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Electromagnetically induced transparency in the strong blockade regime using the four-photon
excitation process in thermal rubidium vapor
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We present a theoretical model of a four-photon excitation process to the Rydberg state in thermal atomic
vapor where the motion-induced dephasing in the system is eliminated. This is achieved by arranging the four
laser beams in a suitable geometry such that the residual wave vector is reduced to zero. The method of adiabatic
elimination has been used to reduce the complex five-level system to an effective three-level system to study
electromagnetically induced transparency (EIT) where the transition from ground state to second excited state
can be considered as the effective probe and second excited state to the Rydberg state as the effective coupling
transition. The effect of the blockade phenomenon is observed in the strong interaction regime, where the two
atoms are considered to be moving with independent velocities and the system is Doppler averaged using Monte
Carlo simulation technique. Also, the dephasing mechanisms in the system are investigated in detail. Though the
system is not frozen during the excitation process, a strong blockade effect is still observed similar to the cold
atom system. We conclude the paper with a proposal for experimentally investigating the four-photon excitation
process to the Rydberg state in thermal rubidium vapor.
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I. INTRODUCTION

In the last decade, Rydberg atoms [1] have emerged as
a promising tool for studying quantum many-body systems
with great applications, such as the development of quantum
simulators [2], nonequilibrium quantum engines [3], etc. Ry-
dberg atoms are also used to study induced enhanced optical
nonlinearity at the level of a single photon [4], sensing ra-
diation ranging from radio frequency to THz [5–8]. Strong
interaction in the Rydberg state [9] leading to the phenomenon
of Rydberg blockade [10] is at the heart of study of quantum
many-body physics. The combination of strong Rydberg-
Rydberg interaction with coherent atom-light interaction in
electromagnetically induced transparency (EIT) [11,12] pos-
sesses enhanced optical nonlinearity [13–15] and has been
used to study strong nonlinearity at the level of a single
photon [16–19]. The Rydberg blockade requires the system
to be frozen during the excitation process and hence, ultracold
atoms are only used for such experiments [20–24]. Recently,
there have been experiments to study Rydberg interaction and
blockade-induced effects in thermal vapor [25] using nanosec-
ond pulses [26]. Again, the thermal vapor system is frozen
in a nanosecond timescale, which makes such experiments
feasible.

In this paper, we propose a four-photon excitation process
to study EIT in the strong blockade regime where the system is
not necessarily be frozen during the excitation process. Such
experiments can be done using cw lights and the system can
be studied in the steady state. To study the Rydberg excitation
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in thermal atomic vapor, multiphoton excitation schemes have
been used in various experiments [27–31], where the diode
lasers are inexpensive and also higher Rabi frequencies can be
achieved using low laser power. The main idea of the proposal
is to use a suitable geometry of the four laser beams such that
the residual wave vector of the lasers is nearly zero, hence
eliminating the motion-induced dephasing in the system.
Motion-induced dephasing is a serious issue for experiments
involving Rydberg interactions. There are studies [32,33] and
a proposal [34] on how to eliminate the motional dephasing
in the atomic system, but the four-photon Rydberg excitation
scheme has not been discussed and analyzed in detail. Such
experiments with thermal vapor are simpler compared to the
complexity involved in the cold atomic system. Hence, it
will be useful for practical applications of building quantum
devices as the Rydberg atomic systems have been evolving to
be the basis of various quantum technologies [35].

The paper is organized as follows. In the next section, we
discuss a model of the five-level system to study EIT using
the four-photon excitation process to the Rydberg state. In
Sec. III, the method of adiabatic elimination [36] is shown
where we reduce the complex five-level system to an effective
three-level system followed by the study of EIT in the strong
blockade regime using a model with two interacting atoms in
the Rydberg states in Sec. IV. Finally, in Sec. V, we give an
experimental proposal with thermal rubidium vapor.

II. FOUR-PHOTON EXCITATION IN
A FIVE-LEVEL SYSTEM

Let us consider a five-level atomic system with states |g〉,
|e〉, |e′〉, |e′′〉, and |r〉 in a ladder configuration as shown in
Fig. 1(a), where |g〉 is the ground state, |r〉 is the Rydberg state,
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FIG. 1. (a) Schematic of the energy-level diagram of a five-level
system in the ladder configuration. (b) Schematic of the laser ge-
ometry through a Rb vapor cell consisting of four laser fields of
frequencies ω1 (red), ω2 (yellow), ω3 (olive), and ω4 (magenta). The
laser field with frequency ω2 (ω4) counterpropagates the field with
frequency ω1 (ω3), whereas ω1 (ω2) and ω3 (ω4) copropagate with
each other.

and |e〉, |e′〉, and |e′′〉 are the intermediate states. The four laser
fields with optical frequencies ω1, ω2, ω3, and ω4 are used to
carry out the dipole-allowed transitions |g〉 → |e〉, |e〉 →
|e′〉, |e′〉 → |e′′〉, and |e′′〉 → |r〉, respectively, as shown in
Fig. 1(b). The corresponding Rabi frequencies (detunings) are
�1 (�1), �2 (�2), �3 (�3), and �4 (�4). The Hamiltonian
of the system in a suitable rotating frame, after application of
the rotating-wave approximation, can be written as

H = − h̄

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 �1 0 0 0

�∗
1 2δ1 �2 0 0

0 �∗
2 2δ2 �3 0

0 0 �∗
3 2δ3 �4

0 0 0 �∗
4 2δ4

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where δ1 = �1, δ2 = (�1 + �2), δ3 = (�1 + �2 + �3), and
δ4 = (�1 + �2 + �3 + �4). The optical Bloch equation for
the system is given by ρ̇ = i

h̄ [ρ, H] + LD(ρ), where ρ is the
density matrix of the system. The second term LD(ρ) in the
equation is the Lindblad operator, which includes all the decay
and decoherence processes occurring in the system and is

given by LD = ∑
i f �i f [Ci f ρC†

i f − 1
2 {C†

i f Ci f , ρ}] [37]. Ci f is
defined as Ci f = | f 〉〈i|, where | f 〉 is the final state and |i〉 is
the initial state. �i f represents the population decay from the
initial state |i〉 to the final state | f 〉. The population decay rates
through the decay channels with dipole-allowed transitions,
i.e., �eg, �e′e, �e′′e′ , and �re′′ are taken to be nonzero. We also
introduce the population decay of the excited states due to
finite transit time of the thermal atoms through the transverse
direction of the laser beams. When an atom goes out of the
beam and a new atom enters the beam it remains initially in
the ground state. So, the additional decay of the excited states
to the ground state with respective rates �rg, �e′′g, �e′g, and
�eg are also taken to be nonzero. The decay rates considered
in the model for the calculations are �eg = 6 MHz, �e′e =

FIG. 2. (a) Probe transmission in the absence of coupling beams
while scanning �2 (open red circles) and in the presence of coupling
beam using the five-level system with �k = 0 (solid black line)
and with �k = 0.023 × 106 m−1 (open green squares). The effec-
tive wave vector of the probe is used to be kp = 0.007 × 106 m−1.
(b) The probe transmission peak height as a function of kc (open
red circles). The laser parameters used in the model are �1 =
10 MHz, �2 = 110 MHz, �3 = 80 MHz and �4 = 80 MHz, �1 =
1200 MHz, �3 = 1000 MHz, and �4 is adjusted around �3 such that
the transmission is symmetric.

0.65 MHz, �e′′e′ = 0.3 MHz, �re′′ = 0.01 MHz. The transit
time decay rates are taken to be 0.2 MHz.

The optical Bloch equations are solved for the steady state,
i.e., ρ̇ = 0, to find out the susceptibility of the probe beam.
Since we are working with a thermal vapor system, by taking
into consideration the velocity of the atoms in the vapor to be
v and for the given laser configuration as shown in Fig. 1(b),
the detunings are taken as �1 → �1 − k1v, �2 → �2 + k2v,
�3 → �3 − k3v, and �4 → �4 + k4v. k1, k2, k3, and k4 are
the magnitude of the wave vectors of the four driving lasers.
Assuming that k2 > k1 and k3 > k4, we define kp = k2 − k1,
kc = k3 − k4, and the residual wave vector as �k = kc − kp,
where kp(kc) is termed the effective wave vector of the probe
(coupling) laser beam. Doppler-averaged susceptibility of the
probe beam coupling the transition |g〉 → |e〉 is given by

χ (ω1) = 2N |μge|2
h̄ε0�1

1√
2πvp

∫ +∞
−∞ ρege−v2/2v2

pdv, where μge is the

dipole moment of the |g〉 → |e〉 transition, N is the vapor
density, and vp is the most probable speed of the atoms. The
transmission of the probe beam is calculated as T = I/I0 =
e−Im(χ )k1l , where l is the length of the vapor cell. The probe
transmissions for different laser parameters are depicted in
Fig. 2(a). The vapor density and length of the vapor cell are
taken to be 4.5 × 1010 cm−3 and 5 cm, respectively. With
the given laser parameters, none of the lasers satisfies the
single-photon resonance, but the two-photon resonances for
the transitions |g〉 → |e′〉 and |e′〉 → |r〉 are satisfied to
find the EIT regime for the probe. It is to be noted that we
take kp = 0.007 × 106 m−1 for the calculation. We get the
peak EIT transmission to be ∼0.9 with �k = 0, whereas
the same reduces to ∼0.6 with �k = 0.023 × 106 m−1, as
depicted in Fig. 2(a). A Doppler-free condition of �k = 0 can
be achieved easily with this system leading to approximately
100% transmission of the probe, which cannot be achieved
with the usual two-photon excitation [27] process with ther-
mal vapor. As reported in [34], the three-photon excitation to
the Rydberg state can also offer the Doppler-free condition
for EIT with a specific beam geometry. We further study the
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FIG. 3. (a) Schematic of the energy-level diagram of an effective
three-level system in the ladder configuration. (b) Comparison of
the transmission of the probe beam of a five-level system (open
red circles) with an effective-three level system (solid black line)
for residual wave vector �k = 0. The laser parameters used in
the model are �1 = 10 MHz, �2 = 110 MHz, �3 = 80 MHz and
�4 = 80 MHz, �1 = 1200 MHz, �3 = 1000 MHz, and �4 is ad-
justed around �3 such that the transmission is symmetric.

peak EIT transmission as a function of residual wave vector
by varying kc, which is depicted in Fig. 2(b). Maximum EIT
transmission is observed with �k ≈ 0, as expected. However,
the transmission peak height decreases as we vary kc away
from �k = 0. With �k = 0, all the atoms irrespective of their
velocities in a thermal vapor can be resonant to the probe and
coupling lasers and hence form the dark state contributing
to the maximum EIT transmission. With �k �= 0, a certain
velocity class of atoms becomes resonant to both the probe
and coupling lasers. Hence, the effective number atoms con-
tributing to the EIT transmission reduces.

III. ADIABATIC ELIMINATION OF THE INTERMEDIATE
STATES: EFFECTIVE THREE-LEVEL SYSTEM

Under the conditions of adiabatic elimination, i.e., �1 �
�1, �eg, and �3 � �3, �e′′e′ [36], the five-level system can be
reduced to an effective three-level system by eliminating the
intermediate states |e〉 and |e′′〉. The effective three-level sys-
tem is represented by states |g〉, |e′〉, and |r〉, with the effective
probe (coupling) Rabi frequency and effective detuning as �p

(�c) and �p (�c), respectively, as represented in Fig. 3(a).
The effective Hamiltonian for the system can be written as

He f f = − h̄

2

⎛
⎜⎝

0 �p 0

�∗
p 2�p �c

0 �∗
c 2(�p + �c)

⎞
⎟⎠.

The Hamiltonian of the effective system is similar to that of
a usual three-level system, with effective Rabi frequency and
effective detuning modified as �p = �1�2

2�1
, �c = �3�4

2�3
, �p =

(�1 + �2) + |�1|2
4�1

− |�2|2
4�1

− |�3|2
4�3

, and �c = (�3 + �4) +
|�2|2
4�1

+ |�3|2
4�3

− |�4|2
4�3

. It is to be noted that the relevant light
shift factors are included to the laser detunings appropriately
to get the effective detunings for the three-level system. The
density matrix ρ of the effective three-level system is given by
a 3 × 3 matrix. We assume that the decay rate from state |e〉
to state |g〉 is much faster than the decay rate from state |e′〉

to state |e〉, i.e., �eg � �e′e. So, there won’t be any population
inversion in |e〉, and the atoms in the state |e′〉 can be consid-
ered to decay directly to state |g〉 at a rate of �e′e. Similarly,
we can assume that �e′′e′ � �re′′ , and the atoms in state |r〉
can be considered to decay to state |e′〉 at a rate of �re′′ . Now,
including the population decay due to the finite transit time of
atoms through the transverse direction of the beams, the effec-
tive decay rates of the channels |r〉 → |e′〉, |r〉 → |g〉, and
|e′〉 → |g〉 are γre′ ≈ �re′′ , γrg = �rg, and γe′g ≈ �e′e + �e′g,
respectively. The Lindblad operator for the effective system is
written by considering these effective decay rates. The optical
Bloch equations for the effective system are solved in steady
state, i.e., ρ̇ = 0, to evaluate ρe′e′ and ρe′g. ρeg is expressed in
terms of ρe′g and ρe′e′ as [27]

ρeg = �1(ρe′e′ − 1) − �2ρe′g

2�1 + i�eg
. (1)

Doppler-averaged susceptibility of the probe beam is further
calculated using the same method as discussed in Sec. II.
The comparison between the calculated probe transmission
using the effective three-level system and the exact five-level
system is illustrated in Fig. 3(b). The excellent match be-
tween both the methods suggests that by using the method of
adiabatic elimination with suitable approximation for a wide
range of laser parameters, the complex five-level system can
be reduced to an effective three-level system to study the
many-body interactions in the Rydberg state.

IV. INTERACTING TWO-ATOM SYSTEM

In order to study the effect of Rydberg-Rydberg interac-
tions, we consider the case of a two-atom system with the
energy-level diagram illustrated in Fig. 4. Each atom is con-
sidered to be in an effective three-level system consisting of
states |g〉, |e′〉, and |r〉. The energy levels of the composite
system |1〉, |4〉, and |9〉 are considered when both the atoms
are in states |g〉, |e′〉, and |r〉, respectively. The energy levels
|2〉 and |3〉 are considered when one atom is in state |g〉
and the other atom is in state |e′〉 and vice versa. Similarly,
energy levels |5〉 and |6〉 (|7〉 and |8〉) are considered when
one atom is in state |g〉 (|e〉) and the other atom is in state
|r〉 and vice versa. Both the atoms in the thermal vapor are
considered to move with independent velocities v1 and v2.
Hence, the probe (coupling) detunings for both atoms are
taken to be independent as �p1 (�c1 ) and �p2 (�c2 ). Similarly,
the probe (coupling) Rabi frequencies for both atoms are
taken to be �p1 (�c1 ) and �p2 (�c2 ). Strong van der Waals
interaction between the atoms in the Rydberg state shift the
energy level |9〉 by �int. Since we consider the van der Waals
interaction to be repulsive, �int is taken to be positive. The
interacting Hamiltonian for the composite system is written as
H = H (1) ⊗ I + I ⊗ H (2) + �int|9〉〈9|, where H (1), H (2) are
the Hamiltonian of the individual atoms and I is the identity
matrix. The Lindblad operator of the composite system is
taken as LD(ρ) = LD1 (ρ (1) ) ⊗ ρ (2) + ρ (1) ⊗ LD2 (ρ (2) ), where
LD1 (ρ (1) ), LD2 (ρ (2) ) are the individual Lindblad operators for
the individual atoms, with ρ (1) and ρ (2) being the individual
density matrices.

We solve the optical Bloch equations for the compos-
ite system to determine ρe′e′ and ρe′g, which are given
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FIG. 4. Schematic of the energy-level diagram of the composite
two-atom system where the individual atoms are considered to be in
the effective three-level system in the ladder configuration.

as ρe′e′ = ρ44 + 1
2 (ρ22 + ρ33 + ρ77 + ρ88) and ρe′g = 1

2 (ρ21 +
ρ31 + ρ42 + ρ43 + ρ75 + ρ86). Here we consider �p1 = �p2,
and without loss of generality, Rabi frequencies are chosen
to be real. The ground intermediate state coherence ρeg is
calculated using Eq. (1) by substituting the expressions for
ρe′e′ and ρe′g as discussed in Sec. III. We consider both atoms
to move with independent velocities and Doppler-averaged
susceptibility is calculated as

χ = 2N | μge |2
h̄ε0�1

1

πvp
2

∫ +∞

−∞

∫ +∞

−∞
ρege

−(v2
1+v2

2 )
v2

p dv1dv2. (2)

This integral is solved using the Monte Carlo simulation
technique. The probe transmission is calculated for different

experimental parameters and presented in Fig. 5. Absence
of the residual wave vector (�k = 0) leads the EIT trans-
mission to be close to 90% for the noninteracting case,
whereas the blockade effect due to strong Rydberg-Rydberg
interaction suppresses the EIT transmission as shown in
Fig. 5(a). The absence of motion-induced dephasing in this
case makes the blockade effect similar to the observations
in ultracold atoms [38]. If a small residual wave vector is
introduced in the system, i.e., �k = 0.013 × 106 m−1, then
we observe that the EIT transmission is reduced for the
noninteracting case, as explained in Sec. II, and the blockade-
induced suppression for the case of strong Rydberg-Rydberg
interaction is also reduced, as illustrated in Fig. 5(b). We
define the normalized blockaded transmission as the ratio of
blockaded probe transmission to the probe transmission for
the noninteracting case. We further investigate the normalized
blockaded transmission as a function of kc, which is shown
in Fig. 5(c). With increase in kc, a reduced blockade effect is
observed, which can be understood as the reduced effective
number of atoms participating in the blockade process due to
the increase in residual wave vector, allowing a certain veloc-
ity class of atoms resonating in the EIT process. The other
dephasing mechanism in the thermal vapor system which can
occur due to the transverse velocity of the atoms can also be
investigated. If an atom moves out of the blockade sphere and
another atom enters, then there will be a dephasing introduced
in the multiatom coherence due to the Rydberg blockade. This
is called the superatom dephasing (�S) and is discussed in
detail in Ref. [39]. Superatom dephasing can be introduced
in the calculation as the dephasing of the coherence between
the singly excited Rydberg states. So, �S can be included
in the LD matrix as the dephasing of ρ56 and ρ78 of the
composite system. It is worth noting that if 2rb�k > 1, where
rb is the blockade radius, then �S can be calculated using
the transit time of the atoms through the blockade sphere.
However, if 2rb�k < 1, then the superatom dephasing in the
system is �kvavg, where vavg is the average velocity of the
atoms [39]. If �k ∼ 0, then the transit time of the atoms
through the beam dominates the decoherence in the system,
which can be of the order of 100 KHz by using a beam size of
1 mm.

FIG. 5. (a) Comparison of the probe transmission calculated using a single-atom system (solid black line), noninteracting two-atom system
(open red circles), and interacting two-atom system with �int = 100 MHz (open black circles). The residual wave vector used in the calculation
as �k = 0. (b) Comparison of the probe transmission calculated using noninteracting two-atom system (open red circles) and interacting
two-atom system with �int = 100 MHz (open black circles). The residual wave vector used in the calculation as �k = 0.013 × 106 m−1.
(c) Normalized blockaded transmission as a function of kc with kp = 0.007 × 106 m−1 for �int = 100 MHz. The laser parameters used in the
model are �1 = 40 MHz, �2 = 120 MHz, �3 = 90 MHz and �4 = 90 MHz, �1 = 1200 MHz, �3 = 1000 MHz, and �4 is adjusted around
�3 such that the transmission is symmetric.
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FIG. 6. (a) Energy-level diagram of a five-level system in the
ladder configuration for rubidium vapor. (b) Schematic of the laser
geometry through a rubidium vapor cell. The lasers with frequencies
ω1, ω2, ω3, and ω4 propagate through the vapor cell with angles θ1,
θ2, θ3, and θ4, respectively.

It is worth mentioning that if �int � γEIT where γEIT is
the EIT linewidth, the blockade effect does not depend on
the interaction shift of the Rydberg state [38]. This is also
verified with our code for the proposed system. For the sake of
analysis, we consider �int = 100 MHz, which is much greater
than the typical EIT linewidth of 2 MHz for the system. To
explore a typical experimental situation, the number of atoms
in the blockade sphere is given by Nb = N 4

3πr3
b , where the

blockade radius is defined as rb = 6
√

C6
γEIT

[38]. Here, C6 is
the coefficient of the van der Waals interaction. If the lasers
are tuned to excite to the 35S 1

2
state for the vapor density

used for the simulation, then on an average there are two
atoms in the blockade sphere. However, the number of atoms
in the blockade sphere can be varied with vapor density or
by driving the system to a Rydberg state with different prin-
cipal quantum number. If there are n atoms in a blockade
sphere, then we need a model with n interacting atoms to
study the blockade effect in the system. All the atoms in
the blockade sphere are collectively excited and behave like
a single superatom. The absorption of the probe laser beam
is then given by an ensemble average of all the superatoms
present in the interaction volume of the laser beam interacting
with the atomic vapor [39]. It is to be noted that the simple
two-atom model presented here cannot be directly applied to
analyze the results obtained for blockade phenomenon in a
typical experiment. It is just a proof of principle to observe
the blockade phenomenon in the thermal vapor system.

V. EXPERIMENTAL PROPOSAL

We present a proposal for the experimental study of
four-photon excitation in a real thermal vapor system, i.e.,
rubidium vapor system. As can be seen from Fig. 6(a),

the four-photon excitation can be carried out in a five-level
system consisting of the different allowed transitions of ru-
bidium. The transitions |5S 1

2
〉 → |5P3

2
〉, |5P3

2
〉 → |5D 3

2
〉,

|5D 3
2
〉 → |8P1

2
〉, and |8P1

2
〉 → |nS 1

2
〉 are carried out by using

lasers of wavelength 780.24 nm, 776.2 nm, 2.41 μm, and
2.67 μm, respectively. Their corresponding wave vectors are
k1 = 1.281 655 × 106 m−1, k2 = 1.288 328 × 106 m−1, k3 =
0.414 938 × 106 m−1, and k4 = 0.374 532 × 106 m−1, re-
spectively. The transitions |5S 1

2
〉 → |5D 3

2
〉, |5P3

2
〉 → |8P1

2
〉,

and |5D 3
2
〉 → |nS 1

2
〉 are dipole forbidden. The decay rates

for the rubidium system are �eg = 6 MHz, �e′e = 0.65 MHz,
�e′′e′ = 0.3 MHz, �re′′ = 0.01 MHz. The transit time decay
rates �rg, �e′′g, �e′g are taken to be 0.2 MHz. If we take into
consideration the laser configuration shown in Fig. 1(b), kp =
k2 − k1 and kc = k3 − k4. The residual wave vector is calcu-
lated as �k = 0.033 × 106 m−1. With such a large residual
wave vector, we observe a very low transparency for EIT, as
shown in Fig. 2(b), and also the blockade effect is inefficient
at this regime. However, as shown in Fig. 6(b), by introducing
suitable angles between the lasers, �k can be changed within
the range to observe efficient EIT as well as the Rydberg
blockade. In order to completely cancel out the wave-vector
mismatch, i.e., to make �k ∼ 0, the angles are calculated to
be θ1 = 6◦, θ2 = 6◦, θ3 = 3◦, and θ4 = 3◦ with respect to the
axis of the cylindrical vapor cell. Since the angles are small,
then the overlapping of the beams over a large optical path
length can be maintained, which would be advantageous over
the ultracold atoms.

VI. CONCLUSION

We present a model for the four-photon excitation process
to the Rydberg state in thermal atomic vapor and discuss the
role of the wave-vector mismatch on the probe transmission
in the EIT regime. We demonstrate that even though it is a
thermal vapor system, by reducing the residual wave vector
to zero using suitable laser geometry, the motion-induced
dephasing can be eliminated. Using this model, EIT is studied
in the strong blockade regime by taking into consideration
a two-atom interacting system. The blockade phenomenon
observed is similar to a cold atomic system for the case where
the residual wave vector is zero. So, instead of going for a
complex cold atom system, quantum many-body systems can
be studied in this simpler thermal vapor system using strong
optical nonlinearity induced by the Rydberg blockade phe-
nomenon. This will pave the way for applications in the field
of quantum technology as Rydberg atoms play an important
role in building quantum devices.
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