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Non-Gaussian continuous-variable states play a central role both in the foundations of quantum theory
and for emergent quantum technologies. In particular, “cat states,” i.e., two-component macroscopic quantum
superpositions, embody quantum coherence in an accessible way and can be harnessed for fundamental tests and
quantum information tasks alike. Degenerate optical parametric oscillators can naturally produce single-mode
cat states and thus represent a promising platform for their realization and harnessing. We show that a dissipative
coupling between degenerate optical parametric oscillators extends this to two-mode entangled cat states, i.e.,
two-mode entangled cat states are naturally produced under such dissipative coupling. While overcoming
single-photon loss still represents a major challenge towards the realization of sufficiently pure single-mode
cat states in degenerate optical parametric oscillators, we show that the generation of two-mode entangled
cat states under such dissipative coupling can then be achieved without additional hurdles. We numerically
explore the parameter regime for the successful generation of transient two-mode entangled cat states in
two dissipatively coupled degenerate optical parametric oscillators. To certify the cat-state entanglement, we
employ a tailored, variance-based entanglement criterion, which can robustly detect cat-state entanglement under

realistic conditions.

DOI: 10.1103/PhysRevA.104.013715

I. INTRODUCTION

When Schrédinger imagined a cat in a quantum superpo-
sition of simultaneously being dead and alive, he intended
to illustrate the seemingly absurd consequences when taking
quantum mechanics too literally. Since then, however, macro-
scopically distinct quantum superpositions, “Schrodinger cat
states” [1-6], and in particular entangled versions [7-12]
thereof, have been identified as versatile resources, not only to
explore the applicability of quantum mechanics in the macro-
scopic realm, but also to be utilized in quantum technologies.
Consequently, great efforts have been invested to realize en-
tangled cat states, and today, these are readily available on
various experimental platforms [13—18].

Degenerate optical parametric oscillators (DOPOs)
[19-22] have found widespread application in quantum
optics, and their dynamics naturally comprises -catlike
superpositions of coherent states in the limit of small
single-photon loss. In addition, the generation of cat states
and entangled cat states in DOPOs is of great interest for
recent endeavors to deploy a coherent Ising machine (CIM)
[23-31]. The CIM represents a time-multiplexed network of
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DOPOs, with target applications in optimization, quantum
simulation, and quantum information processing. Such
DOPO networks excel in their flexibility to tailor individual
couplings between arbitrary nodes. Cat states and entangled
cat states could serve to encode, process, and read out discrete
(quantum) information in these continuous-variable systems.
However, the successful production of cat states in DOPOs
is, due to the difficulty in suppressing the single-photon
loss, still challenging. Proposed strategies to overcome
this decoherence include, for instance, the utilization of
squeezed-state inputs [31].

It is therefore important to understand under what con-
ditions single-mode cat states and two-mode entangled cat
states can be produced in DOPOs. In the case of single-mode
cat states [32-39], a growing body of literature has studied
potential ways, and detailed parameter regimes, toward their
generation in DOPOs [31,40-46]. These results for single-
mode cat states can potentially also be relevant to understand
the generation of entangled cat states. For example, a dissipa-
tive coupling [24,30] between two DOPOs, i.e., a dissipation
process that acts collectively on both DOPOs, can drive a
product state of two single-mode cat states into an entangled
cat state, by suppressing a certain parity in the product state.
Such dissipative couplings emerge, for instance, from the
coupling of DOPOs via lossy delay lines in time-multiplexed
DOPO networks. As this dissipative coupling can be strong
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compared to the single-photon leakage in DOPOs, this sug-
gests that the main challenge for the generation of entangled
cat states remains the production of single-mode cat states
of sufficiently high quality; i.e., given single-mode cat states
can be generated with high quality, the possibility to generate
entangled cat states under the dissipative coupling follows.

In this work, we analyze in detail the generation of
two-mode entangled cat states in two dissipatively coupled
DOPOs. To this end, we first specify the theoretical model
and justify in some detail the generic expectation that en-
tangled cat states can be produced in this setup. Then we
recapitulate the entanglement criterion applied in the article,
which, by construction, detects entanglement in two-mode
entangled cat states [47-51]. Subsequently, we determine the
threshold parameters under which entangled cat states (or
states that are sufficiently close to these) are detectably present
in the system. In order to relate our threshold parameters to
the generation of single-mode cat states, we also determine
the fidelity of the cat state production under these threshold
parameters when the dissipative coupling is switched off.
Moreover, we investigate how the recently proposed environ-
mental engineering [31] toward enhanced cat-state production
carries over to the generation of entangled cat states.

In Sec. II, we theoretically analyze the generation of two-
mode entangled cat states and the detrimental effects of the
single-photon loss. In Sec. III, we briefly introduce and dis-
cuss the entanglement criterion used here. In Sec. IV, we
determine the threshold parameters for generating detectable
two-mode entangled cat states and compare these with the
single-mode case. Section V discusses possible improvements
with environmental engineering. Section VI contains our
conclusions.

II. THEORETICAL MODEL

We consider two dissipatively coupled DOPOs. Including
the effects of the pump modes up to second order and chang-
ing to the interacting picture, the system Hamiltonian can be
expressed as (we set i = 1)

2
H = Z —iS[(a,i)2 — (@)1, (1)

k=1

with § the effective pump intensity, and the annihilation (cre-
ation) operator ay (aZ) of the kth DOPO mode. The overall
system evolution is governed by the quantum master equation

d
Ep(t) = —i[H, p(O] + Lialp(1)], 2

where the Lindblad superoperator Ly adds three dissipative
contributions,

Liot(p) = Ls(p) + La(p) + Le(p). 3)

To express these dissipative terms more conveniently, we
define

r .
LIT, L, p(t)] = 5{2Lpa>L’—-uﬁL,pa>n, 4

with the dissipation rate I", some operator L, and the anticom-
mutator {A, B} = AB + BA. The first two terms in (3) describe

the dissipation of single DOPOs, and are also relevant in the
dissipative generation of cat states on other platforms [37,39].

2
Li(p) =) Llys, a, p)],

k=1

2
Ly(p) =Y L[va. at. p(®)]. )

k=1

Here, L; is the single-photon loss of each mode with rate .
The two-photon loss [52-58] L4 is induced by the nonlinear
coupling to a pump mode with strong dissipation. In Eq. (5),
yq is the effective two-photon dissipation rate. The third term
in (3) describes the dissipative coupling between the two
DOPOs,

Le(p) = LlYe, a1 — az, p(1)]. (6)

The collective dissipation rate is ). Such a dissipative cou-
pling, which has the power to generate entanglement, can
be realized by a lossy mode coupled to both DOPOs. In
time-multiplexed networks of DOPOs, such coupling emerges
when two DOPOs are connected through a lossy delay
line [24].

A. Ideal entangled cat-state generation

We briefly discuss the mechanism underlying the genera-
tion of entangled cat states. If we consider only the system
Hamiltonian (1) and the two-photon dissipation L4 in Eq. (5),
the resulting system assumes, for an initial vacuum state, the
steady state

Psteady (1) = (l) + [—a)(a| + (=), (D

2+ €
with the coherent state amplitude o = i/25/y4 and the nor-
malization factor (2 + €. ). Note that €y is a small correction
depending on the overlap between |«) and |—c«). The subindex
“sc” refers to single-mode cat state. The steady state Ogeaqy iS
a cat state if |{a|—a)| < 1 is satisfied.

Next, we note that the direct product of two cat states
can be expressed as the sum of two entangled cat states with
different parities,

V) =

2+esc[(|a> + =) ® (la) + |—a))]

—=——=/lleven) + |odd)], (8a)
2+ €

where the entangled cat states with even and odd parity, re-

spectively, read

leven) = (lo) ® |a) + |—a) ® |—a)), (8b)

2 + e

lodd) = (lo) ® |—a) + |-a) ® |a)).  (8¢)

2 + €
The normalization factor of the total state in Eq. (8a) is mod-
ified by a small quantity €., as the entangled cat states with
different parities are not orthogonal to each other. For a similar
reason, the correction €, is necessary in Eqgs. (8b) and (8c).
The even-parity state |even) is a dark state of the dissipator
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(6), while the odd one is not. Therefore, the steady state of the
system is the entangled cat state with even parity under the
influence of H, L4, and L..

B. Influence of single-photon loss

The single-photon dissipation generically has a negative
effect on the generation of entangled cat states. It is straight-
forward to check the relations

Ls(leven){even|) # 0,
L(lodd)(odd]) # 0, &)

which imply that the steady state is, when L is included, not
an entangled cat state. In addition, both the pure state |even)
and the mixed state

o) (| ® |e) (| + |—a)(—a| ® |—a)(—«f (10)

are steady states of the system in absence of the single-
photon dissipation. Therefore, the effect of a sufficiently weak
single-photon loss L is to destroy the coherence. For a
strong single-photon loss, the steady state becomes a squeezed
vacuum state [27]. This parameter regime, which is below
threshold, is not considered here. In the regime of medium
single-photon loss, i.e., slightly above threshold, the dissipa-
tive coupling can pick up the wrong parity [59], so that the
qualities of entangled cat states can be significantly reduced.
However, it is still possible to obtain a catlike transient state if
the single-photon dissipation is within a proper range.

III. ENTANGLEMENT DETECTION

To certify the presence of entanglement in the generated
states, we apply an entanglement criterion which is formulated
in terms of modular variables [47-51]. By virtue of these,
the criterion is sensitive to periodic structures in the states,
which comprises entangled cat states as the two-component
case. On the other hand, the criterion is not sensitive to the
“internal” structure of the repeating state component, e.g., if it
is Gaussian or not. This is relevant here, because we can only
assume coherent-state components in the ideal case.

We now briefly recapitulate the steps toward the evaluation
of the cat state-sensitive entanglement criterion. The crite-
rion is based on the measured joint position and momentum
distributions,

Pi(x1,x2) = (x1]{(x2]plx1) |x2),
P,(p1, p2) = (p1l{p21plp1)|p2), (11)

with |x;) and |py) the “position” and “momentum” (i.e., con-
jugate quadratures) eigenstates of the two modes, respectively.
For simplicity, we assume that the frequency  and the effec-
tive mass m satisfy wm = 1 for the DOPO modes, so that we
define the position and momentum operators as

1
By = ﬁ(ak +a)),

1 .
pp = —(ar — a;), (12)
Pk \/El k k

where k = 1, 2. By introducing a length scale /, and an associ-
ated momentum scale [/, with ./, = 27, we now redefine the

position and momentum eigenvalues in terms of integer and
modular parts,

X = Nyl + X,

Pr = Np il + Pr, (13)

with the integer components N, ; and N, and the modular
rest components X; € [0, [;) and p; € [0, [,). While the length
scale can, in principle, be chosen arbitrarily, there exists an
optimal choice of ; (or [,), which depends on the phase-space
separation between different state components. Note that the
relation /[, = 27 reflects the relation between the separation
of the state components (be it in position or momentum space)
and the periodicity of the associated interference pattern in the
conjugate variable.

To assess if the measurement data (11) implies entangle-
ment, we now determine, from this data, the distributions
of collective variables that are derived from the decomposi-
tions (13), e.g., the distribution of the total modular position
(X1 + X2). Such postprocessing of the measurement data is
always possible. The optimal choice of the two required
collective variables depends on the form of the state that
underlies the measurement data (11). In our case, where, due
to pure imaginary amplitudes « (in the ideal case), the macro-
scopic superposition is laid out in the momentum coordinate,
the appropriate collective variables are the total modular posi-
tion and the relative integer momentum,

Xiot = X1 + X2,

Np,rel = Np,l - Np,Z- (14)

The distributions of X;,; and N, 1 can be calculated with the
distributions (11),

Iy
P, = ) / dx PNy 1Ly + Tiot — %, Neoly + ),
0

N\'.laNx,Z
I,
Py, =) /0 dp1dpaPy[(Np et + NI, + p1, NI, + pa].
N

15)

The entanglement criterion is now formulated in terms of
the variances that follow from the distributions of the col-
lective variables (14). Specifically, the modular entanglement
criterion (mec) [48] states that the state underlying the mea-
surement data (11) must be entangled if

Cee = ((ANpe1)*) + (Aot /1)*) < Ce,

i.e., if the sum of variances C,.. remains below the entan-
glement threshold value C; & 0.1565 [48]. The latter follows
from a state-independent additive uncertainty relation for the
modular variables, ((ANp)i) + ((A)'c)_%) > Cy /2. The crite-
rion (16), which is a sufficient condition for entanglement, is
similar to a variance-based entanglement criterion in terms of
standard (i.e., not modular) variables, which is sensitive to the
entanglement in bipartite Gaussian states [60,61]. Note that
a suppressed variance (AX,)> of the total modular position
reflects the presence of a fringe pattern in the distribution
of the total position xi = x; + x. While we cannot exclude
that the state is entangled if the criterion is not satisfied
(e.g., entangled Gaussian states never satisfy the criterion),

(16)

013715-3



ZHOU, GNEITING, YOU, AND NORI

PHYSICAL REVIEW A 104, 013715 (2021)

we can expect that any cat-state-like entanglement is reliably
detected. For instance, the criterion (16) may also be used
to verify the continuous-variable entanglement in alternative
cat-state generation schemes [15].

A. Modular entanglement criterion examples
1. Even-parity entangled cat state

Let us consider three instructive examples to see how the
modular entanglement criterion works. First, let us assume
that the state underlying the measured data (11) is our ideal
target state N%(|oz) ® |a) + |—a) ® |—«)), with an imaginary
(i.e., the macroscopic superposition is laid out in momentum)
amplitude o [cf. (8b)]. To detect the entanglement in this
state, we use the total modular position variable and the
relative integer momentum variable [cf. (14)]. The optimal
choice for the modular length scale [, is Re(2«/§a) [the factor
/2 can be traced back to the transformation to position and
momentum operators; cf. (12)]. For sufficiently large |«/|, the
variance of the relative integer momentum is negligibly small,
(ANp,rel)2 ~ 0, while the variance of the total modular posi-
tion, due to the presence of an interference pattern, becomes
(AXior/ 1.)? ~ 0.1167 [47]. We thus obtain for the sum of vari-
ances Cpee &~ 0.1167 < Cee &~ 0.1565, and the state is certified
as entangled by the modular entanglement criterion (16). Note
that the value Cpec & 0.1167 is the smallest possible that can
be achieved with two-component macroscopic superpositions;
therefore, in our realistic setting, Cp,e Will always exceed this
value, due to single-photon dissipation and finite |«|.

2. Odd-parity entangled cat state

As the second example, let us consider the odd-parity
entangled cat state Nlo(la) ® |—a) + |—a) ® |a)) [cf. (8c)].
The appropriate variables are now the total integer momen-
tum N, = N1 + N,2 and the relative modular position
Xtel = X| — X, while the optimal choice for the length scale
remains /, = Re(2«/§a). Under these conditions, the modular
entanglement criterion again evaluates as Cpe. =~ 0.1167 for
|| > 1, and the state’s entanglement is certified.

3. Separable classically correlated mixed state

Thirdly, we consider the separable, but classically corre-
lated, mixed state in Eq. (10). We can then again choose the
variables (14) to obtain a strongly suppressed variance of the
relative integer position, (ANp,rel)2 ~ (O for |x| > 1. However,
due to the absence of a fringe pattern in the distribution
of Xyt = X1 + X, the variance of the total modular position
becomes (AXo /L )2 & 0.167 [47], and the modular entangle-
ment criterion (16) does, correctly, not detect entanglement.

B. Modular variables during evolution

Assigning to a set of model parameters a unique and op-
timal entanglement qualifier Cy. requires a time-adaptive
evaluation of Cpe., which we detail in the following. The
initial state is assumed to be the vacuum state |0) ® |0), and
the time evolution is governed by the Hamiltonian (1) and all
three dissipative contributions summarized in (3). The two-
photon dissipation rate y4 is set to be 1, and all the other
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FIG. 1. Time-adapted evaluation of the modular entanglement
criterion. The pump intensity S and the two-photon dissipation rate
ya are set to be 1. All the other parameters are expressed as the
ratios to y4. The collective dissipation rate y. is set to be 10yy.
(a) Instantaneous sum of variances Cpec. (b) Time-adapted optimal
momentum scale /,. We set the optical frequency @ =1 to better
show the relation between [, and cat-state separation «. (c) Instanta-
neous variance of the total modular position X,. (d) Instantaneous
variance of the relative integer momentum N, ;. (€) For a given
set of model parameters, the minimizing instantaneous entanglement
qualifier Gy, is taken to assess the detectable entanglement for this
model parameter set. This is shown for the example of y, = 0.05.

parameters are provided as the ratio to y4. While the optimal
length scale for the ideal asymptotic state is [, = 44/5/yq, it
can, under realistic conditions, take other values. Therefore,
we determine the optimal /,, for every choice of model param-
eters and at every point in time.

In Fig. 1 we demonstrate how the mechanism underlying
the state generation unfolds in the temporal evolution of the
variances of the collective variables (14). The small jumps
of the length scale I, in Fig. 1(b) are due to the discrete set
of scanned values. Figure 1(a) shows the evolution of the
entanglement qualifier Cp. in relation to the entanglement
detection threshold for different choices of the single-photon
dissipation rate y;. In absence of single-photon dissipation
ys (black dotted curve), the steady state is the entangled cat
state (8b). However, single-photon dissipation significantly
modifies the evolution. If this dissipative process is suffi-
ciently weak (red dashed curve), the entanglement qualifier
Chnec still temporarily drops below the entanglement detection
threshold. With increasing y;, however, the minimum Cyec
eventually exceeds the threshold, and entanglement cannot be
detected at any time.

Additional insights can be drawn from the unfoldings of /,,
(AZoi/1)?), and ((AN,,,rel)2>, as depicted in Figs. 1(b)-1(d).
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The increasing [, in Fig. 1(b) informs us about the growing
amplitudes toward their steady-state values. In absence of
single-photon dissipation, we find the steady-state value of
the ideal entangled cat state, [, = 4./S/yq. For other cases,
we find slight deviations from this value.

The temporal course of the variance of the total modular
position Xy is shown in Fig. 1(c). This variance is related
to the interference pattern, and hence is highly sensitive to
the single-photon dissipation. In absence of single-photon
loss, this variance assumes an asymptotic value below the
entanglement detection threshold (black dotted curve); in the
other cases, it grows, after taking a minimum, toward the “no
interference” value 0.167 (red dashed curve and yellow solid
curve). We can interpret this variance as an indicator for the
coherence in the state. Figure 1(d) shows the course in time
of the variance of the relative integer momentum Np,rel, which
captures the correlations between the macroscopic state com-
ponents of the two modes. Since these correlations are also
present in the decohered state (cf. the discussion of our third
example above), this variance is not significantly affected
by the single-photon dissipation rate. After the analysis of
((AZot/1)?) and ((AN,,’rel)z), we come to a counterintuitive
result. In Fig. 1(b), the optimal [, increases with increasing
single-photon dissipation. This is because larger /, can de-
crease the variance of N, and thus can become favorable in
the presence of decoherence, since the latter neutralizes the
detrimental effect of the length-scale offset on the variance of
the interference-sensitive variance of x.

As we have shown, in the presence of single-photon dis-
sipation, Cpe. assumes a minimum before it monotonically
grows toward its asymptotic value. We thus can take this
minimum value of Cy,. as a qualifier for detectable entan-
glement. This is exemplified in Fig. 1(e). From now on, we
use this minimum value C™I (o assess the potential to achieve
cat-state entanglement for different model parameter choices.
Note that C™" does not qualify as an entanglement measure,

mec

and thus lower values of C™I (below the threshold) do not

necessarily indicate higher entanglement.

IV. CONDITIONS FOR ENTANGLEMENT
GENERATION AND DETECTION

In the previous section, we demonstrated the possibility
to generate detectable entangled cat states in DOPOs, and
detailed the underlying state formation. The preliminary in-
sights from Fig. 1 indicate that the generation of entangled cat
states is challenging in DOPOs, due to the requirement of a
small rate ratio ys/y4. In the following, we perform a system-
atic analysis in parameter space, to determine the minimum
requirements for the successful generation of entangled cat
states. This is achieved by finding the minimum Cy,. for each
set of parameters.

In Figs. 2(a) and 2(b) we analyze the interplay between
the pump intensity S and the single-photon dissipation y;
with respect to the entanglement generation. To reach below
the threshold under the influence of dissipation, there is an
optimal choice of the pump intensity S in both figures. Such a
value is decided by the trade-off between coherence and the
separation, which are both key properties of a high-quality
entangled cat state. When the pump is strong, the average

o148 | o.168

entangled
1.0F

0.06

0.08
Ys/Va

0.10

FIG. 2. Cat-state entanglement qualifier ™I for different model
parameters. Here, S is the pump intensity, y; is single-photon loss
rate, and y, is collective dissipation rate. Parameter combinations that
give rise to a C™N below the the entanglement detection threshold,
i.e., detectable cat-state entanglement, are shown in red; while the
parameter combinations that give rise to a C™" above threshold are
shown in blue. The black solid curves demarcate the approximate
boundary between the cat-state-entanglement certifiable parameter
choices and the inconclusive parameter choices. The two-photon
dissipation intensity yq4 is set to be 1. All other parameters are ex-
pressed as ratios to y4. The collective dissipation rates are y. = 5y
and y. = 10yy for (a) and (b), respectively. (c) shows the results for

different values of y., with § = 1.05y4.

photon number is large. Two components of such a “large”
state have less overlap [smaller ((ANp,rel)z)], but the system
can suffer stronger single-photon-loss effects. As we have
shown in Fig. 1(c), this loss can increase ((AXot/ 1.)?). With a
small average photon number, the ((AX/l)*) can be small
due to lower probability to loss photons. However, the large
overlap can result in a large ((AN, e1)*). The optimal value
of § slightly changes with y,, but is around 1.05y4 for both
the y. = 10 case and the y. = 5 case. It is not surprising to
see a larger area with entanglement in Fig. 2(b) compared to
Fig. 2(a), because the collective dissipation rate y. is stronger.
As ¥, can be conceptually very strong, we further check how
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FIG. 3. Properties of the states near the boundary. (a) The section
of the joint Wigner function on the real plane. (b) The section of
the joint Wigner function on the imaginary plane. (c) Purity of the
state, with minimum Cj,,.. during the evolution, for different pump
intensities S near the boundary. (d) Highest cat-state fidelity, which
can be achieved in single DOPO with parameters S, y4, and y, near
the boundary.

much it can improve the results in Fig. 2(c). It is confirmed
in Fig. 2(c) that increasing y. always has positive effects.
However, such effects become insignificant if y. is larger than
10)/(1.

Although the modular entanglement criterion provides a
concise description of entanglement, the information about
the state is incomplete. Next, we consider the state with en-
tanglement near the boundary in Figs. 2(a) and 2(b). The
sections of joint Wigner function, purity of the state, and
the corresponding cat state in a single DOPO are shown in
Fig. 3. The joint Wigner function is a tool to provide some
intuitive pictures of the entangled cat states [15] by calculating
the distribution on the coherent state basis |a;) ® |a,) of the
two entangled modes. Such a function is similar to a Wigner
function [62] but in a four-dimensional space, so that only
important sections instead of the full function are plotted. In
Fig. 3(a), the section on the real plane Im(«;) = Im(ay) = 0,
which refers to the interference pattern, is shown. This pattern
can reveal the coherent superposition of several components,
but does not assure entanglement. Figure 3(b) provides the
section on the imaginary plane Re(x;) = Re(ay) = 0. This
figure is very similar to the Wigner function of a cat state,
and clearly shows the two components of the entangled cat
state. The top right disk corresponds to the |o)|e) compo-
nent, and the bottom left one corresponds to the |—a)|—a)
component. Note that the disk in the center is a section of
the interference pattern instead of an additional component.
This central disk can become negative for an entangled cat
state with odd parity [15]. Figure 3(c) shows the purity of the
state with minimum Cj,,. during the evolution. Oscillations in
Fig. 3(c) are the result of choosing an optimal modular length,

which has limited influence on the main trends. The purity
changes with pump intensity S but the variation is only about
0.05. Generally speaking, purity decreases with increasing
S, because larger separation brings more tolerance for poor
coherence. However, purity can increase with pump intensity
for large S when the collective dissipation rate is weak (yellow
solid curve). The pump term creates the entangled cat states
with both parities. A weak y, can result in a larger probability
of the state with unwanted parity. This state contributes to the
purity, but has negative effects on entanglement.

With the results in Figs. 3(a)-3(c), some basic information
of the entangled state near threshold is provided. Then, we try
to compare it to the single-mode case, which is well discussed
in other works [40-44]. The highest fidelity of the cat state,
which can be obtained with the single-mode parameters in
Fig. 3(c), is shown in Fig. 3(d). It is intuitive to expect a
similar parameter dependence in the single-mode case and the
entangled case, because the main detrimental effect in both
cases is the single-photon dissipation. The results in Fig. 3(d)
also agree with this expectation, which shows the same trend
as the curves in Fig. 3(c). Without the modular length choice,
there is no jump in Fig. 3(d). We also find that the cat state
fidelity with boundary parameters is below 0.9 for most values
of S. Therefore, the entangled cat state can be generated if we
can access cat states with fidelity higher than 0.9 in single
DOPO.

V. ENVIRONMENTAL ENGINEERING

In the previous section, we analyzed the conditions for
generating entangled cat states in coupled DOPOs. It is ob-
vious that these parameters are very challenging. The cat state
in DOPO, which is less difficult, is also hard to access for
now. Therefore, control methods might be necessary for the
creation of such quantum states in DOPOs. One potential
choice is environmental engineering [31,63—-65], which can
significantly reduce the influence of single-photon dissipation.
Below, we show that this approach for a single-mode system
can also be applied to generate entangled states. Squeezing
is only introduced in the single-photon dissipation channel,
while other dissipation terms are unaffected. The squeezed
single-photon dissipation term has the following form:

2 2
L) = (A+N) Y Ly ar, p)+N Y Ly, af, p)

k=1 k=1

2
Vs
—M ) S Qapay — laxar. p})
k=1
: V
—M* Y 2 Qappa; — {ajay. p)). (17)
k=1

Here, the two parameters are N = sinhz(ysq) and M =
sinh(ysq)cosh(ysq)e ™, with the intensity of squeezing ysq
and the phase 0. The phase term should fit the orientation
of the entangled cat state, which is set to be 7 in our case.

In Fig. 4, we show the results with a squeezed environ-
ment. Figures 4(a) and 4(b) correspond to the situations in
Figs. 2(a) and 2(b), respectively. We find that the regime for
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FIG. 4. The value of C™" for a squeezed environment. The area
below threshold is marked as red, and the one above is marked as
blue. The black solid curve is the approximate boundary between
the entangled area and unentangled area. The two-photon dissipation
intensity y4 is set to be 1. All the other parameters are expressed
as the ratio to y4. (a) The influence of S and y; with y. = 5y, and
Ysq = 1. (b) The influence of § and y, with y. = 10y4 and y,q = 1.
(c) The influence of y, and y; with y,q = 1 and § = 1.05y4. (d) The
influence of y,q and y, with y. = 10y; and § = 1.2y4.

detectable entanglement is enlarged for both the strong collec-
tive dissipation case and the weak collective dissipation case.
Another difference is the optimal value for the pump intensity
S, which increases under the influence of the squeezed dis-
sipation channel. Squeezing results in weaker x fluctuations
at the cost of stronger p fluctuations. Therefore, a larger S is
necessary, so that a larger p separation can compensate for
the fluctuation. Figure 4(c) shows the influence of y, and .
In Fig. 2(c) the effect of y, saturates around y, = 10y4, but
increasing y. can improve the performance after passing 20y4
in the squeezed case. We study the influence of the squeezing

parameter yyq in Fig. 4(d). There is an optimal value of yyq,
which is about 0.5 for the parameters in Fig. 4(d).

The compatibility of the dissipative coupling with the
single-mode environment engineering is shown with the re-
sults in Fig. 4. Although the parameters are not the optimal
ones, the improvement obtained is significant. If high-quality
cat states can be realized with control methods, then these
approaches are very likely also effective for the production
of entangled cat states.

VI. CONCLUSIONS

We studied the generation of entangled cat states in DOPOs
with collective dissipation. The quality of the state is char-
acterized by the modular entanglement criterion, which can
detect the entanglement in catlike states. Based on this crite-
rion, we identify the necessary parameter regimes to observe
entangled cat states. Our results also clarify the influence of
different parameters and the optimal ones to access the desired
entangled state. To better relate the problem considered to
the existing works, we compared the threshold cases with
the single-mode cat-state situations. Although the choice of
optimal parameters can be quite complicated, the fidelity of
the corresponding single-mode state does not change much.
As a result, creating an entangled cat state is comparable to
the problem of generating a cat state with sufficient qual-
ity, if the collective dissipation method is applied. Due to
the challenging parameters in DOPOs, quantum control may
be necessary. Therefore, we also considered environment
engineering as an example. According to our numerical re-
sults, the entanglement creating method can cooperate well
with the single-mode control method. Our work presents the
conditions for achieving entangled cat states in DOPOs, and
relates this task to its single-mode counterpart. In this sense, it
may, e.g., help to extend the application of the coherent Ising
machine into the quantum regime.
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