b) Antisymmetric state of the input modes k and −k is coupled to
the mode S (the sine standing wave) which escapes dissipation and is
coupled back to antisymmetric state of the output modes k and −k.

excites the sine standing wave only, which experiences no
losses and it is transformed back into the output modes k and
−k [Fig. 2(b)],

|0〉C |1〉S → 1√
2

(|1〉k|0〉−k − |0〉k|1〉−k ). (4.4)

In the general case, the photon is coherently distributed
between the cosine and sine waves with the probability of
cos2(�θ/2) to be absorbed. Since the only way to pass
through the absorber is by coupling to the sine standing wave,
the output photon can leave the absorber in the state (4.4) only.
In this sense, a coherent perfect absorber works as a quantum
state filter, transmitting only an antisymmetric part of the wave
function. An absorber with t = r = 1/2 transmits symmetric
and absorbs antisymmetric components of the wave function.

B. CPA of two-photon states

Two different second quantization formalisms – either
bosonic [15] or fermionic [13] – have been used to describe
CPA of two-photon states. Here, we consider CPA of two-
photon states under a single theory of CPA of quantized
standing waves.

All possible states of two photons, photon A and photon B,
occupying two traveling wave modes (mode k and mode −k)
can be expressed through Bell states [50]:

|ψ (+)〉k,−k = 1√
2

(|A〉k|B〉−k + |B〉k|A〉−k ), (4.5)

|ψ (−)〉k,−k = 1√
2

(|A〉k|B〉−k − |B〉k|A〉−k ), (4.6)

|ϕ(+)〉k,−k = 1√
2

(|A〉k|B〉k + |A〉−k|B〉−k ), (4.7)

|ϕ(−)〉k,−k = 1√
2

(|A〉k|B〉k − |A〉−k|B〉−k ). (4.8)

Here, the combination |A〉k|B〉−k reads as “photon A is
presented in mode k and photon B is presented in mode −k,”
and so on. States (4.5) and (4.6) describe scenarios when
one photon is coming from each side of the absorber, and

FIG. 3. CPA of two-photon Bell states. The result of CPA is
explained by Bell states transformation. If the output of the first
BS transformation is the NOON state, probabilistic two-photon ab-
sorption follows [(a) and (c)]. In contrast, if one photon is always
presented in output ports of the first BS, deterministic one-photon
absorption takes place [(b) and (d)].

their form reflects symmetrisation postulate of quantum me-
chanics. States (4.7) and (4.8) are NOON states with N=2.
States |ψ (+)〉, |ϕ(+)〉, and |ϕ(−)〉 possess a bosonic symmetry,
while state |ψ (−)〉 has a fermionic symmetry and should be
accompanied by an antisymmetric polarization (or other de-
gree of freedom) part of the wave function so that the latter
has a bosonic symmetry, as it should be for the photons. BS
transformation of the states (4.5)–(4.8) can be found similar
to (4.2) and (4.3), where

|A〉±k → 1√
2

(|A〉C ± |A〉S ), (4.9)

|B〉±k → 1√
2

(|B〉C ± |B〉S ). (4.10)

By substituting (4.9) and (4.10) into (4.5)–(4.8), we find
the corresponding states of the standing waves:

|ψ (+)〉k,−k → |ϕ(−)〉C,S,

|ψ (−)〉k,−k → |ψ (−)〉C,S,

|ϕ(+)〉k,−k → |ϕ(+)〉C,S,

|ϕ(−)〉k,−k → |ψ (+)〉C,S,

where, for instance, |ϕ(−)〉C,S = 1/
√

2(|A〉C |B〉C − |A〉S|B〉S )
and so on.

Similar to boson bunching in Hong-Ou-Mandel effect [51],
the two-photon state |ψ (+)〉 of the traveling waves is trans-
formed into the NOON(−) state |ϕ(−)〉 of the standing waves
[Fig. 3(a)]. Since the cosine wave is fully absorbed, proba-
bilistic zero- or two-photon absorption follows. If two photons
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survive (both photon are “passing through” the sine wave), the
output modes state can be found straightforwardly:

|A〉S|B〉S → 1
2 (|A〉k|B〉k + |A〉−k|B〉−k − |A〉k|B〉−k

− |A〉−k|B〉k ), (4.11)

where with 50% probability both photons are found in the
same mode and with 50% probability – in different modes.

The fermionic state |ψ (−)〉 of the traveling waves is an
eigenstate of any BS transformation (in agreement with Pauli
exclusion principle), and it excites the fermionic state of the
standing waves [Fig. 3(b)]. One photon is always presented
in the cosine wave and it is absorbed. The second photon is
coupled to the sine wave which, in turn, excites the single-
photon antisymmetric state of the output modes, similar to
(4.4). The same conclusion is valid for the input state |ϕ(−)〉
which is transformed into the |ψ (+)〉 state of the standing
waves [Fig. 3(d)]. Again, one photon is always presented in
the cosine wave and the second one is presented in the sine
wave.

The NOON(+) state |ϕ(+)〉 is an eigenstate of the ma-
trix (2.11) and it is preserved during the BS transformation
[Fig. 3(c)]. The NOON(+) state of the standing waves exhibits
similar to the NOON(−) state behavior with 50% probability
of two-photon absorption and 50% probability to find both
photons in the output modes k and −k in the state (4.11).

For all two-photon Bell states we get 50% of the average
light absorption. At the same time, statistics of the individual
events differs from probabilistic zero- or two-photon absorp-
tion to deterministic one-photon absorption depending on the
input state. These phenomena were demonstrated experimen-
tally in Refs. [12,14,20].

C. CPA of NOON states with arbitrary N

In this section, we introduce the regime of CPA of NOON
state

|NOON〉k,−k = 1√
2

(|N〉k|0〉−k + ei�θ |0〉k|N〉−k ),

with arbitrary number of entangled photons N. Here the term
|N〉k|0〉−k stands for N photons in the mode k, and zero pho-
tons in the mode −k, and so on, and �θ is a phase difference
between two terms. By rewriting the NOON state as

|NOON〉k,−k

= 1√
2
√

N!

({
â(in)†

k

}N + ei�θ
{
â(in)†

−k

}N)|0〉k|0〉−k,

and using the reverse BS transformation (3.2), we get the input
state of the standing waves [52]:

|NOON〉k,−k → 1√
2N−1

N∑
m=0

(
N

m

)1/2

× cos

{
1

2
(πm + �θ )

}
|N − m〉C |m〉S.

Here (N
m) = N!

(N−m)!m! is a binomial coefficient and the term
|N−m〉C |m〉S describes the state with N−m photons in the
cosine standing wave and m photons in the sine standing wave.

This representation allows us to analyze the outcome of the
CPA process. For instance, the three-photon NOON state of
the counterpropagating waves is transformed into

1

2

{
cos

�θ

2
(|3〉C |0〉S −

√
3|1〉C |2〉S )

+ sin
�θ

2
(|0〉C |3〉S −

√
3|2〉C |1〉S )

}

state of the standing waves. Thus, if �θ = 2πn, three-photon
absorption takes place with the probability of 25%, while one
photon is absorbed with the probability of 75%. If �θ =
(2n + 1)π , either zero or two photons are absorbed, where
two-photon absorption takes place with the probability of
75% – higher than for NOON(+) state with N=2 [14]. For
the four-photon NOON state of the counterpropagating input
waves, the standing-waves state is

1

2
√

2

{
cos

�θ

2
(|4〉C |0〉S + |0〉C |4〉S −

√
6|2〉C |2〉S )

+ 2 sin
�θ

2
(|3〉C |1〉S − |1〉C |3〉S )

}
.

Probabilistic two- or four-photon absorption takes place
if �θ = 2πn (with probabilities of 12.5 and 75%, accord-
ingly) and probabilistic one- or three-photon absorption takes
place if �θ = (2n + 1)π (with equal 50% probabilities). It is
straightforward to get the state of the output light modes k and
−k by applying the second BS transformation to the state of
the sine standing wave.

In a similar manner, CPA of NOON states with higher N
and other DV quantum states, such as multiphoton Fock [53],
Greenberger-Horne-Zeilinger [54], mixed, etc. states can be
described, which we leave out of the scope of this paper.

V. CPA OF CONTINUOUS VARIABLE QUANTUM STATES

A parallel branch of quantum information deals with con-
tinuous variables (CV) states [29,30] where operators of
interest have continuous spectra of eigenvalues. Quadrature
amplitudes of quantum light and collective spin of atomic
ensemble are among widely used examples [55]. Protocols
of quantum teleportation [56–59], quantum information pro-
cessing [60,61], quantum communication [62], and quantum
memory [63–69] were proposed and demonstrated with CV
states, as well as an ability to implement them in integrated
platforms [70–72]. Similar to CPA of DV quantum states, CPA
of CV states may be used to control and manipulate quantum
states of light [17,19] and to enable advanced protocols of
light-matter interaction [21]. In this section, we analyze CPA
of the most exploitable states in CV quantum information –
squeezed and entangled states, and shortly outline CPA of
other CV states. Since CPA of CV quantum states has not
been analyzed from the states evolution point of view, we
first recall major properties of CV quantum states and their
representation in a phase space, and it can be found in more
detail elsewhere [26,29,30,73,74].
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A. CV quantum states

Each optical mode with amplitude â = (X̂1 + iX̂2)/2 is as-
sociated with a quantized oscillator, where optical quadrature
amplitudes, X̂1 and X̂2, have a meaning of oscillator posi-
tion and momentum with commutation relation [X̂1, X̂2] = 2i.
Variance of position and momentum (�X1)2 and (�X2)2,

(�Xi )
2 = 〈(X̂i )

2〉 − (〈X̂i〉)2, i = 1, 2,

are linked through Heisenberg uncertainty relation
(�X1)2(�X2)2 � 1, and can be measured by homodyne
detection [26,75]. CV quantum state is reflected in a
phase space by a “coherent” arrow with coordinate
(〈X̂1〉, 〈X̂2〉) accompanied by the uncertainty region.
For instance, a coherent state |α〉 (where α = |α|eiθ is
a complex number) is represented by a coherent arrow
with coordinate (2|α| cos θ, 2|α| sin θ ) and uncertainty,
or noise region shaped into a circle with radius 1
(�X1 ≡

√
(�X1)2 = 1, �X2 ≡

√
(�X2)2 = 1). The sum of

a coherent arrow with a random arrow within an uncertainty
region defines particular realization of the state in a single trial
[76]. Uncertainty region of the squeezed states is represented
by the ellipse with one of the radii smaller than 1 where
for ideal squeezing (�X1)2(�X2)2 = 1 and for nonideal
squeezing (�X1)2(�X2)2 > 1 [26].

We express amplitudes of the input counterpropagating and
standing waves through their quadrature components:

â(in)
k = X̂ (in)

k,1 + iX̂ (in)
k,2

2
, â(in)

−k = X̂ (in)
−k,1 + iX̂ (in)

−k,2

2
,

Â(in)
C = X̂ (in)

C,1 + iX̂ (in)
C,2

2
, Â(in)

S = X̂ (in)
S,1 + iX̂ (in)

S,2

2
,

where the BS transformation (3.2) is expressed now as

X̂(in)
C,i = X̂ (in)

k,i + X̂ (in)
−k,i√

2
, X̂(in)

S,i = X̂ (in)
k,i − X̂ (in)

−k,i√
2

,

where i = 1, 2. As it was discussed in Sec. III, the sine stand-
ing wave is not affected by the absorber, and

X̂(out)
S,i = X̂(in)

S,i ,

while the cosine wave amplitude is replaced by the noise
operator (3.4), and

X̂(out)
C,i = X̂F,i.

Here F̂C = (X̂F,1 + iX̂F,2)/2 and a vacuum state is associ-
ated with this amplitude. Finally, the output traveling wave
amplitudes are expressed as

â(out)
k = X̂ (out)

k,1 + iX̂ (out)
k,2

2
, â(out)

−k = X̂ (out)
−k,1 + iX̂ (out)

−k,2

2
,

and, according to the second BS transformation (3.3),

X̂ (out)
k,i = X̂F,i + X̂ (out)

S,i√
2

, X̂ (out)
−k,i = X̂F,i − X̂ (out)

S,i√
2

. (5.1)

To quantify the amount of entanglement between any two
modes, operators of relative position and total momentum are
introduced (operators of total position and relative momentum
can be used instead). For instance, relative position Q̂k,−k and

total momentum P̂k,−k of the input counterpropagating waves
are defined as

Q̂k,−k = X̂ (in)
k,1 − X̂ (in)

−k,1√
2

, (5.2)

P̂k,−k = X̂ (in)
k,2 + X̂ (in)

−k,2√
2

. (5.3)

As a measure of entanglement between two modes, we use
the inseparability parameter Sk,−k [77]:

Sk,−k = (�Qk,−k )2 + (�Pk,−k )2.

If two optical modes are in a coherent state, they are
characterized by the quantum shot noise with Sk,−k = 2. For
separable states, the inseparability parameter is equal or ex-
ceeds the shot noise,

Sk,−k � 2,

while for inseparable, or entangled states strong correlations
“dump” the noise,

Sk,−k < 2.

In this section, we will distinguish between intensity and
coherence absorption [17]. Intensity of the absorbed light Iabs

for any input state is defined by intensity of the cosine wave,

Iabs = 〈
Â(in)†

C Â(in)
C

〉 = Iin

2
+ Re

{〈
â(in)†

k â(in)
−k

〉}
.

Here transformation (3.2) was used, and Iin = I (in)
k + I (in)

−k

is intensity of the input light (I (in)
k = 〈â(in)†

k â(in)
k 〉 and I (in)

−k =
〈â(in)†

−k â(in)
−k 〉 are intensities of each input mode). Thus, intensity

absorption coefficient

AI = Iabs

Iin
= 1

2
+ Re

{〈
â(in)†

k â(in)
−k

〉}
Iin

(5.4)

is defined by the correlations between the input modes,
〈â(in)†

k â(in)
−k 〉. It can be simplified for separable, nonentangled

input states as

AI
sep = 1

2
+ Re

{〈
â(in)

k

〉∗〈
â(in)

−k

〉}
Iin

, (5.5)

where averaging of amplitude operators is done separately.
Absorption coefficient of coherence (in Glauber’s sense) is
defined as

AC = Cabs

Cin
= 1

2
+ Re

{〈
â(in)

k

〉∗〈
â(in)

−k

〉}
Cin

. (5.6)

Here Cin = C(in)
k + C(in)

−k is the total input coherence with

the corresponding coherence of each mode C(in)
k = |〈â(in)

k 〉|2
and C(in)

−k = |〈â(in)
−k 〉|2, and the absorbed coherence Cabs =

CC = |〈Â(in)
C 〉|2 is defined by the coherence of the cosine

standing wave. Opposite to intensity absorption, AC does not
depend on correlations between the input modes. Coherence
can be thought of as a measure of “classical interference
ability” of light: if two light modes are mixed on a beam-
splitter the coherent components will interfere in a classical
sense as a phase-dependent redistribution of average light
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FIG. 4. CPA of identically squeezed states. From left to right: Identically squeezed states (top red and bottom blue, coherent state
uncertainty is shown for reference by dashed circles) of the input modes k and −k are transformed into squeezed states (top purple and
bottom green ellipses) of the standing waves by the first BS transformation. The cosine standing wave is absorbed and its state is replaced
by a vacuum state (top purple circle) while the sine wave is not affected. The state of the output modes k and −k (top red and bottom blue
ellipses) is defined by the second BS transformation. Each state is represented by its coherent component (thick arrow) and uncertainty region.
Randomly chosen thin arrow within uncertainty region corresponds to a particular realization of the state. States evolution symbolically shown
by transformation of arrows and uncertainty regions.

intensity. In contrast, the noise component of light, which does
not contribute to coherence, will be split equally between the
output ports of the beam-splitter. Coherence defines a length
of the corresponding coherent arrow in a phase space, where
the result of mixture of two arrows depends on their length
and mutual orientation. We note that intensity absorption co-
efficient in its general form (5.4) depends on both coherent
and noise components of light.

B. CPA of squeezed states

In this section, the input counterpropagating waves are
assumed to be in coherent squeezed states, |αk, ζk〉k and
|α−k, ζ−k〉−k , where αk = |αk|eiθk , α−k = |α−k|eiθ−k , ζk =
ξkeiφk , and ζ−k = ξ−keiφ−k are complex numbers, and ξk and
ξ−k are squeezing parameters (real numbers). To depict the
state |αk, ζk〉k in a phase space, one may start with a coherent
arrow (2|αk| cos θk, 2|αk| sin θk ) and a unit radius uncertainty
circle which are then squeezed in rotated by φk/2 phase-space
coordinate frame [26,73]. To find coefficients of intensity and
coherence absorption, (5.5) and (5.6) should be solved with
the input (separable) states |αk, ζk〉k and |α−k, ζ−k〉−k . De-
tailed analysis of these coefficients as a function of the input
state parameters was done in Ref. [17], and we do not replicate
the calculations here. Instead, we consider the problem from
the state evolution point of view which allows us to explain
the results of squeezed light interference on coherent perfect
absorber. We start our consideration with an important case of
two identical input squeezed states:

αk = α−k = α ≡ |α|eiθ and ζk = ζ−k = ζ ≡ ξeiφ. (5.7)

As it was shown in Ref. [17], in this case, the state of
the output light is completely separable from the state of the
absorber though the reasons of this effect were not explained.

The states of the input modes k and −k are depicted by
coherent arrows in a phase space with coordinates

〈
X̂ (in)

k,1

〉 = 〈
X̂ (in)

−k,1

〉 = 2|α|(cos θ cosh ξ − cos (θ − φ) sinh ξ ),〈
X̂ (in)

k,2

〉 = 〈
X̂ (in)

−k,1

〉 = 2|α|(sin θ cosh ξ + sin (θ − φ) sinh ξ ),

and variance

(
�X (in)

k,1

)2 = (
�X (in)

−k,1

)2 = cosh 2ξ − cos φ sinh 2ξ, (5.8)(
�X (in)

k,2

)2 = (
�X (in)

−k,2

)2 = cosh 2ξ + cos φ sinh 2ξ . (5.9)

For instance, for θ = φ = 0, each state is represented by
the horizontal coherent arrow with the uncertainty ellipse of
radii e−ξ and eξ , as it is schematically shown in “Input state”
box in Fig. 4 (top red and bottom blue states). Variance of the
relative position (5.2) and total momentum (5.3) of the input
modes k and −k,

(�Q‖
k,−k )2 = cosh 2ξ − cos φ sinh 2ξ, (5.10)

(�P‖
k,−k )2 = cosh 2ξ + cos φ sinh 2ξ, (5.11)

indicate lack of entanglement,

S‖
k,−k = e2ξ + e−2ξ � 2, (5.12)

as it should be for the input separable state (index “‖”
stands for parallel orientation of the squeezing ellipses of two
identical input states). The first BS transformation results in
squeezed states of the standing waves,

(�XC,1)2 = (�XS,1)2 = (
�X (in)

k,1

)2
,

(�XC,2)2 = (�XS,2)2 = (
�X (in)

k,2

)2
,
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FIG. 5. CPA of orthogonally squeezed states. From left to right: Orthogonally squeezed vacuum states (top red and bottom blue ellipses) of
the input modes k and −k are transformed into entangled states (top purple and bottom green circles of large radius) of the standing waves by
the first BS transformation. The cosine standing wave is fully absorbed and its state is replaced by vacuum while the sine wave is not affected.
State of the output modes k and −k (top red and bottom blue circles) is defined by the second BS transformation. Also see caption to Fig. 4.

where the in-phase coherent components are transferred to the
cosine wave leaving the sine wave in a squeezed vacuum state
(purple and green states in “Input state” box in Fig. 4):〈

X̂ (in)
C,1

〉 =
√

2
〈
X̂ (in)

k,1

〉
,

〈
X̂ (in)

C,2

〉 =
√

2
〈
X̂ (in)

k,2

〉
, (5.13)〈

X̂ (in)
S,1

〉 = 〈
X̂ (in)

S,2

〉 = 0. (5.14)

Thus, correlations between the relative position
Q̂C,S = (X̂ (in)

C,1 − X̂ (in)
S,1 )/

√
2 and total momentum P̂C,S =

(X̂ (in)
C,2 + X̂ (in)

S,2 )/
√

2 of the standing waves repeat those of the
input traveling waves, and

S‖
C,S = S‖

k,−k = e2ξ + e−2ξ � 2,

where S‖
C,S is the inseparability parameter of the standing

waves. Since the cosine wave is imprinted to the absorber, the
output light-absorber state will be separable as well. More-
over, this result stays valid for αk �= α−k in Eq. (5.7) since
(5.8)–(5.12) are independent from these values. Thus, sep-
arability of the light-absorber state arises from the fact that
two identically squeezed states do not produce entanglement
through a BS transformation. Next, according to (5.13) and
(5.14) the regime of total coherence absorption takes place
for the state parameters (5.7). At the same time, intensity is
not fully absorbed, since the noise components of the input
traveling waves are equally distributed between the standing
waves. For the same reason, in general, the regimes of total
absorption and total transmission of intensity are not possible
for any squeezed (as well as for entangled) states. Finally,
the state of the output modes k and −k can be restored as a
result of the BS transformation (5.1) of squeezed and coherent
vacuum states (“Output state” box in Fig. 4) with〈

X̂ (out)
k,i

〉 = 〈
X̂ (out)

−k,i

〉 = 0,

and(
�X (out)

k,1

)2 = (
�X (out)

−k,1

)2 = (1 + cosh 2ξ − cos φ sinh 2ξ )

2
,

(
�X (out)

k,2

)2 = (
�X (out)

−k,2

)2 = (1 + cosh 2ξ + cos φ sinh 2ξ )

2
,

that is, as a nonideal squeezed vacuum state with
(�X (out)

k,1 )2(�X (out)
k,2 )2 = (�X (out)

−k,1 )2(�X (out)
−k,2 )2 > 1.

The opposite outcome – maximally entangled absorber-
light state – would be of great interest for the protocols of
light-matter interaction [21,78]. To achieve this, we use the
fact that a BS transformation generates entanglement given
two input modes are in orthogonally squeezed states. Let us
consider two input traveling modes in the states |0,−ξ 〉k and
|0, ξ 〉−k with real ξ > 0 (that is, φk = π and φ−k = 0). These
states are shown in “Input state” box in Fig. 5. Compared to
(5.8) and (5.9), quadratures of two input modes are squeezed
along different directions:(

�X (in)
k,1

)2 = (
�X (in)

−k,2

)2 = e2ξ ,(
�X (in)

k,2

)2 = (
�X (in)

−k,1

)2 = e−2ξ .

As it is expected for the input separable state, no correla-
tions are presented between the modes:

S⊥
k,−k = e2ξ + e−2ξ > 2

(index “�” stands for orthogonal orientation of the squeezing
ellipses of two input states). After the first BS transformation,
we get the standing waves with “noisy” quadratures (purple
and green states in “Input state” box in Fig. 5),(

�X (in)
C,1

)2 = (
�X (in)

C,2

)2 = (
�X (in)

S,1

)2 = (
�X (in)

S,2

)2

= e2ξ + e−2ξ

2
,

but their relative position and total momentum [defined simi-
lar to (5.2) and (5.3)] exhibit strong correlations:

S⊥
C,S = 2e−2ξ < 2. (5.15)

Entangled state of the standing waves is then transferred to
the light-absorber system. This result holds valid if the input
states are built from nonzero coherent components αk and α−k .
The second BS transformation is adverse for entanglement
(due to amplitude splitting and addition of the vacuum noise)
but can be reversed by sending the output modes k and –k
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FIG. 6. Inseparability parameter of the standing-waves state for
CPA of squeezed states. Inseparability parameter Ssq

C,S as a function
of squeezing angles φk and φ−k of the input traveling waves for
equal squeezing parameters ξk = ξ−k = 1. Black-to-blue region cor-
responds to inseparable, or entangled state of the standing waves,
while the rest of the area corresponds to separable state. Since the
cosine wave is imprinted to the absorber, the same graph represents
inseparability parameter for the output light-absorber state.

through a “real” 50:50 beam-splitter. One of the outputs of
the real beam-splitter recovers the sine wave amplitude,

1√
2

(
â(out)

k − â(out)
−k

)
,

since two BS-transformations are equivalent to identity ma-
trix.

For general input states |αk, ζk〉k and |α−k, ζ−k〉−k with
arbitrary parameters, inseparability is a function of ellipses
orientation and squeezing parameters:

Ssq
C,S = cosh 2ξk + cosh 2ξ−k + cos φk sinh 2ξk

− cos φ−k sinh 2ξ−k.

For equal squeezing parameters, ξk = ξ−k = ξ , insepara-
bility reaches minimum at φk = π and φ−k = 0, as it is
expected for orthogonally squeezed states (5.15) (Fig. 6).
The state of the standing waves is still inseparable within
the black-to-blue area in Fig. 6, the radius of which depends
on the squeezing parameter ξ . Outside of this region, the
states are separable. The latter regime is a generalization of
the condition (5.7). For fixed angles φk = π and φ−k = 0
but ξ1 �= ξ2, inseparability parameter for the standing waves
decreases with an increase of the squeezing parameters:

SSq
C,S = e−2ξ1 + e−2ξ2 < 2.

As we have shown, the standing-wave approach allows not
only determining absorption of light intensity and coherence,
but also following quantum states evolution, providing a clear
picture of the underlying processes.

C. CPA of CV entangled (EPR) states

In this section, we consider CV entangled, or EPR
(Einstein-Podolsky-Rosen) state for input counterpropagating
waves, â(in)

k and â(in)
−k . As it was discussed in the previous

section, entangled state arises from interference of orthogo-
nally squeezed states on a 50:50 beam-splitter [57,79]. (Other
ways to generate entangled states include parametric down-
conversion process in nonlinear crystals [80–82] and atomic
ensembles [83–85].) Thus, it is beneficial, without loss of
generality, to introduce two virtual “preceding” modes g and
h with corresponding amplitudes

ĝ = (X̂g,1 + iX̂g,2)

2
, ĥ = (X̂h,1 + iX̂h,2)

2
,

which are prepared in orthogonally squeezed states |αg,−ξ 〉g

and |αh, ξ 〉h. Here αg = |αg|eiθg and αh = |αh|eiθh are complex
numbers, and squeezing parameter ξ > 0 is a real number.
Average values of ĝ and ĥ [26],

〈ĝ〉 = eξ Re(αg) + ie−ξ Im(αg) ≡ α′
g, (5.16)

〈ĥ〉 = e−ξ Re(αh) + ieξ Im(αh) ≡ α′
h, (5.17)

define coordinates of coherent arrows in a phase space with
variance

(�Xg,1)2 = (�Xh,2)2 = e2ξ ,

(�Xg,2)2 = (�Xh,1)2 = e−2ξ .

The input traveling waves of interest, â(in)
k and â(in)

−k , are
considered as a result of BS transformation of the preceding
modes: (

â(in)
k

â(in)
−k

)
= HBS

(
ĝ

ĥ

)

with matrix (2.11). The state of modes k and −k are reflected
in a phase space by using their average values,(〈

â(in)
k

〉
〈
â(in)

−k

〉
)

= HBS

(
α′

g

α′
h

)
≡

(
αk

α−k

)
, (5.18)

and variance

(�Xk,1)2 = (�Xk,2)2 = (�X−k,1)2

= (�X−k,2)2 = e2ξ + e−2ξ

2
.

Large uncertainty regions of the individual modes accom-
panied by strong correlations in the relative position and total
momentum is characteristic of entangled states, and, indeed,

(�Qk,−k )2 = (�Pk,−k )2 = e−2ξ ,

SEnt
k,−k = 2e−2ξ < 2.

The greater preceding squeezing, the more entangled states
one gets. Entangled state of the input traveling waves is
shown by red and blue circles in “Input state” box in Fig. 7
for αk = α−k = 0. Transformation of the counterpropagating
waves into the standing waves results in a simple outcome–the
standing waves repeat the preceding modes:(

Â(in)
C

Â(in)
S

)
= HBS

(
â(in)

k

â(in)
−k

)
= I

(
ĝ

ĥ

)
,
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FIG. 7. CPA of CV entangled (EPR) states. From left to right: Entangled state (top red and bottom blue circles of large radius) of the input
modes k and −k is transformed into orthogonally squeezed states (top purple and bottom green ellipses) of the standing waves by the first BS
transformation. The cosine standing wave is fully absorbed and its state is replaced by vacuum while the sine standing wave is not affected.
State of the output modes k and −k (top red and bottom blue) is defined by the second BS transformation. Also see caption to Fig. 4.

where I is an identity matrix. The cosine wave is excited into
the squeezed state |αg,−ξ 〉C with the well-defined momentum(

�X (in)
C,2

)2 = e−2ξ ,

and the sine wave is excited into the squeezed state |αh, ξ 〉S

with the well-defined position(
�X (in)

S,1

)2 = e−2ξ .

Since the standing-waves state is separable,
SEnt

C,S = e2ξ + e−2ξ > 2,

the state of the absorber-output light system will be separable
as well. Intensity, presented initially in the mode g,

〈ĝ†ĝ〉 = |αg|2 cosh 2ξ + |αg|2 cos 2θg sinh 2ξ + sinh2ξ,

(5.19)
is absorbed, while intensity of the mode h,

〈ĥ†ĥ〉 = |αh|2 cosh 2ξ − |αh|2 cos 2θh sinh 2ξ + sinh2ξ,

(5.20)

is split between the output light modes. Intensity absorption
coefficient can be found as

AI
ent = 〈ĝ†ĝ〉

〈ĝ†ĝ〉 + 〈ĥ†ĥ〉 , (5.21)

that is, as a function of parameters of the preceding modes
g and h. By reversing the transformation (5.18) and using
(5.16) and (5.17), we may express AI

ent as a function of the
parameters of the input modes k and −k. For instance, for
|αk| = |α|eiθk and |α−k| = |α|eiθ−k , we get

θg = atan

[
e2ξ tan

θk + θ−k

2

]
,

θh = atan

[
−e−2ξ cot

θk + θ−k

2

]
,

|αg| =
√

2e−ξ |α| cos
�θ

2
cos

θk + θ−k

2

/
cos θg,

|αh| = −
√

2eξ |α| sin
�θ

2
sin

θk + θ−k

2

/
cos θh,

where �θ = θk − θ−k . These relations should be substituted
into (5.19) and (5.20) and, finally, into (5.21). Intensity ab-
sorption coefficient as a function of θk and |α| (θ−k = 0)
for different values of ξ is shown in Figs. 8(a)–8(c). For
small ξ [Fig. 8(a)], the input modes state is close to coherent
(classical) state with Sent

k,−k ≈ 2. In this case, close to classical
regime behavior is observed with corresponding oscillation
between the regimes of total absorption and total transmission
independent of coherent amplitude of input light |α|. With
increase of ξ [Figs. 8(b) and 8(c)], the inseparability param-
eter decreases and nonclassical behavior takes place, where
absorption depends on both the phase relation between the
input modes and the ratio between |α| and ξ . When intensity
of coherent component of input light, |α|2, is greater than
intensity of incoherent component (intensity of fluctuations,
sinh2ξ ), classical behavior dominates. In the opposite case of
large incoherent component, light is split equally between the
cosine and sine standing waves with following ≈50% phase-
independent absorption. This transition from the classical to
quantum regimes with the increase of squeezing parameter ξ

is clearly seen in Fig. 8(d) where coherent amplitude is fixed,
|α| = 1. In the case of vacuum entangled state, α = 0, only
random fluctuation component is presented, and AI

ent = 1/2
for any degree of entanglement.

Similar, coherence of the preceding mode g, |〈ĝ〉|2 = |α′
g|2,

is absorbed, while coherence of the mode h, |〈ĥ〉|2 = |α′
h|2, is

transmitted to the output light modes. Coherence absorption
coefficient (5.6),

AC
ent = |〈ĝ〉|2

|〈ĝ〉|2 + ∣∣〈ĥ〉∣∣2 ,

is expressed through parameters of the input modes k and −k
by using transformation (5.18):

AC
ent = |αk|2 + |α−k|2 + 2|αk||α−k| cos �θ

2(|αk|2 + |α−k|2)
.
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FIG. 8. Intensity absorption of CV entangled (EPR) states. (a)–(c) Intensity absorption coefficient AI
ent as a function of the phase θk and

amplitude |α| of the input mode k. Squeezing parameter ξ of preceding modes equals to 0.1 (a), 0.5 (b), and 1.5 (c). The input traveling waves
are assumed to have equal coherent amplitudes |αk | = |α−k | = |α| and angle θ−k is set to zero. (d) AI

ent as a function of the phase θk and
squeezing parameter ξ with fixed coherent components, |αk | = |α−k | = 1.

For |αk| = |α−k|, coherence absorption coefficient

AC
ent = 1 + cos �θ

2
(5.22)

is a function of the phase difference �θ between coherent
components of the corresponding amplitudes (or the angle
between coherent arrows in a phase space). As we discussed
previously, coherence defines component of light which in-
terferes in a classical sense, and Eq. (5.22) reflects the law
of the classical regime of CPA. If all coherence of the input
light is transferred to the cosine standing wave (�θ = 2πn),
the regime of total absorption of coherence follows. Oppo-
site, if all coherence is transferred to the sine standing wave

(�θ = (2n + 1)π ), the regime of total transmission of coher-
ence takes place. To compare absorption of coherence with
absorption of intensity, we plot AC

ent [Fig. 9(a)] for the same
set of parameters as it is done for AI

ent in Figs. 8(a)–8(c). For
small squeezing parameters, absorption of intensity [Fig. 8(a)]
is almost equivalent to absorption of coherence. In this case,
the state of input light is close to coherent (classical) state, and
coherence and intensity is, basically, the same variable. For
instance, for input mode k one gets Ik ≈ |〈â(in)

k 〉|2 = Ck . By
increasing the parameter ξ (equivalent to increasing the degree
of entanglement of the input counterpropagating modes), one
increases the amount of energy presented in random fluctu-

FIG. 9. Coherence absorption of CV entangled (EPR) states. (a) Coherence absorption coefficient AC
ent as a function of the phase θk and

amplitude |α| of the input mode k. The input traveling waves are assumed to have equal coherent amplitudes |αk | = |α−k | = |α| and the phase
θ−k is set to zero. (b) AC

ent as a function of the phase θk and ratio |αk |/|α−k |. In both cases θ−k = 0.
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TABLE I. Coherent perfect absorption of quantum states of light.

ations and intensity absorption coefficient tends to 1/2. At
the same time, coherence absorption coefficient, independent
of ξ , still oscillates between 0 and 1. Thus, absorption of
coherence can either be greater or less than absorption of
intensity. For |αk| �= |α−k|, coherence absorption coefficient
tends to 1/2 with increase of |αk|/|α−k| ratio [Fig. 9(b)].

D. CPA of other CV states

In a similar manner, interference of other CV quantum
states may be considered. As a first example, we shortly
outline CPA of Schrödinger cat states (SCs). In this case,
the input counterpropagating modes k and −k are set in a
superposition of coherent states of opposite phases [86,87]
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(normalization factor is omitted):

|SC(α)〉k ∼ |α〉k + | − α〉k,

|SC(α)〉−k ∼ |α〉−k + | − α〉−k .

The first BS transformation results in a superposition of
Schrödinger cat states of the standing waves of the form
[88–90]

|SC(
√

2α)〉C |0〉S + |0〉C |SC(
√

2α)〉S.

Thus, all input light is absorbed with probability of 50%.
With the same probability of 50%, all light is transmitted and
the state of the output light modes can be found as

|SC(
√

2α)〉S → |α〉k| − α〉−k + | − α〉k|α〉−k .

As a second example, we consider the regime of “asym-
metric” illumination of the absorber by coherent |α〉k and
squeezed |0, ζ 〉−k states. The first BS transformation gener-
ates NOON state of the standing waves [91,92]:

1√
2

(|N〉C |0〉S + |0〉C |N〉S ),

where the number of excitations is defined by the ratio |α|2/ξ .
Again, light is absorbed or transmitted with 50% probability.

In a third example, we consider asymmetric illumination
of the absorber by coherent |α〉k and Schrödinger cat |α〉−k +
| − α〉−k states [93]. The first BS transformation results in the
entangled state of the standing waves:

∼ |
√

2α〉C |0〉S + |0〉C |
√

2α〉S,

where the input light can be found either in the cosine or
the sine standing waves. For all three cases considered here
〈â(in)

k 〉∗〈â(in)
−k 〉 = 0 and intensity and coherence absorption co-

efficients are equal to 1/2.
In a similar manner, analysis of CPA of other CV quantum

states can be done, which we leave out of the scope of this
paper.

VI. SUMMARY AND CONCLUSIONS

We shortly summarize the above discussed quantum
regimes of CPA in Table I. Single-photon state absorption
follows the classical regime of CPA where the light ab-
sorption may be manipulated in the full range between the
total absorption and total transmission. Quantum fluctuations
presented in other discrete variable states do not allow ma-
nipulating the average light absorption, which is always 50%

since light is distributed equally between the standing waves.
Meanwhile, the number of photons dissipated in a single act
of absorption differs drastically depending on the particular
input state of light. This allows implementing absorption of
a given Fock state with a high probability while dumping,
for a certain extent, absorption of other Fock states. Similar
situation is observed for continuous variable quantum states
where quantum fluctuations are evenly spread between the
standing waves preventing manipulation of the average light
absorption probability. At the same time, when the state of
light approaches classical coherent state (for instance, by
setting ξ → 0 for squeezed and entangled states) the absorp-
tion becomes phase sensitive and follows classical patterns.
Again, individual events of absorption differ significantly
from equally transmitted and dissipated light intensities to
probabilistic total absorption or total transmission of input
light intensity depending on the input state of light. Sepa-
rability of the output light-absorber state is defined by the
separability of the standing-waves state.

In conclusion, we presented unified theory of the quantum
regime of CPA by considering the problem in the quan-
tized standing-waves basis taking account of a subwavelength
thickness of the absorber. Our description allowed us to build
a detailed picture of the underlying processes of CPA tracing
evolution of quantum states of light as well as to bring strong
parallels between classical and quantum regimes of CPA.
Under a single theory, known quantum effects of CPA were
explained and other regimes were introduced both for discrete
and continuous variable quantum states. Deep understanding
of fundamental properties of quantum light dissipation will
allow practical implementation of this phenomenon in quan-
tum optics and quantum information including manipulation
and measurement of quantum states of light and excitation of
nonclassical states of light and matter.

The data that support the findings of this study are openly
available in NTU research data repository DR-NTU (Data) at
[94].
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