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Two-beam light with simultaneous anticorrelations in photon-number
fluctuations and sub-Poissonian statistics
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Two twin beams with a shared signal beam and separated idler beams are used together with the photon-
number-resolving postselection in the signal beam to arrive at two coupled beams with anticorrelations in
photon-number fluctuations. Moreover, the beams exhibit the sub-Poissonian photon-number statistics in their
marginal distributions under suitable conditions. The postselected fields with the increasing mean photon
numbers are reconstructed from the experimental photocount histograms by the maximum likelihood approach.
Also a suitable Gaussian fit of both original twin beams and simulation of the postselection process are
applied to arrive at the corresponding photon-number distributions. Their nonclassical properties are analyzed
by suitable nonclassicality criteria and quantified by the corresponding nonclassicality depths. Determining
the appropriate quasidistributions of integrated intensities with negative values, the performance of different
non-classicality criteria is judged. Properties of the postselected fields reached both by the used and ideal
photon-number-resolved detectors are mutually compared.
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I. INTRODUCTION

Twin beams (TWBs) generated in spontaneous parametric
down-conversion [1] are endowed with highly nonclassical
properties [2] observed in different degrees of freedom. Their
entanglement occurring in the polarization degrees of freedom
has been exploited to test the quantum mechanics via the
violation of the Bell inequalities [3,4] or to teleport the polar-
ization state of a photon [5]. Tight spatial correlations of the
photons in a TWB lie in the heart of quantum imaging [6]. On
the other hand perfect correlations in photon numbers of the
signal and idler beams, which constitute a TWB [7–11], gave
rise to the method of absolute detector calibration [12–15].

Also, a very efficient method for sub-Poissonian light gen-
eration by photon-number-resolved postselection (in the cw
regime [16–18], in the pulsed regime [9,19–22]) is based upon
TWBs. Such states represent a generalization of (heralded)
single-photon Fock states [23–27] to more intense fields de-
scribed in the Hilbert spaces of larger dimensions. Such fields
then allow, among others, to increase the capacity of commu-
nication channels [28]. The highly nonclassical single-photon
Fock states are a workhorse of the broad area of quantum-
information processing [29] based on the discrete variables.
They also find their application in sub-shot-noise imaging
[30–34].

The used postselection process represents a critical step in
the preparation of highly nonclassical states as it degaussifies
the original Gaussian TWB. This makes the postselec-
tion method very prospective for the generation of more
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complex quantum states potentially needed in future quantum-
information protocols that will go beyond the single-photon
Fock states. Also the application of such states in quantum
metrology [31,35–37] is expected. We note that the generation
of photon-number-subtracted states [38–40] represents a spe-
cial variant of the postselection with photon-number-resolving
detectors that allows us to generate various kinds of nonclas-
sical states, even from TWBs [41,42].

To put our considerations about the states with differ-
ent photon numbers and photon-number correlations into the
general context, we remind the reader that, according to the
second-quantization of electromagnetic fields in the quantum
mechanics [2], any state of an optical field can be decom-
posed into the base vectors of the general Hilbert space
spanned over the spatiospectral, polarization and amplitude
(field quantization) degrees of freedom. Whereas the majority
of the experiments with individual photon pairs are realized by
manipulating the states in spatiospectral and/or polarization
degrees of freedom while keeping the state in the amplitude
degree of freedom fixed, we use the opposite configuration:
We do not consider the spatiospectral and polarization degrees
of freedom explicitly (we trace them out) and we modify and
transform the states only in the Hilbert space belonging to the
amplitude degree of freedom, i.e., the space spanned by the
Fock states of different photon numbers.

Here, we further develop and utilize the method of photon-
number-resolved postselection from TWBs to open the door
for the generation of a new class of quantum states exhibiting
anticorrelations in photon-number fluctuations and marginal
sub-Poissonian statistics. To arrive at such states we con-
sider two TWBs with their signal beams detected together
and postselection on the shared signal beam by observing
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a given number of signal photons ns. The remaining two
idler beams are left in a state that exhibits strong anticorre-
lations in their photon-number fluctuations. This is in striking
contrast with the usual TWBs exhibiting perfect correlations
in photon numbers as well as their fluctuations. Moreover,
whereas the marginal photon-number statistics of TWBs are
super-Poissonian, the obtained states exhibit the marginal sub-
Poissonian photon-number statistics [39]. These states are
prospective for metrology: They allow us to measure two-
photon absorption cross sections with the precision below
the shot-noise limit, in close analogy with the sub-shot-noise
measurement of single-photon absorption cross section per-
formed with a sub-Poissonian light source [30,33,34].

We note that there exists an analogy between the anti-
correlations in the photon-number fluctuations of the analyzed
fields and the spatial and temporal behavior of correlations
between the signal and idler photons from a common pho-
ton pair. Though both photons from a photon pair usually
show strong temporal correlations [43], these correlations can
be transformed into temporal anticorrelations [44]. Similarly,
whereas the signal and idler photons of usual TWBs are
bunched inside their correlated areas, there also exist the
TWBs exhibiting spatial antibunching of the signal and idler
photons [45,46].

The suggested scheme resembles that of the entanglement
swapping suggested first for the states of two entangled pho-
ton pairs [47,48] originating in parametric down-conversion
and later also applied to swap the entanglement to the state of
particles and their collective modes [49,50]. However, sensi-
tivity of the detected overall signal beam to the relative phase
of the constituting signal beams would be needed to observe
the transfer of entanglement from the original TWBs to the
postselected idler beams. As the used TWBs are multimode,
they are not suitable for the entanglement transfer. Instead, in
the performed experiment, the postselection induces classical
anticorrelations in photon-number fluctuations.

To demonstrate the essence of our approach, we restrict for
a moment our attention to the states describing single-mode
idler beams and consider an ideal detector with ns detected
signal photons (photocounts). We model the experimental
multimode idler beams by an incoherent superposition of the
Fock states whose statistical operator �̂ii is written as

�̂ii =
ns∑

i1=0

∣∣αi1

∣∣2∣∣ni1

〉
i1 i1

〈
ni1

∣∣∣∣ns − ni1

〉
i2 i2

〈
ns − ni1

∣∣. (1)

In Eq. (1), a Fock state |ni〉i has ni photons in beam i and αi

are complex coefficients. Anticorrelations in photon-number
fluctuations �ni ≡ ni − 〈ni〉 represent the most striking fea-
ture of the state �̂ii. Detailed analysis reveals that even
the marginal idler-beam distributions of the analyzed states
are sub-Poissonian under suitable conditions. To understand
this, let us consider for a moment the experiment in which
we independently detect the numbers of signal photons in
both signal beams. For the fixed detected signal photon
numbers, both postselected idler beams have apparently sub-
Poissonian statistics. The summation of two signal photon
numbers keeping their sum fixed, as described in Eq. (1),
blurs the original sub-Poissonian statistics but it also in-
creases the success probability of the postselection process.

For TWBs with greater photon numbers and correspond-
ing signal post-selecting photon numbers [see Fig. 3(b)
below], the blurring of the idler-beams photon statistics is
weak, but the success probability increases considerably. Such
states are then suitable for monitoring two-photon absorp-
tion processes or making two-photon excitations of electronic
systems.

The paper is organized as follows. The performed experi-
ment and analysis of the experimental data are described in
Sec. II. Section III is devoted to the analysis of the fields
generated by postselection with the real detector. The prop-
erties of the fields obtained by postselection with an ideal
detector are discussed in Sec. IV. Detailed analysis of non-
classical properties of typical post-selected fields is contained
in Sec. V. Section VI is the conclusion. In Appendix A, a
method for fitting the experimental data with a suitable mul-
timode Gaussian field is presented. Iteration formulas for the
maximum-likelihood reconstruction are given in Appendix B.
Nonclassicality identifiers are introduced in Appendix C. The
formula for reconstructing quasidistributions of integrated in-
tensities is given in Appendix D.

II. EXPERIMENTAL SETUP, RECONSTRUCTION
AND NONCLASSICALITY ANALYSIS

To analyze the performed experiment, we consider two
multimode and noisy TWBs whose common mixed state is
characterized by a three-dimensional (3D) photon-number
distribution p(ns, ni1 , ni2 ) that gives the probability of simulta-
neous presence of ns photons in the signal beam, ni1 photons in
the first idler beam and ni2 photons in the second idler beam
(for specific photon-number distributions, see Appendix A).
Characterizing a photon-number-resolving detector (PNRD)
in the signal beam by its detection matrix Ts(cs, ns ), that gives
the probability of detecting cs photocounts out of ns impinging
photons (for details, see Appendix A), 2D photon-number dis-
tribution pii(ni1 , ni2 ; cs ) of a common state of the idler beams
emerging after detecting cs signal photocounts is written as
[51]:

pii
(
ni1 , ni2 ; cs

) =
∞∑

ns=0

Ts(cs, ns )p
(
ns, ni1 , ni2

)
. (2)

In the experiment, the postselected fields are monitored by two
additional PNRDs that give rise, together with the PNRD in
the signal beam, to the 3D experimental photocount histogram
f (cs, ci1 , ci2 ) that contains all information about the prepared
and analyzed fields. In the model, this histogram f , as a
function of the photocount numbers cs, ci1 and ci2 registered
by three used PNRDs, is determined along the formula

f
(
cs, ci1 , ci2

) =
∞∑

ns=0

Ts(cs, ns )
∞∑

ni1 =0

Ti1

(
ci1 , ni1

)

×
∞∑

ni2 =0

Ti2

(
ci2 , ni2

)
p
(
ns, ni1 , ni2

)
, (3)

in which the detection matrix Ti1 (Ti2 ) belongs to the PNRD
placed in the first (second) idler beam.
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FIG. 1. (a) Scheme of the experimental setup: Laser: frequency-
tripled pump laser with power stabilizer; HWP: half-wave plate;
BBO: two thin optically contacted BBO crystals; BD: polarizing
beam displacer; iCCD: intensified CCD camera. (b) Images acquired
by the detector, in turn: typical single-shot image, accumulated image
from multiple single-shot exposures forming one signal (left) and
two idler (right) intense strips, and cumulative frame formed by
individual detection events identified by signal processing within
regions defined by one signal, one narrow noise (formed solely by
the dark, ambient and readout noise) and two idler beams.

The reconstruction methods allow us to reveal both the
conditional 2D photon-number distributions pii in Eq. (3) as
well as the original 3D photon-number distribution p. Both a
physically motivated method that provides a suitable Gaus-
sian fit of the original two TWBs (see Appendix A) and
a method exploiting the maximum-likelihood approach (see
Appendix B) were applied to reconstruct the experimental
photocount histogram f (cs, ci1 , ci2 ) as well as the conditional
photocount histograms fii(ci1 , ci2 ; cs) characterizing the con-
ditional 2D photon-number distributions pii (ni1 , ni2 ; cs).

The analyzed states were prepared in the laboratory in the
experiment whose scheme is shown in Fig. 1. Two TWBs
were generated independently in type-I spontaneous paramet-
ric down-conversion in two optically contacted 1-mm-long
β-barium-borate composite crystals (BaB2O4, BBO) cut for a
slightly noncollinear geometry. Whereas the first crystal gave
the signal and idler beams with horizontal polarizations, the
second crystal emitted the signal and idler beams with vertical
polarizations, as a consequence of its rotation by 90 degrees
along the pump-beam propagating direction with respect to
the first crystal. Parametric down-conversion was pumped
by pulses originating in the third harmonic (280 nm) of a
femtosecond cavity-dumped Ti:sapphire laser (pulse duration
180 fs at the central wavelength of 840 nm, repetition rate
50 kHz, pulse energy 20 nJ at the output of the third harmonic
generator). The polarization of the pump was then rotated by
a half-wave plate to balance the mutually orthogonal contri-
butions from both crystals. The idler beams of two TWBs
that differ by their polarizations were spatially separated by
a calcite beam displacer. The signal, two idler and external

noise beams were detected in four different detection regions
(in the form of strips) on the photocathode of an iCCD camera
Andor DH345-18U-63 [see the rightmost image in Fig. 1(b)].
The signal beams emitted from different crystals spatially
overlapped at the photocathode and so they were detected in a
common detection region. The camera set for a 7-ns-long de-
tection window was driven by the synchronization electronic
pulses from the laser and it operated roughly at 14 Hz frame
rate. The photons of all four beams impinging on the camera
were filtered by a 14-nm-wide bandpass interference filter
with the central wavelength at 560 nm. The pump intensity,
and thus also the TWBs intensity, was actively stabilized by
means of a motorized half-wave plate followed by a polarizer
and a detector that monitored the actual pump intensity.

The Gaussian reconstruction applied to the experimental
photocount histogram f (cs, ci1 , ci2 ) obtained after 1.2 × 106

measurement repetitions provided the following parameters
for the optical fields beyond the nonlinear crystals: The over-
all field was composed of two ideal TWBs with 6.15 ±
0.05 and 5.95 ± 0.05 mean photon pairs (Bp1 = 0.106 ±
0.001, Bp2 = 0.117 ± 0.001, Mp1 = 58 ± 1, Mp2 = 51 ± 1)
and three noise fields with 0.11 ± 0.02, 0.07 ± 0.01 and
0.02 ± 0.01 mean noise photons (Bs = 10 ± 1, Bi1 = 10 ±
1, Bi2 = 39 ± 4, Ms = 0.011 ± 0.001, Mi1 = 0.007 ± 0.001,
Mi2 = 0.0005 ± 0.0001); Mj stands for the number of modes
in beam j having Bj mean photons (photon pairs) per mode
(see Appendix A for more details). The signal field was
detected with detection efficiency ηs = 22.0 ± 0.5 %, de-
tection efficiency ηi = 20.7 ± 0.5 % was assigned to both
idler-field detection strips (lower than the signal one due to
the presence of the beam displacer). Each detection strip
was composed of Ns = Ni1 = Ni2 = 4410 macropixels (one
macropixel emerged from 8 × 8 hardware binning at the CCD
chip) and suffered from ds = di1 = di2 = 0.22 ± 0.02 mean
noise counts per detection window.

The properties of the conditional states characterized by
2D photocount [ fii(ci1 , ci2 ; cs )] and photon-number distri-
butions [pii(ni1 , ni2 ; cs )] were quantified by the following
parameters. Anticorrelation between the fluctuations �n (�c)
of the idler-fields photon (photocount) numbers was recog-
nized by negative values of the covariance Cn,�,

Cn,� =
〈
�ni1�ni2

〉
√〈(

�ni1

)2〉〈(
�ni2

)2〉 . (4)

Nonclassical character of the conditional 2D idler fields is ver-
ified by the values of the modified noise-reduction-parameter
Rn,+ smaller than 1,

Rn,+ =
〈(
�

(
ni1 + ni2

)2〉〈
ni1

〉 + 〈
ni2

〉 . (5)

We have Rn,+ = 1 for two independent Poissonian fields
in coherent states. Declinations of classical photon-number
distributions from the Poissonian ones as well as mutual
photon-number correlations between the fields increase
the values of the modified noise-reduction-parameter
Rn,+ > 1. On the other hand, the inequality Rn,+ < 1 is
equivalent to the inequality for the moments of integrated
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JAN PEŘINA JR. et al. PHYSICAL REVIEW A 104, 013712 (2021)

intensities 〈[�(Wi1 + Wi2 )]2〉 ≡ ∫ ∞
0 dWi1

∫ ∞
0 dWi2 [�(Wi1 +

Wi2 )]2PN (Wi1 ,Wi2 ) < 0. Its fulfillment requires the
quasidistribution PN (Wi1 ,Wi2 ) of integrated intensities with
negative values which implies the fields’ nonclassicality. We
note that the integrated intensities W and their moments occur
in the description of optical fields in relation to their detection
as the fields detectors are sensitive to the normally ordered
photon-number moments that are referred to as the moments
of integrated intensity [for the relation between both types of
moments, see Eq. (A6) in Appendix A]. We have Rn,+ = 0
for the state in Eq. (1). Thus, this state is nonclassical. On
the other hand, it is not entangled as it contains only classical
anticorrelations in photon-number fluctuations.

Also the marginal idler fields may exhibit the nonclassical
sub-Poissonian statistics observed when the values of the Fano
factors Fn,i j , j = 1, 2,

Fn,i j =
〈(
�ni j

)2〉〈
�ni j

〉 , (6)

are smaller than 1.
The nonclassicality of conditional 2D idler fields may be

identified both using the nonclassicality criteria (NCCa) writ-
ten in terms of the intensity moments and probabilities of
photon-number (photocount) distributions. The NCCa using
the intensity moments CW and MW ,

CW ≡ 〈
W 2

i1 W 2
i2

〉 − 〈
Wi1Wi2

〉2
< 0, (7)

MW ≡ 〈
W 2

i1

〉〈
W 2

i2

〉 + 2
〈
Wi1Wi2

〉〈
Wi1

〉〈
Wi2

〉 − 〈
Wi1Wi2

〉2
− 〈

W 2
i1

〉〈
Wi2

〉2 − 〈
Wi1

〉2〈
W 2

i2

〉
< 0, (8)

derived from the Cauchy-Schwarz inequality and the matrix
approach [52], respectively, have been found to be the most
powerful for the analyzed states. They belong to the groups
of the NCCa discussed in Appendix C [CW = C(2,0)

(1,1) , MW =
M(0,0),(1,0),(0,1)]. Their probability variants are then used to
identify the location of nonclassicality across the probability
distributions.

Sub-Poissonian character of the marginal idler fields makes
the following hybrid NCC L [53] very efficient in revealing
the nonclassicality:

LW p
(
ni1

) ≡ 〈
W 3

i2

〉
ni1

〈
W 1

i2

〉
ni1

− 〈
W 2

i2

〉2
ni1

< 0. (9)

In Eq. (9), averaging 〈〉ni1
is performed in the variable ni2 with

the photon-number distribution p(ni1 , ni2 ) in which ni1 is kept
fixed. This means that the intensity moments are determined
in one variable whereas the probabilities are used in the other
to reveal the nonclassicality.

When applying the concept of the Lee nonclassicality
depth (NCD) [54] the NCCa also provide quantification of the
nonclassicality. The NCD τ is derived from the value sth of
the ordering parameter at which the used NCC loses its ability
to reveal the nonclassicality of the analyzed field [52]:

τ = (1 − sth )/2. (10)

To determine the threshold values sth, transformations of
the photon-number distributions as well as the intensity

moments between different field’s orderings are needed
[55–57].

III. NONCLASSICAL LIGHT GENERATED BY
POSTSELECTION WITH THE REAL DETECTOR

First, we analyze the experimental 2D photocount
histograms fii(ci1 , ci2 ; cs) and the corresponding reconstructed
photon-number distributions reached by the maximum-
likelihood approach [pML

ii (ni1 , ni2 ; cs ), see Appendix B] and
the suitable Gaussian fit [pG

ii (ni1 , ni2 ; cs ), see Appendix A]
from the point of view of the marginal idler-fields mean
photocount [〈ci j 〉, j = 1, 2] and photon [〈ni j 〉] numbers and
the Fano factors [Fi j ] that quantify the spread of photocount
and photon-number fluctuations. Both marginal idler fields
behave similarly. The mean photocount [〈ci1〉] and photon
[〈ni1〉] numbers of the first idler field increase with the
increasing post-selected signal photocount number cs in the
analyzed range cs � 10, as shown in Fig. 2(a). On the other
hand, the relative fluctuations in photocount and photon
numbers as quantified by the Fano factors Fc,i1 and Fn,i1 in
Fig. 2(b) decrease with the increasing cs up to cs = 7 and
then they increase. This is a consequence of the postselection
mechanism between the signal and the first idler field that
suffers from nonunit detection efficiency ηs and the noise
signal photons together with the signal-detector dark counts.
Whereas the detrimental role of nonunit detection efficiency
ηs on the Fano factor F decreases with the increasing signal
photocount number cs, the effect of the noise signal photons
and dark counts behaves in the opposite way [19]. Also
the experimental errors of the Fano factor F increase with
the increasing cs which is a consequence of the decreasing
number of measurement repetitions associated with a given
signal photocount number cs. Owing to the relatively low
detection efficiency ηs ≈ 20% and large relative portion of
the noise in the signal field (around 1/2 caused by the signal
photons from the second TWB) the values of Fano factor F
remain in the classical region with F � 1.

However, when we analyze the performance of the post-
selection mechanism on the sum ci1 + ci2 (ni1 + ni2 ) of the
first and the second idler photocount (photon) numbers, i.e.,
when the postselection mechanism works simultaneously and
in-phase on both TWBs, we get the reduction of fluctuations
of the above sums below their classical border (R+ < 1) for
cs ∈ 〈3, 9〉, as documented by the modified noise-reduction-
parameters Rc,+ and Rn,+ plotted in Fig. 2(c). The smallest
values of R+ indicating the strongest achieved suppression of
the fluctuations are reached for the signal photocount numbers
cs = 7, 8, in accordance with the behavior of the first and the
second idler-field Fano factors Fi1 and Fi2 . The suppression of
fluctuations in the sum ci1 + ci2 (ni1 + ni2 ) of the idler-fields
photocount (photon) numbers quantified by Rc,+ < 1 (Rn,+ <

1) gives rise to strong anticorrelations between the fluctuations
of the first and the second photocount (photon) numbers �ci1
(�ni1 ) and �ci2 (�ni2 ). They are alternatively quantified by
the covariances Cc,� and Cn,� drawn in Fig. 2(d).

Contrary to the case of TWBs, revealing the non-
classicality of the postselected 2D fields is much harder. Out
of numerous NCCa written in intensity moments and suc-
cessfully applied to TWBs in Ref. [56], only the NCC CW in
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. (a) Mean number of photons 〈ni1 〉 (photocounts 〈ci1 〉)
and (b) Fano factor Fn,i1 (Fc,i1 ) of the first idler field, (c) modified
noise-reduction-parameter Rn,+ (Rc,+), (d) covariance Cn,� (Cc,�),
and nonclassicality depths (e) τCW and (f) τMW of the 2D idler fields
observed after postselection as they depend on the signal-field post-
selecting photocount number cs. Isolated symbols are drawn for the
experimental photocount histograms (red ∗) and fields reconstructed
by 2D maximum-likelihood approach (green 	); solid blue curves
originate in the 3D Gaussian model. The horizontal dashed lines
indicate the borders of anticorrelation (C� = 0) and nonclassicality
(Fi1 = 1, R+ = 1) regions.

Eq. (7) derived from the Cauchy–Schwarz inequality and the
NCC MW in Eq. (8) originating in the matrix approach pro-
vided high and comparable values of the corresponding NCDs
τCW and τMW , as shown in Figs. 2(e) and 2(f). The comparison
of graphs in Figs. 2(e) and 2(f) drawn for the experimental
2D photocount histograms and photon-number distributions
provided by the 2D maximum-likelihood approach reveals the
NCC MW as more stable and reliable because it identifies
all the states postselected by detecting the signal photocount
numbers cs ∈ 〈3, 9〉 as nonclassical, in accordance with the
values of the modified noise-reduction-parameter Rn,+ plotted
in Fig. 2(c).

We note that the classical/nonclassical features identified
in the experimental photocount histograms fii are emphasized
in the photon-number distributions pii obtained by both recon-
struction methods, as documented in Figs. 2(b)–2(f).

IV. NONCLASSICAL LIGHT GENERATED BY
POSTSELECTION WITH AN IDEAL DETECTOR

Detection of the postselecting signal field with a better
detection efficiency ηs opens the door for the observation of
the postselected 2D idler fields with their most pronounced
properties: anticorrelation in the idler-field photon-number
fluctuations and sub-Poissonian statistics in the marginal idler
fields. We demonstrate these properties by reconstructing
the whole optical field as it occurs in front of all three
used PNRDs, i.e., we also involve the signal-field post-
selecting detector in the reconstruction. We accomplish the
reconstruction both by applying the 3D maximum-likelihood
approach (see Appendix B) and a suitable 3D Gaussian fit
(see Appendix A) to the experimental photocount histogram
f (cs, ci1 , ci2 ). Then, similarly as above, we analyze the 2D
idler-fields photon-number distributions p(ni1 , ni2 ; ns ) condi-
tioned by the presence of ns photons in the signal field. This
corresponds to the use of an ideal PNRD in the postselection
mechanism.

The postselected idler fields behave similarly also in this
case. The mean photon numbers 〈ni1〉id of the first idler field
increase roughly linearly with the post-selecting signal photon
number ns, and we have 〈ni1〉id ≈ ns/2 [see Fig. 3(a)]. Owing
to the ideal detection efficiency ηs = 1 the Fano factors Fi1
attain nonclassical values (F < 1) for greater signal photon
numbers ns. According to the graph in Fig. 3(b), the Fano
factors F id smaller than 0.7 are reached for the signal pho-
ton numbers ns ∈ 〈4, 20〉. For the reconstructed 3D Gaussian
field, sub-Poissonian character of the marginal idler fields is
lost quickly for even greater values of ns as a consequence of
the noise signal photons originating in the second TWB.

The sub-Poissonian Fano factors of the marginal idler
fields reflect efficient functioning of the postselection mech-
anism that gives raise to low values of the modified
noise-reduction-parameter Rid

n,+. According to Fig. 3(c) they
attain the highly nonclasical values around 0.2–0.3 in the
whole range ns ∈ 〈4, 20〉. Also the covariance Cid

n,� of the
idler-field photon-number fluctuations �ni1 and �ni2 plotted
in Fig. 3(d) attains the values around −0.8 – −0.6 in this
range, which expresses the strong anticorrelation. Whereas,
the greatest values of the NCDs τCW and τMW reached by the
real detector equal around 0.1, the postselection by the ideal
detector provides the much greater values of up to around
0.4, as documented in Figs. 3(e) and 3(f). The comparison of
graphs in Figs. 3(e) and 3(f) plotted for the photon-number
distributions originating in the 3D maximum-likelihood ap-
proach reveals the NCC MW more stable than the NCC CW in
identifying and quantifying the nonclassicality.

In the quantities plotted in Figs. 3(b)–3(f) there occur little
oscillations with the increasing period as the postselecting
signal photon number ns increases. They originate in the dis-
crete photocount numbers cs provided by the measurement.
The 3D maximum-likelihood reconstruction has to correct for
the detection efficiency ηs ≈ 20%: The neighbor measure-
ments for cs and cs + 1 postselecting photocounts have to be
expanded into the interval of ns postselecting photons from
≈cs/ηs to ≈cs/ηs + 1/ηs. Gradual stretching of the oscillation
period ≈5 is then caused by the presence of dark counts. The
oscillations reflect the varying quality of the measurement for
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(b)(a)

(d)(c)

(f)(e)

FIG. 3. (a) Mean number of photons 〈ni1 〉id and (b) Fano factor
F id

n,i1
of the first idler field, (c) modified noise-reduction-parameter

Rid
n,+, (d) covariance Cid

n,�, and nonclassicality depths (e) τ id
CW

and
(f) τ id

MW
of the 2D idler fields reached by the ideal photon-

number-resolving postselection as they depend on the signal-field
post-selecting photon number ns. Isolated symbols are drawn for
the field reconstructed by 3D maximum-likelihood approach (dark
green 
); solid dark blue curves originate in the 3D Gaussian model.
The horizontal dashed lines indicate the borders of anticorrelation
(Cid

� = 0) and nonclassicality (F id
i1

= 1, Rid
+ = 1) regions.

different postselecting photon numbers ns: The measurements
for the numbers ns for which ηsns are close to integers are
of the best quality and allow us to reconstruct the studied
quantities in the best way. For the remaining numbers ns

the measurements are, roughly speaking, split between the
neighbor photocount numbers cs and so their quality as well
as the quality of the reconstructed quantities are worse.

V. DETAILED ANALYSIS OF NONCLASSICAL
PROPERTIES OF POSTSELECTED FIELDS

Now we compare side-by-side the properties of two typical
post-selected states obtained by the real detector (cs = 5) and
the ideal one (ns = 10). The state generated in the experi-
mental setup by the real detector is a bit more intense, it
contains on average around seven photons in each idler field

compared to around five photons in the idler fields of the state
provided by the ideal detector. The correspoding 2D photon-
number distributions pii and pid

ii plotted in Figs. 4(a) and 4(b),
respectively, clearly exhibit prolongation in the direction per-
pendicular to the line ni1 = ni2 . Whereas the covariance Cn,�

of the idler-fields photon-number fluctuations �ni1 and �ni2
equals only −0.14 ± 0.02 for the state reached by the real de-
tector, the ideal detector allows us to reach the value −0.74 ±
0.03. Both these values belong to the nonclassical states as
the corresponding values of the modified noise-reduction-
parameter are smaller than 1 (Rn,+ = 0.87 ± 0.03, Rid

n,+ =
0.16 ± 0.02). Also the real detector provides the marginal
idler fields with the classical photon-number statistics close to
the Poissonian one (Fn,i1 = 1.03 ± 0.09, Fn,i2 = 1.01 ± 0.09).
On the other hand, highly sub-Poissonian states arise for
the ideal detector (F id

n,i1 = 0.64 ± 0.06, F id
n,i2 = 0.61 ± 0.06).

The NCCa CW and MW assign the NCDs τW = 0.06 ± 0.02
(τCW = 0.02 ± 0.01, τMW = 0.06 ± 0.02) to the state obtained
by the real detector and 0.40 ± 0.01 (τ id

CW
= 0.38 ± 0.01,

τ id
MW

= 0.40 ± 0.01) to the state provided by the ideal detector.
The decomposition of quasidistribution Pii,s(Wi1,Wi2 ) of

the idler-fields integrated intensities related to an arbitrary
s-ordering of field operators into the Laguerre polynomials
allows us to reconstruct the quasidistribution Pii,s from the
corresponding photon-number distribution pii (ni1 , ni2 ) [for de-
tails, see Appendix D]. The reconstructed quasidistributions
Pii and Pid

ii belonging to the analyzed fields are drawn in
Figs. 4(c) and 4(d) for s = 0.1 and s = −0.15, respectively.
As there occur negative values in both graphs and according
to the genuine definition of the nonclassicality [58,59], the
actual NCDs τ for the analyzed fields lie around 0.45 and
0.57 [see Eq. (10)], respectively. The areas with negative
probability densities in the plane (Wi1 ,Wi2 ) are typically lo-
cated in the region between the point (Wi1 ,Wi2 ) = (0, 0) and
the area where the maximal intensities of the quasidistribu-
tion Pii,s(Wi1,Wi2 ) occur [see the graph in Fig. 4(d)]. This
resembles the behavior of 1D quasidistributions of integrated
intensities characterizing sub-Poissonian fields generated by
photon-number-resolving postselection from TWBs [19].

The values of the NCDs τ indicated by negative values
of the above quasidistributions are considerably greater than
those revealed by the NCCa CW and MW based on the intensity
moments, especially when the photon-number distribution ob-
tained by the real detector is analyzed. For this reason, we
extend our analysis of the non-classicality by considering the
systems of NCCa involving the probabilities of photocount
and photon-number distributions. Also in this case, the sys-
tems of NCCa C̄p and M̄p derived from the Cauchy-Schwarz
inequality and the matrix approach, respectively, and de-
scribed in detail in Appendix C proved the best performance.
Moreover, to certain extent, they revealed the location of non-
classicality across the analyzed photon-number distributions,
as demonstrated in Figs. 4(e)–4(h) showing the corresponding
NCDs τ̄ . The comparison of graphs in Figs. 4(e) and 4(f) with
those in Figs. 4(g) and 4(h) identifies the system of NCCa M̄p

as more powerful in quantifying the nonclassicality than the
system of NCCa C̄p, similarly as in the case of their intensity-
moment counterparts. The attained values of the NCDs τ̄Cp

and τ̄Mp are greater than those reached by the NCCa CW and
MW using the intensity moments. Considerable improvement
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)f()e(
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FIG. 4. (a), (b) Photon-number distribution pii (ni1 , ni2 ) with
(c), (d) the corresponding quasidistribution Pii,s(Wi1 ,Wi2 ) of inte-
grated intensities and nonclassicality depths τ̄ of the NCCa (e), (f)
C̄p(ni1 , ni2 ), (g), (h) M̄p(ni1 , ni2 ), and (i), (j) LW p(ni1 ) drawn as they
depend on the numbers ni1 and ni2 of photons in the idler fields.
The fields postselected by cs = 5 signal photocounts (a), (c), (e),
(g), (i) and ns = 10 signal photons (b), (d), (f), (h), (j) are analyzed.
In (c) [(d)], s = 0.1 [s = −0.15] and the integrated intensities are
expressed in the units of photon numbers. In (e), (g) [(f), (h)], only
the NCCa for which the mean value of the used probabilities is
greater than 0.01 [0.02] are considered. In (i) [(j)], isolated symbols
(green 	) [dark green 
] originate in 2D [3D] maximum-likelihood
method.

occurs for both photon-number distributions (τMW = 0.06 ±
0.02, τ̄max

Mp
= 0.27; τ id

MW
= 0.40 ± 0.01, τ̄ id,max

Mp
= 0.46). The

greatest values of the NCDs τ̄Mp are found in the central parts
of the photon-number distributions [see Figs. 4(g) and 4(h)].

In our opinion, the NCCa based on the intensity moments
lose their power to resolve the nonclassicality compared to the
NCCa with the probabilities in the process of averaging that
smoothes out the local nonclassical features contained in the
photon-number distributions. To support this explanation we
analyze both photon-number distributions applying the hybrid
criterion LW p in Eq. (9) that keeps the local resolution in
the first-idler-field photon number ni1 . The greatest achieved
values of NCDs τLW p and τ id

LW p
plotted in Figs. 4(i) and 4(j),

respectively, are smaller than the corresponding greatest val-
ues of the NCDs τ̄max

Mp
and τ̄ id,max

Mp
plotted in Figs. 4(g) and

4(h), but they are considerably greater than the values of the
corresponding NCDs τMW and τ id

MW
.

VI. CONCLUSIONS

Using postselection by a photon-number-resolving de-
tector and two twin beams of similar intensities, we have
experimentally generated the fields with increasing intensi-
ties that are endowed with anticorrelations in photon-number
fluctuations. They even exhibit the marginal sub-Poissonian
photon-number statistics under suitable conditions. Properties
of the experimentally generated postselected states were mon-
itored by two additional photon-number-resolving detectors.
The obtained experimental data were reconstructed in paral-
lel by the maximum-likelihood approach and by considering
a suitable Gaussian fit. The nonclassicality of the observed
postselected fields was evidenced by the determination of the
corresponding quasidistributions of integrated intensities with
negative values as well as by several types of the nonclassi-
cality criteria and the accompanying non-classicality depths.
Whereas the quasidistributions of integrated intensities are
natural identifiers of the nonclassicality, the ability of the
nonclassicality criteria to resolve the nonclassicality decreases
with their decreasing resolution (in turn, criteria based on
the probabilities, hybrid criteria, and criteria using the inten-
sity moments). Specific properties of the generated states are
appealing in quantum metrology: The measurement of two-
photon absorption cross sections beyond the shot-noise-limit
because of the sub-Poissonian character of both fields and
anticorrelations in photon-number fluctuations serves as an
example. The properties of the investigated states are also
attractive for two-photon excitations of molecules and other
material systems.
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APPENDIX A: MULTIMODE GAUSSIAN FIELDS
AND THEIR RECONSTRUCTION

The mechanism of generation of the analyzed optical field
suggests the following analytical structure for its description.
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The optical field may be considered as composed of two
ideal multimode TWBs and three independent multimode
thermal (Gaussian) noisy fields. The spontaneous character of
parametric down-conversion suggests the photon-number dis-
tribution pp j (ns j , ni j ) for TWB j, j = 1, 2, in the multimode
Gaussian form with Mp j modes and Bp j mean photon-pairs per
mode

pp j

(
ns j , ni j

) = δns j ,ni j
pM−R

(
ns j ; Mp j , Bp j

)
. (A1)

The multimode thermal Mandel-Rice distribution pM−R for an
M-mode field with each mode having on average B photons is
given as

pM−R(n; M, B) = 	(n + M )

n!	(M )

Bn

(1 + B)n+M
. (A2)

In Eqs. (A1) and (A2), the Kronecker symbol δns,ni and the
gamma function 	 are used.

A 3D photon-number distribution pp of the ideally paired
part of the studied optical field is expressed as

pp
(
ns, ni1 , ni2

) =
ns∑

ns1 =0

pp1

(
ns1 , ni1

)
pp2

(
ns − ns1 , ni2

)
. (A3)

We assume the photon-number distribution pns of the noise in
the combined signal field in the form of Eq. (A2) with Mns

modes each having on average Bns noisy photons. A similar
assumption is made for the photon-number distribution pnij

of
the j-th idler field whose noise is distributed into Mnij

modes
each populated with Bnij

mean photons, j = 1, 2. Threefold
convolution of the ideally paired photon-number distribution
pp with three noisy photon-number distributions then leaves
us with the photon-number distribution p appropriate for the
analyzed optical field:

p
(
ns, ni1 , ni2

) =
ns∑

ls=0

pns

(
ns − ls

) ni1∑
li1 =0

pni1

(
ni1 − li1

)

×
ni2∑

li2 =0

pni2

(
ni2 − li2

)
pp

(
ls, li1 , li2

)
. (A4)

The photon-number moments 〈nks
s n

ki1
i1

n
ki2
i2

〉 corresponding to
the photon-number distribution p in Eq. (A4) are determined
as follows:

〈
nks

s n
ki1
i1

n
ki2
i2

〉 =
∞∑

ns,ni1 ,ni2 =0

nks
s n

ki1
i1

n
ki2
i2

p
(
ns, ni1 , ni2

)
. (A5)

The (integrated-) intensity moments 〈W ks
s W

ki1
i1

W
ki2

i2
〉, that are

the normally-ordered photon-number moments, are derived
from the above photon-number moments using the Stirling
numbers S of the first kind [60]:

〈
W ks

s W
ki1

i1
W

ki2
i2

〉 =
ks∑

ls=0

S(ks, ls )

ki1∑
li1 =0

S
(
ki1 , li1

)

×
ki2∑

li2 =0

S
(
ki2 , li2

)〈
nls

s n
li1
i1

n
li2
i2

〉
. (A6)

The inverse relation to that in Eq. (A6) relies on the Stirling
numbers of the second kind. We note that we have the fol-
lowing relations between the intensity moments and number
M of modes together with their mean photon numbers B for a
multimode thermal field:

B = 〈(�W )2〉
〈W 〉 , M = 〈W 〉2

〈(�W )2〉 ; (A7)

�W ≡ W − 〈W 〉.
In the experiment, we detect the photocount numbers c, i.e.,

the numbers of photoelectons excited by the absorbed pho-
tons. Multiple realizations of the measurement then give us the
experimental photocount histogram f determined in Eq. (3)

and the accompanying photocount moments 〈cks
s c

ki1
i1

c
ki2
i2

〉,
〈
cks

s c
ki1
i1

c
ki2
i2

〉 =
∞∑

cs,ci1 ,ci2 =0

cks
s c

ki1
i1

c
ki2
i2

f
(
cs, ci1 , ci2

)
. (A8)

Similarly as the intensity moments 〈W ks
s W

ki1
i1

W
ki2

i2
〉 are as-

signed to the photon-number moments 〈nls
s n

li1
i1

n
li2
i2

〉, we may

assign the intensity moments 〈Wks
s Wki1

i1
Wki2

i2
〉E to the photo-

count moments 〈cls
s c

li1
i1

c
li2
i2

〉 using the relations in Eq. (A6).

The photocount moments 〈cls
s c

li1
i1

c
li2
i2

〉 as well as the intensity

moments 〈Wks
s Wki1

i1
Wki2

i2
〉E are directly available from the

experimental data and so they form a natural basis for the
reconstruction of the above Gaussian form of the studied field.

Description of the response of a PNRD is also needed
when making the reconstruction. An iCCD camera, used in
our experiment, is characterized by detection efficiency η,
dark-count rate D ≡ d/N per pixel, and number N of ac-
tive pixels that determine the corresponding detection matrix
T (c, n) introduced in Eq. (2) in the following form [61]:

T (c, n) =
(

N
c

)
(1 − D)N (1 − η)n(−1)c

×
c∑

l=0

(
c
l

)
(−1)l

(1 − D)l

(
1 + l

N

η

1 − η

)n

. (A9)

For the reconstruction, we have at our disposal the experi-
mental 3D photocount histogram f . From this histogram, we
conveniently determine the following nine experimental inten-
sity moments with sufficiently high precision: 〈Ws〉E , 〈Wi j 〉E ,
〈(�Ws)2〉E , 〈(�Wi j )

2〉E , 〈�Ws�Wi j 〉E , and 〈�Wi1�Wi2〉E ,
j = 1, 2. On the other hand, the multimode Gaussian optical
field is characterized by ten parameters, five parameters give
the numbers of modes (Mp j , Mns , Mni j

, j = 1, 2) in different
components of the field and five parameters characterize the
mean photon (-pair) numbers in each mode (Bp j , Bns , Bni j

,
j = 1, 2). Moreover, we need to know the detection efficien-
cies for each detected field (ηs, ηi1 , ηi2 ).

Detailed analysis of the used experimental setup reveals
that the detection efficiencies ηi1 and ηi2 cannot be determined
independently with sufficient precision. This is related to the
fact that no photon pairs occur directly in the first and the
second idler fields. For this reason, we assume in our analysis
that they are equal (ηi1 = ηi2 ≡ ηi). Under this assumption we
can accomplish the reconstruction in two subsequent steps.
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First, we combine together the intensity moments of both
idler fields to arrive at the moments characterizing the com-
mon idler field:

〈Wi〉E = 〈
Wi1

〉
E + 〈

Wi2

〉
E ,

〈
(�Wi )

2
〉
E = 〈(

�Wi1

)2〉
E + 2

〈
�Wi1�Wi2

〉
E

+ 〈(
�Wi2

)2〉
E
,〈

�Ws�Wi
〉
E = 〈

�Ws�Wi1

〉
E + 〈

�Ws�Wi2

〉
E . (A10)

Then we apply the reconstruction method for a multi-mode
Gaussian TWB composed of the combined signal and com-
bined idler fields that has been developed in [62]. This
provides us the intensity moments 〈Wp〉 and 〈(�Wp)2〉 of the
combined ideally paired field and intensity moments 〈Wns〉,
〈Wni〉, 〈(�Wns )

2〉, and 〈(�Wni )
2〉 of the noise signal and idler

fields as well as the detection efficiencies ηs and ηi.
In the second step, we determine the remaining intensity

moments 〈Wp j 〉 and 〈(�Wp j )
2〉 belonging to the paired compo-

nents as well as the intensity moments 〈Wi j 〉 and 〈(�Wi j )
2〉 of

the noise idler fields, j = 1, 2. For this purpose, we write the
following ten linear relations among the looked-for intensity
moments: 〈

Wp j

〉 + 〈
Wni j

〉 = 〈
Wi j

〉
E
/ηi,

〈
(�Wp j )

2〉 + 〈
(�Wi j )

2〉 = 〈(
�Wi j

)2〉
E/η2

i ,〈
Wp j

〉 + 〈(
�Wp j

)2〉 = 〈
�Wi j �Ws

〉
E

/
(ηiηs),

j = 1, 2,〈
Wp1

〉 + 〈
Wp2

〉 = 〈Wp〉,〈
Wni1

〉 + 〈
Wni2

〉 = 〈
Wni

〉
,

〈(
�Wp1

)2〉 + 〈(
�Wp2

)2〉 = 〈(�Wp)2〉,
〈(
�Wni1

)2〉 + 〈(
�Wni2

)2〉 = 〈(
�Wni

)2〉
. (A11)

Whereas the first six relations in Eq. (A11) contain the original
experimental intensity moments, the remaining four relations
are based upon the intensity moments obtained in the first step.

Detailed analysis of the linear relations in Eq. (A11)
reveals that only seven out of them are independent. As
we have eight independent intensity moments to be deter-
mined, we choose one intensity moment as a free parameter
and derive the remaining seven ones using the relations in
Eq. (A11). We may conveniently choose, e.g., the moment
〈(�Wp1 )2〉 and express the remaining moments as linear
combinations of this moment, the experimental intensity
moments and the moments known from the first step. We
may proceed, e.g., along the following lines: 〈(�Wp1 )2〉 →
〈Wp1〉 → 〈Wp2〉 → 〈(�Wp2 )2〉, 〈Wp j 〉 → 〈Wni j

〉, 〈(�Wp j )
2〉 →

〈(�Wni j
)2〉, j = 1, 2. We note that the allowed values of the

intensity moment 〈(�Wp1 )2〉 fulfill:〈
(�Wp1 )2〉 ∈ (0, min

{〈(
�Wi1

)2〉
E

/
η2

i ,〈
�Wi1�Ws

〉
E

/
(ηiηs)

})
. (A12)

For given set of the values of the intensity moments 〈Wp j 〉,
〈(�Wp j )

2〉, 〈Wni j
〉, 〈(�Wni j

)2〉, j = 1, 2, 〈Wns〉, and 〈(�Wns )
2〉

we derive the numbers Mp j , Mni j
, j = 1, 2, and Mns of modes

and mean photon (-pair) numbers Bp j , Bni j
, j = 1, 2, and Bns

using Eqs. (A7). Then, we reconstruct the 3D photon num-
ber distribution p(ns, ni1 , ni2 ) in Eq. (A3) and arrive at the
theoretical 3D photocount histogram f th(cs, ci1 , ci2 ) by apply-
ing Eq. (3) together with the detection matrix in Eq. (A9).
The optimal values of numbers of modes and mean photon
(-pair) numbers are set such that they minimize the decli-
nation function D between the theoretical and experimental
histograms:

D =
√√√√ ∞∑

cs,ci1 ,ci2 =0

[
f th

(
cs, ci1 , ci2

) − f
(
cs, ci1 , ci2

)]2
. (A13)

APPENDIX B: MAXIMUM-LIKELIHOOD
RECONSTRUCTION OF 2D AND 3D PHOTON-NUMBER

DISTRIBUTIONS

The 3D photon-number distribution p(ns, ni1 , ni2 ) of the
original optical field used in the experiment is obtained
from the experimental photocount histogram f (cs, ci1 , ci2 )
by inverting the linear relations expressed in Eq. (3). The
maximum-likelihood method [63,64] provides us the fol-
lowing iteration procedure that reveals the photon-number
distribution p(ns, ni1 , ni2 ) as a steady state of the following
iteration procedure:

p( j+1)
(
ns, ni1 , ni2

) =
∞∑

cs,ci1 ,ci2 =0

F ( j)
(
cs, ci1 , ci2

)
Ts(cs, ns )

× Ti1

(
ci1 , ni1 )Ti2

(
ci2 , ni2

)
,

F ( j)(cs, ci1 , ci2

) = f
(
cs, ci1 , ci2

)[ ∞∑
n′

s,n
′
i1

,n′
i2

=0

Ts
(
cs, n′

s

)

× Ti1

(
ci1 , n′

i1

)
Ti2

(
ci2 , n′

i2

)

× p( j)
(
n′

s, n′
i1 , n′

i2

)]−1

,

j = 0, 1, . . . . (B1)

Similarly, the 2D photon-number distributions
pii (ni1 , ni2 ; cs) given in Eq. (2) and belonging to the
field postselected by detecting cs signal photocounts can
be reconstructed by the maximum-likelihood method
from the conditional experimental photocount histograms
fii(ci1 , ci2 ; cs ) ≡ f (cs, ci1 , ci2 )/

∑∞
c′

i1
,c′

i2
=0 f (cs, c′

i1 , c′
i2 ). We

arrive at the following iteration procedure in this case:

p( j+1)
ii

(
ni1 , ni2 ; cs

) =
∞∑

ci1 ,ci2 =0

F ( j)
ii

(
ci1 , ci2 ; cs

)
Ti1

(
ci1 , ni1

)

× Ti2

(
ci2 , ni2

)
,

013712-9
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F ( j)
ii

(
ci1 , ci2 ; cs

) = fii
(
ci1 , ci2 ; cs

)[ ∞∑
n′

i1
,n′

i2
=0

Ti1

(
ci1 , n′

i1

)

× Ti2

(
ci2 , n′

i2

)
p( j)

ii

(
n′

i1 , n′
i2 ; cs

)]−1

,

j = 0, 1, . . . . (B2)

APPENDIX C: IDENTIFICATION OF THE
NONCLASSICALITY

For the analyzed postselected 2D idler fields, the NCCa CL
K

derived from the Cauchy-Schwarz inequality and the NCCa
MJKL originating in non-negative quadratic forms [38] of three
variables conveniently written in the matrix form [57,65,66]
have been found to be the most powerful:

CL
K = 〈W L〉〈W 2K−L〉 − 〈W K〉2 < 0, K � 0, 2K � L � 0,

(C1)

MJKL = det

˝⎡
⎣ W 2J W J+K W J+L

W K+J W 2K W K+L

W L+J W L+K W 2L

⎤
⎦
˛

< 0,

J, K, L � 0. (C2)

In Eqs. (C1) and (C2), we use the notation with vector indices

K ≡ (ki1 , ki2 ) in which W K ≡ W
ki1

i1
W

ki2
i2

and K! ≡ ki1 ! ki2 !.
The NCCa CL

K and MJKL based on the intensity moments
are translated into the corresponding NCCa C̄L

K and M̄JKL

written for the probabilities of photon-number (photocount)
distributions p(ki1 , ki2 ) ≡ p(K ) [56,67–70] using the mapping
originating in the Mandel detection formula [2,55]:

〈W K〉 ←− K!p(K )/p(0, 0). (C3)

We note that the mapping (C3) assigns photon numbers and
the accompanying probabilities to the powers of intensity mo-

ments. The NCCa for probabilities indicate not only the global
nonclassicality of an analyzed field, they may also provide the
information about the location of the nonclassicality across
the profile of photon-number (photocount) distribution [57].
This can be accomplished by applying the following NCCa
C̄p(K ) and M̄p(K ) that involve the above NCCa C̄L

K and M̄JKL

with the indices obeying specific conditions:

C̄p(K ) = min
L,|K−L|�1

{
C̄L

K

}
, (C4)

M̄p(K ) = min
J,L,|J−K|�1,|L−K|�1

{M̄JKL}, (C5)

and |K − L| � 1 means that both conditions |ki j − li j | � 1 for
j = 1, 2 are fulfilled.

APPENDIX D: RECONSTRUCTION OF
QUASIDISTRIBUTIONS OF INTEGRATED INTENSITIES

An s-ordered quasidistribution Pii,s(Wi1 ,Wi2 ) of the idler-
fields integrated intensities Wi1 and Wi2 corresponding to a 2D
idler-fields photon-number distribution pii (ni1 , ni2 ) is obtained
using the following formula [55]:

Pii,s
(
Wi1 ,Wi2

) = 4

(1 − s)2
exp

(
−2

(
Wi1 + Wi2

)
1 − s

)

×
∞∑

ni1 ,ni2 =0

pii
(
ni1 , ni2

)
ni1 ! ni2 !

(
s + 1

s − 1

)ni1 +ni2

× Lni1

(
4Wi1

1 − s2

)
Lni2

(
4Wi2

1 − s2

)
. (D1)

In Eq. (D1), the symbol Lk stands for the Laguerre polynomi-
als [71].
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[44] J. Peřina Jr., M. Centini, C. Sibilia, M. Bertolotti, and M.
Scalora, Anti-symmetric entangled two-photon states generated
in nonlinear GaN/AlN photonic-band-gap structures, Phys. Rev.
A 75, 013805 (2007).

[45] W. A. T. Nogueira, S. P. Walborn, S. Padua, and C. H. Monken,
Experimental Observation Of Spatial Anti-Bunching Of Pho-
tons, Phys. Rev. Lett. 86, 4009 (2001).

[46] D. P. Caetano and P. H. Souto Ribeiro, Generation of spatial
anti-bunching with free-propagating twin beams, Phys. Rev. A
68, 043806 (2003).

[47] M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert,
Event-Ready-Detectors Bell Experiment Via Entanglement
Swapping, Phys. Rev. Lett. 71, 4287 (1993).

[48] A. Scherer, R. B. Howard, B. C. Sanders, and W. Tittel, Quan-
tum states prepared by realistic entanglement swapping, Phys.
Rev. A 80, 062310 (2009).

[49] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long-
distance quantum communication with atomic ensembles and
linear optics, Nature (London) 414, 413 (2001).

013712-11

https://doi.org/10.1364/OL.37.002475
https://doi.org/10.1364/JOSAB.31.0000B1
https://doi.org/10.1098/rsta.1997.0125
https://doi.org/10.1103/PhysRevLett.91.213601
https://doi.org/10.1364/OL.31.001735
https://doi.org/10.1364/OE.21.019387
https://doi.org/10.1364/JOSAB.31.000020
https://doi.org/10.1364/OL.41.002149
https://doi.org/10.1103/PhysRevLett.116.143601
https://doi.org/10.1103/PhysRevA.64.052305
https://doi.org/10.1364/OL.30.001539
https://doi.org/10.1063/1.4768288
https://doi.org/10.1103/PhysRevA.100.053831
https://doi.org/10.1103/PhysRevLett.58.2656
https://doi.org/10.1016/0030-4018(86)90288-9
https://doi.org/10.1038/nphoton.2010.29
https://doi.org/10.1088/1367-2630/aa5512
https://doi.org/10.1103/PhysRevA.98.012121
https://doi.org/10.1364/OE.27.030810
https://doi.org/10.1364/JOSAB.19.000656
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/PhysRevA.46.485
https://doi.org/10.1103/PhysRevA.93.043849
https://doi.org/10.1103/PhysRevA.98.013809
https://doi.org/10.1103/PhysRevA.71.043805
https://doi.org/10.1038/s41534-019-0195-2
https://doi.org/10.1103/PhysRevLett.56.58
https://doi.org/10.1103/PhysRevA.75.013805
https://doi.org/10.1103/PhysRevLett.86.4009
https://doi.org/10.1103/PhysRevA.68.043806
https://doi.org/10.1103/PhysRevLett.71.4287
https://doi.org/10.1103/PhysRevA.80.062310
https://doi.org/10.1038/35106500
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