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Statistical parameter estimation of multimode multiphoton-subtracted thermal states of light
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Thermal states of light are widely used in quantum optics for testing of various quantum phenomena.
Particularly, they can be utilized for characterization of photon creation and photon annihilation operations.
During the last decade the problem of photon subtraction from multimode quantum states has become of much
significance. Therefore in this paper we present a technique for statistical parameter estimation of multimode
multiphoton-subtracted thermal states of light, which can be used for the multimode photon annihilation test.
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I. INTRODUCTION

Photon creation and annihilation operators are base el-
ements of quantum optics. Despite the fact that they are
non-Hermitian and nonunitary, they can be directly (but
probabilistically) implemented [1–4]. Thereby we get a per-
fect toolbox allowing tests of basic commutation rules [3],
Schrödinger’s cat and other non-Gaussian quantum state
preparations [1,2,5], probabilistic linear noiseless amplifica-
tion [6], strong Kerr nonlinearity implementation [7], etc.

Thermal states of light are easy to prepare, and their
statistics is modified significantly by both photon creation
and photon annihilation. Therefore photon-subtracted thermal
states (PSTSs) become very attractive for the demonstration
of effects in quantum optics and quantum thermodynamics
such as the quantum vampire effect [8,9], photonic Maxwell’s
demon [10], quantum thermal engine [11], etc. Moreover, it
was shown that PSTSs can be utilized in some metrological
applications [12,13].

Recently, the action of non-Gaussian operations (partic-
ularly photon creation and annihilation) on the multimode
states of light has become very interesting in the context of
cluster-state quantum computing [14,15]. Despite the fact that
there are some mode-selective photon subtraction techniques
[15,16], generally the annihilation operator is implemented
using a low-reflective beam splitter and a photon detector in
the reflected channel [1–3]. In this case we cannot control in
which optical mode the photon is subtracted.

In this paper, we consider the photon subtraction from a
multimode quantum state and study only a part of the out-
put modes (Fig. 1). The case of single-mode detection is
of particular interest in, e.g., homodyne detection. We study
an example of a multimode thermal state at the input and
the general case of multiple-photon detection in the reflected
channel that corresponds to multiple-photon subtraction.

*avosopyantsgrant@gmail.com

Previously, it has been theoretically shown [17] and experi-
mentally verified [18–20] that the photon number distribution
of a K-photon-subtracted M-mode thermal state can be de-
scribed by a negative binomial, or a compound Poisson
distribution [21] PcP(N |μ0, a) with two parameters, the group
parameter a = K + M and the initial per-mode mean photon
number μ0 [17,20,22–24]:

PcP(N |μ0, a) = �(a + N )

�(a)

μN
0

N!

(
1

1 + μ0

)N+a

. (1)

The mean photon number of this distribution is μ = μ0a.
Thus it is impossible to determine separately the number

of modes M and the number of subtracted photons K by
examining the total photocount statistics in all modes. One can
only get the sum of these parameters. This creates problems
in the case when we need to determine the parameters of
multimode PSTSs (MPSTSs).

However, the situation changes somewhat if we consider
only m < M modes of the state described by the distribu-
tion (1). Then the resulting photocount distribution in such
a subsystem is the convolution of the compound Poisson dis-
tribution (1) and the Pólya distribution PPolya(k|m, M, K ):

P(N |μ0, m, M, K ) =
K∑

k=0

PPolya(k|m, M, K )

× PcP(N |μ0, a = k + M ), (2)

where PPolya(k|m, M, K ) = Ck
m+k−1CK−k

M−m+K−k−1

CK
M+K−1

[21,25–27].

The convolution in (2) is easy to calculate using the
generating-function approach. The generating function of the
distribution (2) is as follows [28]:

G(z|μ0, m, M, K )

= [GBE(z|μ0)]m × 2F1( − K, m, M, 1 − GBE(z|μ0)). (3)
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Here, GBE(z|μ0) = [1 + μ0(1 − z)]−1 is the generating function of the thermal state (Bose-Einstein distribution), 2F1 is the
Gaussian hypergeometric function (for more details, see our work [26]). The corresponding photon number statistics is

P(N |μ0, m, M, K ) = μN
0

(1 + μ0)N+m

1

�(m)

�(N + m)

�(N + 1)

�(M )

�(M − m)

�(M + K − m)

�(M + K )

× 2F1

(
−K, N + m,−K − M + m + 1,

1

1 + μ0

)
. (4)

In previous work [26], we have shown that model (4) is ad-
equate to the experimental data, provided that all parameters
are fixed except for the per-mode mean photon number μ0

that was calculated from the experimental data. In this paper,
we present a method for statistical estimation of multiphoton-
subtracted multimode thermal states from both photon and
quadrature statistics measurements. In the latter case, since
the homodyne detection selects exactly a single mode, corre-
sponding to the local oscillator, m = 1.

The paper has the following structure. Section II describes
the procedures for preparation and measurement of various
states of light of the form (4). Section III describes the proce-
dure for the statistical estimation of the state parameters based
on measurements of the photocount statistics. The statistical
estimation in Sec. IV is based on the quadrature measure-
ments. We conclude that it is possible to use the model (4) for
statistical estimation of the parameters of multimode PSTSs,
if prior information is provided.

II. EXPERIMENT

A sketch of our experimental setup is presented in Fig. 2.
The optical scheme represents the combination of schemes
described in Refs. [20,26]. The HeNe continuous-wave (cw)
laser beam is split by a fiber beam splitter (FBS) into two
channels. The light from the first output is focused on a ro-
tating ground-glass disk (RGGD), and a part of the scattered
light is coupled into a single-mode fiber (SMF) for the single-
mode thermal state preparation [29,30]. A small part of the
fiber output beam is redirected by a 90:10 beam splitter (BS)
to a single-photon detector Dk based on a silicon avalanche
photodiode (APD), in order to implement conditional photon
annihilation [1,2]. Next the radiation is split by a symmetric
BS into two parts. In the first one there is another APD detec-
tor Dn for photocount distribution measurement. The rest of
the beam is subjected to the homodyne detection (HD). The

FIG. 1. The registration scheme for photon number statistics of
the multiphoton-subtracted multimode thermal state [26].

laser beam from the second output of the FBS serves as a
homodyne local oscillator. Since the quadrature distribution
of thermal states, as well as MPSTSs, does not depend on the
homodyne phase, the phase was not fixed. Thus photocount
pulses from Dn and Dk and quadrature values from HD are
collected synchronously. This allows us to study the photon
statistics registered by the detector Dn and the quadrature
statistics obtained by the HD under the condition of a given
number of subtracted photons, collected by the detector Dk.

It is important to note that splitting the radiation in half
inevitably leads to losses. However, the PSTSs described by
the compound Poisson distribution PcP(N |μ0, a) under the
influence of losses converts to the PSTSs PcP(N |μ′

0, a) with a
lower mean photon number μ′

0, but with the same a parameter
[20,22].

The data-processing algorithm is presented in Fig. 3. First,
all the time traces are divided into time bins with the width
τ corresponding to the time mode duration [Fig. 3(a)]. The
value of τ should satisfy the inequality Tcoh � τ � τd , where
Tcoh is the thermal state coherence time defined by the RGGD
velocity and τd is the single-photon detector dead time. This
inequality defines the possibility of registering several photo-
counts from a single optical mode (see Ref. [20] for details). In
our experiment, Tcoh = 40 μs, τd = 220 ns, and τ = 10 μs,
so the inequality is satisfied and we were able to register up
to 45 photons in each time bin. For each bin the photocount
numbers k and n from the detectors Dk and Dn, respectively,

FIG. 2. The experimental setup. BS, beam splitter; Dk and Dn,
single-photon APD-based detectors used for photon annihilation
and photocount statistics measurements, respectively; FBS, fiber-
based beam splitter; HD, homodyne detector, used for quadrature
distribution registration; RGGD, rotating ground-glass disk; SMF,
single-mode fiber.
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FIG. 3. Signal processing. (a) Initial data set is divided into time
bins τ , and then the data are thinned with a period T in order to avoid
interbin correlations. (b) Thinned data are grouped by M, and groups
are separated according to the total number of subtracted photons in
the group (K). The total photon number N is calculated as a sum of
the first m � M bins. For a group quadrature value Q the first bin
value q is selected. (c) The data sets {N1, N2, . . . } and {Q1, Q2, . . . }
corresponding to the same value of K are collected and subjected to
the statistical estimation procedures.

and the quadrature values q from HD are calculated. Next, in
order to avoid any interbin correlations, we selected the bins
periodically separated by T = 12Tcoh. Such a large interval T
is necessary since the thermal field has a Gaussian correlation
function and, even at times significantly longer than the co-
herence time Tcoh, correlations are partially preserved, which
distorts the photon number and quadrature statistics. Thus
only 2% of the collected data are used.

In contrast to the situation considered in Fig. 1, where vari-
ous spatial modes of the thermal field were considered, in our
experiment the field is spatially single mode, so one can select
a multimode state by collecting M time modes. Therefore

all the uncorrelated time bins are grouped by M [Fig. 3(b)].
For each group we obtain the total number of subtracted
photons K . In order to realize the situation described in Fig. 1,
where just a part of the thermal modes is finally collected, we
calculate the total photon number N as a sum of the first m
bins in a group. Since homodyne detection can select only a
single mode, we take only the first bin quadrature value q in a
group as a group quadrature value Q. This value corresponds
to the single-mode quadrature value under the condition that
K photons have been subtracted from the corresponding group
of M time modes.

To extract the K-photon-subtracted state, we select the
groups with the total number of annihilated photons equal
to K [Fig. 3(c)]. Thus, for each value of M = 1 ÷ 5, m =
1 ÷ M, and K = 0 ÷ 5 we derive a set of photocount values
D = {N1, N2, . . . } and quadrature values DQ = {Q1, Q2, . . . }.
These data sets are subsequently processed to reconstruct the
state parameters using the distribution models (4) and (13),
respectively.

Thus we are able to extract the data for an arbitrary state of
light with photocount distribution (4) in a wide range of well-
controlled parameters m, M, and K . However, the setup does
not allow us to control the per-mode mean photon number
μ0, so we estimate its theoretical value from the data using
Eq. [26]:

μ0 = μ

m
(
1 + K

M

) , (5)

where μ is the estimated mean photon number in all registered
modes.

Note that P(N ) does not exactly correspond to the exper-
imental photocount distribution because of the presence of
the dark counts, described by the Poisson distribution PDC(N )
with the mean value μDC = m × 0.0015. Despite the fact that
the average number of noise photocounts is much less than
the average number of photons per mode (about μ0 = 0.27
in the examples below), we take it into account to increase the
reconstruction accuracy. The resulting photocount distribution
is the convolution of (4) and PDC(N ).

III. PARAMETER ESTIMATION BASED ON
PHOTOCOUNT STATISTICS

In this section we examine in detail an example based
on the experiment with theoretical parameter values mt = 2,
Mt = 3, Kt = 3. The total number of observed events was n =
58 623. The calculated theoretical value of the per-mode mean
photon number was μ0,t = 0.264. We denote the number of
N-photocount events in the sample D as D(N ). The corre-
sponding histogram and the probability distribution based on
theoretical values are shown in Fig. 4(a).

First, we develop a parameter estimation procedure using
simulated data. Then we apply it to process the real experi-
mental data.

A. Multicollinearity

Consider the fiducial distribution of parameters
PF (μ0, m, M, K|D). One can interpret this distribution as
the degree of confidence that a certain set of parameters
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FIG. 4. Experimental data (histograms) compared with proba-
bility distributions with theoretical (solid curves) and reconstructed
(dashed curves) parameter values for photocount (a) and quadrature
(b) statistics.

{μ0, m, M, K} conditions the data set D. The distribution is
equal to the likelihood function L up to the normalization
constant C [31–33]:

L(μ0, m, M, K|D) =
∏

N=0,1,...

[P(N |μ0, m, M, K )]D(N ). (6)

For the sample size n = 58 623, the width of the marginal
fiducial distributions over any parameter is quite large. The
width of the marginal distribution over K is especially
large estimating hundreds of units. This is due to strong
correlations between the parameters, or multicollinearity of
the initial distribution (4). Figure 5(a) illustrates this effect
well.

Note that the likelihood function takes very small values
for a high sample size, so we consider its logarithm:

ln L(μ0, m, M, K|D)

=
∑

N=0,1,...

D(N ) ln P(N |μ0, m, M, K ). (7)

Since adding a constant to a given function only affects the
proportionality constant C, it is efficient to calculate the fidu-
cial distribution relative to the shifted logarithmic likelihood:

PF (μ0, m, M, K|D) = C′

· exp
[
ln L(μ0, m, M, K|D)

− max
μ0,m,M,K

ln L(μ0, m, M, K|D)
]
. (8)

As a result of this shift, the exponent values range from
0 to 1. The constant C′ is then calculated by the direct
integration.

To numerically characterize multicollinearity, one can cal-
culate the Fisher information matrix Iu,v = nEN [(∂uP)(∂vP)],
where ∂uP is the partial derivative of the distribution with
respect to the parameter u, and u, v = m, M, μ0. Here, we
assume the parameter K to be fixed. According to the Cramér-
Rao bound, the covariance matrix for the estimates of the
distribution parameters is bounded by the reciprocal of the
Fisher information I−1 [33]. Thus the condition number of
the Fisher information matrix (the ratio between its maxi-
mum and minimum eigenvalues) reflects the robustness of
statistical estimates with respect to statistical fluctuations. For

FIG. 5. Isosurfaces of the fiducial distribution
PF (μ0, m, M, K|D) at the half-maximum level for the fixed values
of K . The data D were obtained using Monte Carlo simulation with
sample size n and distribution parameters μ0,t = 0.264, mt = 2,
Mt = 3, and Kt = 3. (a) K = 1 ÷ 10, n = 58 623. (b) K = 3,
n = 420 × 106.

all practically important parameter values considered in this
paper, the information matrix turns out to be ill conditioned.
In particular, for the above case the condition number is about
7 000 000. This results in a very low accuracy of statistical
estimates.

Note that the inverse Fisher information matrix gives the
estimate variances only for a fixed value of K . Therefore
we characterize the parameter estimation accuracy by the
maximum relative error � = maxu(σu/ut ) (u = m, M, μ0, K)
to take fluctuations of K into account. Here, σu is the
marginal standard deviation of the fiducial distribution
PF (μ0, m, M, K|D), and ut is the parameter theoretical value.

The multicollinearity significantly complicates the proce-
dure for the reconstruction of state parameters. To obtain
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FIG. 6. (a) Projection of the fiducial distribution isosurfaces [Fig. 5(a)] onto the plane {M, m}. The horizontal line corresponds to the plane
with m = mt . (b) and (c) Cross sections of the fiducial distribution isosurfaces at m = mt for n = 58 623 (b) and n = 4 × 106 (c). The latter
case provides a single plausible value of K (K = 3) and � = 1% relative error.

a sufficient reconstruction accuracy, a very large amount of
data is required (which is difficult to implement for high K
values, since they correspond to relatively rare events). For
example, numerical experiments show that one needs a sample
size of at least n = 420 × 106 in order to achieve � = 1%
precision [Fig. 5(b)]. To achieve � = 10%, one needs at least
n = 18 × 106, which is still a large amount of data.

B. Prior information

Introducing some prior information could, in principle, in-
crease the estimation accuracy. A common choice is to fix the
value of some parameter (or a set of parameters). In particular,
one can control the number of selected modes m. For example,
with homodyne detection, only a single mode of light is se-
lected (mt = 1). In this case, the fiducial distribution takes the
form Pm

F (μ0, M, K|D) = CmL(μ0, m = mt , M, K|D). Graph-
ically, this corresponds to the plot cross section at m =
mt [horizontal line in Fig. 6(a)] that intersects the dis-
tribution isosurfaces for K = 1 ÷ 8 only. Thus fixing m
reduces the number of plausible values of K from hundreds
to of the order of ten. However, corresponding cross sec-
tions also show strong parameter correlations [Fig. 6(b)] and
multicollinearity.

Note that to achieve � = 10%, one needs a sample size
of at least n = 1.2 × 106. For � = 1% [Fig. 6(c)] the sample
size n = 4 × 106 is required. This is still quite a large amount
of data, since the cases of high numbers of subtracted photons
are less frequent and require more time to gather experimental
data.

C. Bayesian inference

Fixing certain parameters of the initial distribution can
significantly improve the reconstruction accuracy. This, how-
ever, can introduce systematic errors of reconstruction, if the
selected prior values differ significantly from the true values.

Another approach of using prior information is based on
Bayes’ theorem [28,34]:

PB(μ0, m, M, K|D) = CBL(μ0, m, M, K|D)

· PP(μ0, m, M, K ). (9)

Here, PP(μ0, m, M, K ) is the prior probability distribution
of plausible parameter values. The posterior distribution
PB(μ0, m, M, K|D) updates the prior information, taking into
account the statistical data D obtained in the experiment.

We rely on the common choice of a multiparameter prior
distribution, where all parameters are independent:

PP(μ0, m, M, K ) = Pμ0
P (μ0) · Pm

P (m)

· PM
P (M ) · PK

P (K ). (10)

To get single-parameter prior distributions, we consider the
conditional distributions: All parameters, except one, are fixed
and equal to the expected theoretical values. Furthermore,
we will demonstrate that such conditional distributions ade-
quately describe our experimental data.

D. Conditional distribution verification

Consider the conditional distribution for the param-
eter m. Let us construct [Fig. 7(a)] two fiducial dis-
tributions: Pm

F (m|D) and Pm
F (m|Dt ), where Pm

F (m|D) =
PF (μ0,t , m, Mt , Kt ) and “data” Dt correspond to the theoreti-
cal grouped data Dt (N ) = nP(N |μ0,t , mt , Mt , Kt ). Figure 7(a)
shows a strong overlap between these distributions, which
suggests that the conditional distribution can be used to de-
scribe the data D. A similar result for parameters M, μ0,
and K is shown in Figs. 7(b), 7(c), and 7(d), respectively.
Note that, as follows from Fig. 7(d), the parameter K is in
fact deterministic, since the fiducial probability of K �= Kt is
almost zero. In this regard, below we consider PK

P (K ) = δK,Kt .

E. Prior distributions

Considering separately the conditional distributions in-
troduced above, it is possible to perform the parameter
reconstruction by the maximum likelihood estimation (MLE)
technique. Let us take the parameter m as an example. We
denote its MLE value as m̂c. Hereinafter, the subscript c stands
for the estimates based on conditional distributions.

According to the general estimation theory, in the limit
of a high sample size n, the MLE value is the random
variable with normal distribution f (m̂|mc, σm,c) [33]. The ex-
pected value mc corresponds to the asymptotic (n → ∞) MLE
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FIG. 7. Sample (experimental) and exact (theoretical) condi-
tional fiducial distributions of the parameters m (a), M (b), μ0 (c),
and K (d) based on experimental (dashed lines) and theoretical (solid
lines) data.

estimate, and the variance is related to the single-parameter
Fisher information: σ 2

m,c = I−1
mm. Again, we refer to the fiducial

inference denoting Pm
P (m) = f (m|m̂c, σm,c ) as the prior distri-

bution of the parameter m. The prior distributions PM
P (M ) and

Pμ0
P (μ0) are calculated in a similar way.

Following the above technique, we estimated the prior
distribution parameters for the real experimental data D:
m̂c = 1.993, σm,c = 0.009, M̂c = 3.026, σm,c = 0.027, μ̂0,c =
0.265, and σμ0,c = 0.001. One can observe a close relation be-
tween the MLE values and theoretical values. This again gives
evidence that the theoretical values used to build conditional
distributions do not introduce an observable estimator bias.

F. Posterior distribution

Above, we obtained single-parameter prior distributions of
all parameters under consideration. Their product forms the
multiparameter prior distribution (10). The posterior distribu-
tion is the product of the multiparameter distribution (10) and
the unconditional fiducial distribution (normalized likelihood
function). Prior and posterior distribution are illustrated in
Fig. 8.

We calculate the Bayesian posterior distribution expected
values to get the point estimates. The obtained values were
close to the theoretical ones: m̂B = 1.943, M̂B = 3.084, and
μ̂0,B = 0.274. Figure 4(a) shows (dashed curve) the distri-
bution (4) with these parameter values. The resulting curve
is in close agreement with the curve corresponding to the
theoretical parameters.

Thus our approach implies using predetermined theoretical
values of parameters as the starting point for the prior distri-
bution definition. These values are then clarified by means of
Bayes’ theorem taking statistical data into account.

FIG. 8. Half-maximum level isosurfaces of the prior
PP(μ0, m, M, K ) and posterior PF (μ0, m, M, K|D) distributions of
plausible parameter values.

To show that this approach avoids the multicollinearity
problem, we construct an information matrix correspond-
ing to the posterior distribution. First of all, note that the
Fisher information of the normal distribution f (m̂|mc, σm,c) is
1/σ 2

m,c = Imm (similarly for the other two parameters). Since
the Fisher information matrix of the product of probability
distributions is the sum of the corresponding information ma-
trices for each distribution separately, we finally get

IB = I + IP, (11)

where

IP =

⎛
⎜⎝

1
σ 2

m,c
0 0

0 1
σ 2

M,c
0

0 0 1
σ 2

μ0 ,c

⎞
⎟⎠ =

⎛
⎝Imm 0 0

0 IMM 0
0 0 Iμ0μ0

⎞
⎠. (12)

In fact, the use of the prior information in the form of the
product of normal fiducial distributions of MLEs doubles the
diagonal of the information matrix of the original uncondi-
tional distribution. In our case, the condition number of the
resulting matrix is 750. This value is significantly lower than
the condition number 7 000 000 for unconditional distribution.
Hence the resulting covariance matrix gives low parameter
estimator variances. Even for the sample of low size, which
was available in our experiment, one could obtain an error
rate below � = 1%.

Table I shows the numerical characteristics obtained for
the simulated photocount statistics. We derive the sample size
required to achieve the error rates � = 1% and � = 10%.

TABLE I. The sample size values required to achieve error rates
below 1 and 10% for different reconstruction methods.

No prior information Fixed m Bayesian inference

� = 10% 18 × 106 1.2 × 106 8 × 102

� = 1% 42 × 107 4 × 106 5.8 × 104
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We compare methods that differ in types of prior information:
the absence of any prior information, a known fixed value of
m, and the approximate knowledge of theoretical parameter
values. Table I clearly shows that enormous amounts of data
are required to defeat multicollinearity, while the Bayesian
method allows one to get an error rate below � = 1% with
the amount of data accumulated in the real experiment.

Using the Bayesian inference, we estimated parameters
of 90 different states with M = 1 ÷ 5, m = 1 ÷ M, and K =
0 ÷ 5. The estimation error rate was from 0.0008 to 0.03%
for μ0, from 0.002 to 1.09% for m, and from 0.015 to 1.89%
for M.

IV. PARAMETER ESTIMATION BASED
ON QUADRATURE MEASUREMENTS

A homodyne detector selects only a single-mode subsys-
tem of the state (m = 1). Let us consider the measurement
results of the state with Mt = 5, Kt = 4. The data DQ size
was n = 138 710 [Fig. 4(b)]. Using (5) with μ = σ 2

q − 1/2,
where σ 2

q is the sample quadrature variance, we estimate
μ0,t = 0.752.

The transition from the photocount distribution to the
quadrature distribution of the electromagnetic field is carried
out as follows [22,35,36]:

P̃(Q|μ0, M, K ) =
∑

N

P(N |μ0, m = 1, M, K )|ϕN (Q)|2,
(13)

where ϕN (Q) are the eigenfunctions of a harmonic oscillator.
These functions have the form of the Chebyshev-Hermite
basis. The explicit form of these functions is as follows:

ϕN (Q) = 1

(2N N!
√

π )
1
2

HN (Q) exp

(
−Q2

2

)
, (14)

where HN (Q) is the N th Hermite polynomial.
We use the same technique as in the previous section

to estimate the parameters of (4) from DQ [Fig. 4(b)].
To begin with, we construct a fiducial distribution
P̃F (μ0, M, K|DQ) = C · L(μ0, M, K|DQ), where the
likelihood function has the form L(μ0, M, K|DQ) =∏

i P̃(Qi|μ0, M, K ).
We again obtain a deterministic value K = Kt = 4 and

use theoretical values of parameters to get the prior distribu-
tion parameters in the same way as was done in Sec. III E:
μ̂0,c = 0.749, σμ0,c = 0.006, M̂c = 5.064, and σM,c = 0.096.
The posterior distribution is shown in Fig. 9. Its expected
values are M̂B = 5.036 and μ̂0,B = 0.758.

The resulting quadrature distribution is presented in
Fig. 4(b) together with the experimental quadrature histogram
and the distribution based on theoretical parameter values.
Again, the reconstructed distribution is in close agreement
with the expected theoretical one.

Using the Bayesian inference, we measured 30 different
states with parameters M = 1 ÷ 5, m = 1, and K = 0 ÷ 5.
The estimation error rates were from 0.0018 to 0.287% for
μ0 and from 0.044 to 0.287% for M.

FIG. 9. Half-maximum level isosurfaces of the prior and poste-
rior distributions of plausible parameter values.

V. CONCLUSION

We have considered the problem of statistical parame-
ter estimation of multimode multiphoton-subtracted thermal
states of light by analyzing the photon statistics as well as
the quadrature distribution. We have studied the subsystems
containing only a part of the light modes. For statistical esti-
mation we have used a model of photocount distribution (4),
introduced in Ref. [26]. We have shown that the distribution
parameters suffer from significant multicollinearity, which
complicates the model’s use for unconditional parameter es-
timation. This task can be simplified if we are able to fix
one or several parameters at their true values. However, for
a more accurate estimate it is better to use variates for the
prior knowledge. On the basis of the Bayesian approach, it
is possible to accurately estimate the photocount distribution
parameters. In particular, we were able to reconstruct all the
parameters with an error rate below 1% for a sample of size
n = 5.8 × 104.

Thus we have developed an approach for statistical pa-
rameter estimation of multimode states of thermal light with
the subtraction of a given number of photons. It can be used
to test photon subtraction in multimode states of light. In a
similar way, one can solve the problem of characterization
of more complex quantum states of light, which have great
potential in the quantum computing field. On the other hand,
the developed model can also be used to describe single-mode
photon subtraction in the case when there is an error in the
selection of exactly a single mode.
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