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Atom-modulated dynamic optical hysteresis in driven-dissipative systems
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We introduce a two-level atom into a cavity as an ancilla to control the hysteresis of the system where the
cavity is described by a driven-dissipative nonlinear Kerr model. We find that the dynamic optical hysteresis
can be modulated by changing the atom-cavity coupling strength, and the nonlinearity induced by atom-cavity
coupling weakens the Kerr nonlinearity in the weak coupling regime. This leads to the change in the critical
point corresponding to the decrease in the hysteresis area. The physics behind the modulation is closely related
to the effect of the atom-cavity coupling on the discontinuity of the first nonzero Liouvillian eigenvalue. A
relative deviation of the metastable state and target steady state is defined to characterize the relation between the
hysteresis and adiabaticity of the system. Taking only two Liouvillian eigenvectors into account in the composite
system, we derive an expression for the dependence of the hysteresis area on the sweeping speed and discuss its
feature in the slow sweeping limit.
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I. INTRODUCTION

The classical phase transitions are driven by a competition
between the energy of a system and the entropy of its thermal
fluctuations. They cannot occur at the zero-temperature limit
as the system has no entropy. The phase order is determined
by the first discontinuous derivative of thermodynamic poten-
tial, and the transition can be understood as the spontaneous
symmetry breaking characterized by the change in order pa-
rameters [1]. In quantum systems, however, the quantum
phase transitions (QPTs) that occur at zero temperature are
caused by quantum fluctuations and described as an abrupt
change (discontinuity) in the ground state energy of a many-
body system at the critical point [2]. There are many intriguing
features connected with QPT [3–5], for example, the discon-
tinuous (or its first derivative with respect to the parameter)
change in the geometric phase at the critical point in spin-1/2
XY model [6,7] or Dicke model [8]. This discontinuity also
can be observed in open quantum systems induced by dis-
sipation, leading to the so-called dissipative phase transition
(DPT) [9–16] and the dynamic optical hysteresis [17–20].

Recently, the observation of optical hysteresis in the
driven-dissipative nonlinear Kerr model was reported in ex-
periments [19,20]. It provides a flexible platform for studying
DPT [21–23] and stimulates the development of the corre-
sponding theory. In Ref. [24], a metastable theory for the
open quantum systems had been established by extending
the concept from classical to quantum dynamics, a scope of
metastability time was defined, depending on the real part
of avoided level crossing in Liouvillian eigenvalue. More
recently, it had been demonstrated that the system dynamics
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can be described by two Liouvillian eigenvectors whereas the
system undergoes DPT and the hysteresis loop is related to
the Sarandy-Lidar geometric connection under the observable
gauge [25]. The connection describes the geometric property
of the Liouville space, and the dynamic optical hysteresis is
only one manifestation of it. A closed relation between the
hysteresis and the sweeping speed was predicted theoretically
and reported experimentally [18–20,25].

Two-level systems (TLS) are the simplest quantum systems
that can exist. As a result, the dynamics of a TLS can be
solved analytically without any approximation. However, a
two-level atom interacting with a quantized mode of an optical
cavity provides us with rich physics, such as spontaneous
emission and absorption of photons in a cavity. This gives
rise to a question whether we can introduce a two-level atom
to modulate the hysteresis via its coupling with the cavity
in the driven-dissipative nonlinear Kerr model? And if the
hysteresis can manifest itself in the dynamics of the atom?
In this paper, we will try to answer these questions. We
first illustrate the significant relation about the Sarandy-Lidar
geometric connection and hysteresis loop and analyze the
hysteresis area for the atom and cavity occupation numbers.
Then, we show how to achieve our goal and the physical
mechanism behind the present scheme is revealed. A feature
that the atom-cavity coupling weakens the Kerr nonlinearity
in weak coupling regime by mean-field approximation is also
predicted. A quantity to describe the relative deviation of
the metastable state and target steady state dynamics is also
defined. We finally show the dependence of the hysteresis area
on the sweeping speed taking only two Liouvillian eigenvec-
tors into account in the composite system.

This paper is structured as follows: We introduce the theo-
retical framework and present some necessary expressions in
Sec. II. In Sec. III, we explore the dynamic optical hysteresis
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in the composite system, reveal the physical mechanism of
the modulation, and show how the atom-cavity coupling in-
duced nonlinearity weakens the Kerr nonlinearity in the weak
coupling regime. Section IV is devoted to the discussion of
dependence of the hysteresis area on the sweeping speed.
Finally, we conclude and discuss the results in Sec. V. An
Appendix is provided as a supplement to the discussion in the
main text.

II. PHYSICAL MODEL AND THEORETICAL
FRAMEWORK

We start by considering a quantum system consisting of a
two-level atom resonantly coupled to a cavity with a drive of
frequency ωp and Kerr nonlinearity. The Hamiltonian reads
(h̄ = 1)

H = −�

(
a†a + 1

2
σz

)
+ g(aσ+ + σ−a†)

+ U

2
a†a†aa + F (a + a†), (1)

where a† and a, respectively, are the creation and annihila-
tion operators for the cavity, σ+ and σ−, respectively, are
the raising and lowering operators for the atom with σ± =
1
2 (σx ± iσy). � = ωp − ωc is the driven-cavity detuning, ωc

stands for the cavity frequency, g denotes the atom-cavity
coupling strength, U is the strength of the Kerr nonlinearity,
and F is the driven amplitude.

Considering the loss of the cavity and the decay of the two-
level atom, we write the master equation in Lindblad form to
describe the dynamics of density operator ρ(t ),

dρ(t )

dt
= −i[H, ρ]

+
2∑

m=1

κm

2
nth(2X †

mρXm − XmX †
mρ̂ − ρXmX †

m)

+
2∑

m=1

κm

2
(1 + nth)(2XmρX †

m − X †
mXmρ − ρX †

mXm),

(2)

where H is the Hamiltonian of the system. nth is the photon
numbers of the environment. κ1 denotes the decay rate of
the cavity, whereas κ2 is the atomic decay rate. X1 = a and
X2 = σ−. The Hilbert space of the system is H ⊗ H, which
is a tensor product of the cavity and the atom. 〈A〉 := Tr(Aρ)
where Tr denotes the trace over the system.

Since the master equation (2) is linear in ρ(t ), we can
rewrite it as

d|ρ(t ))

dt
= L|ρ(t )), (3)

where L is the Liouvillian superoperator and |ρ(t )) is the
vectorized representation for ρ(t ), called a Dirac-like ket. One
can find the unique and initial state-independent steady state
|ρss) by solving L|ρss) = 0. The other eigenvectors of L are
denoted by |ρq), and the corresponding nonzero eigenvalues
are denoted as

λq = γq + iωq, (4)

where q = 1, 2, . . . and the eigenvalues of the superoperator
are arranged in the decreasing order of γq. It has been shown
that γq < 0 ensures the existence of a steady state [26,27],
whereas ωq can be treated as the oscillation frequencies. The
biorthogonality relation reads

(ρ p|ρq) = δpq. (5)

For a time-independent Liouvillian superoperator L, we
can expand the vectorized density matrix in terms of the
eigenvectors as [27]

|ρ(t )) = |ρ0) +
∑
q �=0

|ρq)eλqt (ρq|ρ(t = 0)), (6)

where |ρ(t = 0)) denotes the initial state and |ρ0) = |ρss).
The sum includes all the right eigenvectors of L. As shown
in the earlier study, for a system undergoing DPT, the sum in
Eq. (6) can be approximated to include only the two lowest
terms, ignoring the minor impact from the other Liouvillian
eigenvectors [25],

|ρ(τ )) = |ρ0) + |ρ1)eλ1τ (ρ1|ρ(t = 0)) + O[λq>1], (7)

this approximation is valid in the region nearby the critical
point within a specific timescale τ satisfying 1/−γ2 � τ �
1/−γ1 [24].

For a time-dependent system, Liouvillian superoperator L
might depend on time via parameters R = (R1, R2, . . .), R =
R(t ). The Sarandy-Lidar geometric connection [28] in this
case reads

Apq
Rn = (

ρ
p
Rn

∣∣∇∣∣ρq
Rn

)
, n = 1, 2 · · · , (8)

which describes the geometric property of the Liouville space,
where Rn may be driven amplitude F [18] or driven-cavity
detuning � [20,25]. Similarly, we consider only two eigen-
vectors as the earlier study did in the time-independent system
whereas the system undergoes DPT [25],

|ρ(τ )) ≈ ∣∣ρ0
Rn

) + χ1
Rn

∣∣ρ1
Rn

)
. (9)

With this consideration, a concise expression takes

A10
Rn ≡ (

ρ1
Rn

∣∣∇∣∣ρ0
Rn

) = γ1,Rnα
(1)
Rn , (10)

α
(1)
Rn is the first order expansion coefficient of χ1

Rn (for details,
see the Appendix). Recall that γ1,Rn is always negative, the
sign of A10

Rn is opposite to α
(1)
Rn . In this sense, the dynamic

optical hysteresis is closely related to the geometric property
of the Liouville space.

III. HYSTERESIS IN THE ATOM-CAVITY SYSTEM

A. The effect of atom-cavity coupling on the hysteresis area

In this section, we work with a time-periodic change pa-
rameter �, which is swept in an ascending order from �min

to �min + N δ� and another descending order from �min +
N δ� to �min, where N is the number of total steps of sweep-
ing. The study on dynamic sweeping can be dated back to the
1990s past century in the research of optical bistability [29].
Recently, it has been applied to study the hysteresis loop in
driven-dissipative systems [18–20,25]. To study the hysteresis
behavior, we first solve the master equation at � = �min to
find the steady state solution and take the solution as the initial
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FIG. 1. (a) The cavity occupation numbers 〈a†a〉 and (b) 〈σz〉 as
a function of the sweeping parameter � (in units of κ1). In (a) and
(b), solid lines stand for the hysteresis loop, whereas the dashed line
denotes the steady state solution. The arrows indicate the sweeping
direction. (c) and (d) are plotted for the hysteresis area A and A′

corresponding to the cavity occupation numbers 〈a†a〉 and 〈σz〉,
respectively, as a function of atom-cavity coupling strength g (in units
of κ1) for different metastable residence times τ . The other system
parameters chosen are F = 8, U = 0.5, κ2 = 0.5 in units of κ1 and
N = 121.

state, then sweep � in both ascending and descending orders.
The sweeping is conducted at a constant speed characterized
by δ� and a metastable residence time τ [20,25]. The results
are shown by the solid lines in Figs. 1(a) and 1(b) where we
plot both the dynamic hysteresis and the steady state behavior
of cavity occupation numbers 〈a†a〉 and the atom 〈σz〉. Clearly,
the results of the steady state is in between the hysteresis
loop. It is worth pointing out that the forward (backward)
sweeping curves are always on the top (at the bottom) of the
steady state solutions, this depends on the sign of A10

� keeping
unchanged in the forward (backward) sweeping (as shown in
the Appendix Fig. 6).

Next, in order to study the properties of dynamic optical
hysteresis quantitatively, we define a hysteresis area enclosed
by the hysteresis loop [18–20,25],

A =
∫ �max

�min

|n↑ − n↓|d�, (11)

where ↑ and ↓ denote different sweeping directions. The
results are shown in Figs. 1(c) and 1(d) where the hysteresis
area is plotted as a function of the atom-cavity coupling g
for different τ ’s corresponding to 〈a†a〉 and 〈σz〉, respectively.
The hysteresis area decreases with the increasing of g and
approaches to zero when the coupling is strong enough. Ob-
viously, we could modulate the dynamic hysteresis feature
through changing the atom-cavity coupling.

In order to get more information when we introduce the
two-level atom into the system, we define a witness which

-15 -10 -5 0 5 10 15
-0.5

0.5

1.5

2.5

-1.5

-1

-0.5

0
(a)

(b)

FIG. 2. (a) The hysteresis loop for the joint operator 〈σz × a†a〉
and (b) the witness ε averaged over the steady (dashed-dot line) and
metastable (solid lines) state with τ = 8/κ1 as a function of � (in
units of κ1). The gray dashed line corresponds to ε = 0. The arrows
indicate the sweeping direction. The other system parameters are the
same as in Fig. 1.

characterizes the validity of mean-field approximation in this
system by

ε = 〈σza
†a〉 − 〈σz〉〈a†a〉. (12)

We first calculate 〈σza†a〉 whereas sweeping � through the
critical region. The numerical results are shown in Fig. 2(a)
where a hysteresis can be found. Next we plot ε as a function
of � averaged over both the metastable and steady state.
As expected, the peak of εss for the steady state is between
that of forward and backward sweepings. In the next section,
we will show that all the hysteresis features in this section
can be interpreted by the discontinuity of the first nonzero
Liouvillian eigenvalue, and the decreasing of the hysteresis
area is closely related to the effect of atom-cavity coupling on
the discontinuity of that eigenvalue.

B. The fundamental mechanisms of the modulation

In order to reveal the physics behind the modulation, we
calculate and discuss the first (q = 1) nonzero eigenvalue of
L in the zero-temperature limit in this section. As shown
in Fig. 3, the real part of the first nonzero eigenvalue λ1

undergoes a sharp change in a critical point � depending
on the atom-cavity coupling, which leads to a long-time
metastable dynamics [24]. The critical point moves and dis-
appears gradually with the increasing in g. This is consistent
with the decreasing of hysteresis area A with the increasing in
atom-cavity coupling strength. On the contrary, the hysteresis
behavior would disappear in a general system without DPT.
Here, we point out the imaginary part of λ1 is zero and not
degenerate when the system parameters are chosen nearby
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FIG. 3. The first nonzero eigenvalue ln(−γ1/κ1) of the Liou-
villian superoperator as a function of driven-cavity detuning � (in
units of κ1) and atom-cavity coupling constant g (in units of κ1), the
discontinuity of the first nonzero Liouvillian eigenvalue vanishes in
the function of � when the coupling is strong enough. Other system
parameters are the same as in Fig. 1.

the critical point, which indicates that the dynamics is not of
oscillation and ρ1 is Hermitian [16].

As a comparison, we also analyze the real part of λ2, there
is a similar behavior to λ1. The difference is the critical region
of λ2 is substantially narrowed, and the dip of the Liouvillian
eigenvalue becomes shallow. Therefore, considering the other
eigenvectors (q > 2) would contribute less to the dynamics if
we focus on a specific time τ in the range of 1/−γ2 � τ �
1/−γ1 [24]. In the next section, we would mainly focus on the
contribution of ρ0 and ρ1 to the dynamics.

For this purpose, we first ignore the jump term XmρX †
m in

the master equation and rewrite it as

dρ(t )

dt
= −i[H, ρ] −

2∑
m=1

κm

2
{X †

mXm, ρ} = L̃ρ, (13)

where L̃ is the effective non-Hermitian Liouvillian superoper-
ator. We perform the same calculation for L̃ and show ln(−γ̃1)
as a function of � in Fig. 4. There is no discontinuity, and
we claim that the discontinuity of first nonzero Liouvillian
eigenvalue attributes to the effect of XmρX †

m in our system.

C. Weakening of the nonlinearity caused
by atom-cavity couplings

We have shown that the decrease in hysteresis area A with
the increase in atom-cavity coupling g is related to the effect
of the atom-cavity coupling on the discontinuity of the first
nonzero Liouvillian eigenvalue. One may wonder what is the
physics behind this observation? As shown in Refs. [10,30],
the coupling between the field and the atom can cause Kerr
nonlinearity. In the following, we will demonstrate that the
nonlinearity induced by atom-cavity coupling weakens the
Kerr nonlinearity in the weak coupling regime, leading to a
change in the critical point and, consequently, the decrease in
the hysteresis area. Now we go to the details.
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3

FIG. 4. ln(−γ̃1/κ1) and ln(−γ1/κ1) as a function of driven-cavity
detuning � (in units of κ1) with g/κ1 = 1. The other system parame-
ters are the same as in Fig. 1.

By the mean-field approximation, we obtain the following
equations from the Hamiltonian in Eq. (1) [31,32],

α̇ = (i� − iU |α|2 − κ )α − igβ − iF, (14)

β̇ = −(γ⊥ − i�)β + igαξ, (15)

ξ̇ = 2ig(α∗β − αβ∗) − γ‖(ξ + 1), (16)

where α = 〈a〉, β = 〈σ−〉, and ξ = 〈σz〉. γ⊥ and γ‖ denote
the transverse and longitudinal relaxation rates of the atom,
respectively [32]. Simple algebra yields the steady state solu-
tions of α and ξ ,

α = iF

i� − κ − iU |α|2 + g2ξ

γ⊥−i�

, (17)

ξ = −1

1 + 4g2|α|2
γ⊥γ‖

(
1+ �2

γ⊥2

) . (18)

Here, we consider the linear relation γ⊥ = mγ‖ where m is a
constant. In this case, the results reduce to

α = iF

i� − κ − iU |α|2 − g2(γ⊥+i�)
γ⊥2+�2+4mg2|α|2

. (19)

In the weak coupling regime defined by [10]

4mg2|α|2 � �2, (20)

and consider γ⊥ is very small compared to the detuning �

[32], we obtain

α = iF

−i
(
U − 4mg4

�3

)|α|2 + f (γ⊥) − i g2

�
+ i� − κ

, (21)

where

f (γ⊥) = g2γ⊥3 + ig2�γ⊥2 − g2�2γ⊥ + 4mg4γ⊥|α|2
�4
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can be treated as the effect of atomic decay. The term with
− 4mg4

�3 weakens the Kerr nonlinearity. We should point out it
leads to the same conclusion whereas the Kerr nonlinearity
strength U < 0 for the corresponding critical point also ap-
pears at � < 0.

IV. THE HYSTERESIS AREA

In the previous section, we have shown the hysteresis with
a constant sweeping speed. It is the nonadiabatic response of
the driven-dissipative system at a timescale that the sweeping
is much shorter than the typical timescale of the system [18].
At such a metastable timescale, the dynamics can be described
by two Liouvillian eigenvectors [25]. It is natural to ask:
Whether we can obtain an expression for the hysteresis area
within the above approximation? And if the linear dependence
of the hysteresis area on the sweeping speed remains whereas
a two-level atom is introduced in the limit of slow sweeping?
We will answer those questions in the following. We would
like to note that the approach introduced here is quite different
from Ref. [18] in which the treatment was based on the width
of the nonadiabatic region nearby the critical point, whereas
in our case we analyze the dynamics of the system with
sweepings.

First, we discuss the relation between the hysteresis and
the adiabaticity of the evolution. With a constant metastable
residence time, increasing N equals to decreasing δ�. To
characterize the adiabaticity, we define ζ as the difference
of the mean photon numbers between the metastable and the
steady state,

ζ = nτ
�k

n0
�k+1

− 1, (22)

where nτ
�k

= Tr(a†aρτ
�k

) and n0
�k+1

= Tr(a†aρ0
�k+1

). We show
ζ as a function of � for different N’s in Fig. 5(a). Obvi-
ously, ζ = 0 corresponds that the system undergoes adiabatic
evolution. With the increasing in N , the nonzero region of ζ

approaches zero gradually nearby the critical point. Therefore,
the state of the system would exactly follow the instantaneous
steady state of open quantum systems if the parameter changes
infinitely slowly [33,34].

With this knowledge, we now discuss the hysteresis area.
When the driven-cavity detuning changes, the system state
evolves from the initial metastable state towards the target
steady state leading by the Liouvillian superoperator with the
changed detuning. In Fig. 5(b), we show the hysteresis area A
as a function of v−1, where v is defined as [25]

v = �max − �min

Nτ
= δ�

τ
. (23)

Taking only two Liouvillian eigenvectors into account and
performing the Taylor expansion on eλ1τ . Ignoring the high
order (n � 2) of λ1τ , we obtain∣∣ρτ

�k+1

) = ∣∣ρ0
�k+1

) + C1
�k+1

eλ1τ
∣∣ρ1

�k+1

)
= ∣∣ρ0

�k+1

) + C1
�k+1

(1 + λ1τ )
∣∣ρ1

�k+1

)
, (24)

where “+” denotes that � is in ascending order from
�min. C1

�k+1
= (ρ1

�k+1
|ρτ

�k
) are the expansion coefficients. As

for the backward sweeping from �max, which is labeled by
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FIG. 5. (a) ζ as a function of driven-cavity detuning � (in units
of κ1) for different N’s at the same metastable residence time τ =
4/κ1. (b) The hysteresis area A as a function of sweeping speed
v−1 (in units of κ−2

1 ) with different atom-cavity coupling constant
g. The calculation is performed with all the Liouvillian eigenvectors.
Black dashed lines are the asymptotic lines, and the hexagrams are
the numerical results of Eq. (26). The other parameters are the same
as in Fig. 1.

|ρτ
�N−k

) and C1
�N−k

= (ρ1
�N−k

|ρτ
�N−(k−1)

) with �k = �N−k . Sim-
ilarly, “−” denotes � is in descending order from �max.
Substituting Eq. (23) into Eq. (24), we obtain the expression
of |ρτ

�k+1
) to v−1 as

∣∣ρτ
�k+1

) = ∣∣ρ0
�k+1

) + C1
�k+1

(1 + λ1δ�v−1)
∣∣ρ1

�k+1

)
, (25)

Substituting Eq. (25) into Eq. (11) and choosing the constraint
Tr(ρ1

�k
a†a) = 1 [25], the hysteresis area A reads (a substitu-

tion for k + 1 to k),

A =
∫ �max

�min

(
C1

�k
− C1

�N−k

)
(1 + λ1δ�v−1)d�. (26)

We note that v is the denominator in Eq. (26), the hysteresis
area seems diverging to infinity in the limit of v → 0. This
is not true when we take C1

�k
− C1

�N−k
into consideration. In

fact, C1
�k

− C1
�N−k

approaches to zero in the slow sweeping
limit. This is shown in Fig. 5(b) (hexagrams) which are in
good agreement with the numerical results involving all eigen-
vectors of the Liouvillian. Besides, we find that A decreases
with the increasing in v−1, and it obeys a linear power law
decay with the sweeping, see Fig. 5(b). There is only a small
hysteresis area left, and the slope of the decreasing is very
small. In this regime, the slope is almost independent of v,
which could be regarded as a constant corresponding to the
asymptotically linear region.
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V. CONCLUSION

In this paper, introducing a two-level atom into a nonlinear
dissipative cavity, we have studied the dynamics of the atom
and found a hysteresis feature in the dynamics. The hysteresis
could be modulated by the atom-cavity coupling strength and
the dependence of the hysteresis area on the coupling was
analyzed. The physics behind the modulation can be under-
stood as the change in the critical point due to the atom-cavity
coupling. We also examined the role played by the jump terms
in the master equation and found that the jump term might
lead to the discontinuity of the first nonzero Liouvillian eigen-
value, and the nonlinearity induced by atom-cavity coupling
weakens the Kerr nonlinearity in weak coupling regime. A
quantity ζ was introduced to measure the relation between
hysteresis and adiabaticity of the evolution. Its dependence
on the sweeping is given. Finally, we have illustrated the
dependence of the hysteresis areas on the sweeping, taking
only two Liouvillian eigenvalues into account.
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APPENDIX: THE DERIVATION OF SARANDY-LIDAR
GEOMETRIC CONNECTION

In this Appendix, the Sarandy-Lidar geometric connection
is derived based on Ref. [25], which is helpful to understand
the geometric property of the Liouville space intuitively.

Here, we emphasize that the Liouvillian superoperator is
time dependent caused by Rn(t ) in the parameter space. |ρ(t ))
can be expanded in the right instantaneous eigenvectors of
LRn ,

|ρ(t )) =
∑
q=0

χ
q
Rn

∣∣ρq
Rn

)
, (A1)

where χ
q
Rn ’s are the time-dependent expansion coefficients and

usually complex (except χ1
Rn nearby the critical point). Then,

plug Eq. (A1) into master equation (3), project on (ρ p| and
use the biorthogonality relation (5), leading to

χ̇
p
Rn +

∑
q=0

χ
q
Rn

(
ρ

p
Rn

∣∣ d

dt

∣∣ρq
Rn

) = λp,Rnχ
p
Rn , (A2)

Finally, we plug the differential expression of Eq. (23), v =
dRn/dt , and the result can be written as

d

dRn
χ

p
Rn +

q∑
q=0

Apq
Rnχ

q
Rn = 1

v
λp,Rnχ

p
Rn , (A3)

where

Apq
Rn = (

ρ
p
Rn

∣∣ d

dRn

∣∣ρq
Rn

)
(A4)

is the Sarandy-Lidar geometric connection.
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FIG. 6. Sarandy-Lidar geometric connection A10
� as a function

of driven-cavity detuning � (in units of κ1) for different coupling
strengths. The solid line corresponds to A10

� κ1 = 0. The other system
parameters are the same as in Fig. 1.

Next, analogy to the approximation in the time-
independent system, the sum in Eq. (A1) can be truncated at
q = 2, the contribution of other eigenvectors to the dynamics
is negligible,

|ρ(t )) ≈ χ0
Rn

∣∣ρ0
Rn

) + χ1
Rn

∣∣ρ1
Rn

)
, (A5)

where |ρ0
Rn ) is the steady state and χ0

Rn = 1 always sets up.
We can calculate the cavity occupation numbers by n(t ) =
Tr[a†aρ(t )], leading to

n(t ) = nst
Rn + χ1

Rn , (A6)

with the observable gauge Tr(a†aρ1
Rn

) = 1. Then, at small v,
we expand χ1

Rn into

χ1
Rn =

∞∑
s=1

α
(s)
Rn vs, (A7)

where α
(s)
Rn is the sth order expansion coefficient. Inserting it

into Eq. (A6) and ignoring the high order of v,

nRn ≈ nst
Rn + α

(1)
Rn v. (A8)

In addition, due to the truncated in Eq. (A5), we can extract
an ordinary differential equation from Eq. (A3) about χ1

Rn ,

d

dRn
χ1

Rn + A10
Rn +

(
A11

Rn − λ1

v

)
χ1

Rn = 0. (A9)

Similarly, inserting Eq. (A7) into Eq. (A9) and substituting λ1

with γ1, we obtain

A10
Rn = γ1,Rnα

(1)
Rn . (A10)

Now, it is clear that the hysteresis loop is relevant to the
Sarandy-Lidar geometric connection A10

Rn from Eqs. (A8) and
(A10), we can obtain a significant property that the Sarandy-
Lidar geometric connection is positive or negative depending
on α

(1)
Rn which is associated with the direction of dynamic

sweeping. As shown in Fig. 6, Sarandy-Lidar geometric con-
nection A10

� is always nonpositive in forward sweeping.
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