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Analog quantum simulation—the technique of using one experimentally well-controlled physical system
to mimic the behavior of another—has quickly emerged as one of the most promising near-term strategies
for studying strongly correlated quantum many-body systems. In particular, systems of interacting photons,
realizable in solid-state cavity and circuit QED frameworks, for example, hold tremendous promise for the
study of nonequilibrium many-body phenomena, in part due to the capability to locally create and destroy
photons. These systems are typically modeled using a Jaynes-Cummings-Hubbard (JCH) Hamiltonian, named
due to similarities with the Bose-Hubbard Hamiltonian. While comparisons between the two are often made in
literature, the JCH Hamiltonian comprises both bosonic and psuedospin operators, leading to physical deviations
from the Bose-Hubbard model for particular parameter regimes. Here, we present a nonperturbative procedure
for transforming the Jaynes-Cummings Hamiltonian into a dressed operator representation that, in its most
general form, admits an infinite sum of bosonic k-body terms where k is bound only by the number of excitations
in the system. We closely examine this result in both the dispersive and resonant coupling regimes, finding rapid
convergence of this sum in the former and contributions from k � 1 in the latter. Through extension to the
simple case of a two-site JCH system, we demonstrate that this approach facilitates close inspection of the
analogy between the JCH and Bose-Hubbard models and its breakdown for resonant light-matter coupling.
Finally, we use this framework to survey the many-body character of a two-site JCH for general system
parameters, identifying four unique quantum phases and the parameter regimes in which they are realized,
thus highlighting phenomena realizable with finite JCH-based quantum simulators beyond the Bose-Hubbard
model. More broadly, this paper is intended to serve as a clear mathematical exposition of bosonic many-body
interactions underlying Jaynes-Cummings-type systems, often postulated either through analogy to Kerr-like
nonlinear susceptibilities or by matching coefficients to obtain the appropriate eigenvalue spectrum.
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I. INTRODUCTION

Efficient simulation of strongly correlated many-body sys-
tems remains one of the most important unsolved problems in
the physical sciences today, promising advances in a diverse
set of fields ranging from high-energy physics and cosmology
to quantum chemistry and condensed-matter physics [1,2]. It
is also one of the most challenging, as such systems involve
dynamics within a Hilbert space whose size increases expo-
nentially with added degrees of freedom, rendering brute force
study of many-body systems impractical with even the most
powerful classical computers. Feynman famously recognized
this problem nearly four decades ago and proposed what is
now termed a quantum simulator—a programmable machine
whose underlying degrees of freedom are quantum mechani-
cal, circumventing the exponential scaling problem and thus
enabling efficient simulation of quantum systems [3–6]. These
devices generally fall into two classes: digital and analog
quantum simulators. The former are an application of uni-
versal quantum computers which, despite rapid advancement
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in recent years, are likely decades away from a practical,
fault-tolerant realization [1,7–10]. In contrast, the latter are
specialized, comparatively less ambitious devices comprising
a well-controlled quantum system which mimics a particular
quantum system of interest with some degree of tunability
[2,11]. Analog quantum simulators thus offer a viable near-
term solution for study of quantum many-body phenomena
and, consequently, a wide array of physical systems have
been experimentally and theoretically studied as platforms for
analog quantum simulation in recent years [2,8,12–25].

One of the most unique classes of proposed platforms
entails emulation of quantum many-body physics with light.
As photons do not naturally interact, replicating an inter-
acting many-body system relies on experimental realization
of single-photon nonlinearities, a difficult task, particularly
in the optical domain. In cavity and circuit QED settings,
one strategy for achieving nonlinearity involves realization
of the Jaynes-Cummings model, which describes a single
quantized cavity mode interacting with a two-level system
(TLS). If the rate of dissipation to the environment is ex-
ceeded by the rate of coherent energy exchange between
the cavity mode and TLS, the system is said to be in the
strong coupling regime and a phenomenon known as photon
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blockade can occur, whereby absorption of a single photon
of a particular frequency prevents further absorption at that
same frequency, thus enabling single photon nonlinearity and,
consequently, Kerr-type photon-photon interactions [26–32].
A suitable platform for quantum simulation is then realized
by an array of TLS-enabled nonlinear cavities, where the
pure photonic modes of adjacent cavities are coupled through
the mutual overlap of their evanescent fields [33–36]. Such a
system shares similarities with the Bose-Hubbard model and
is commonly referred to as the Jaynes-Cummings-Hubbard
(JCH) model [33,37–40], combining Hubbard-like on-site
interactions (mediated by the TLS) with bosonic hopping
between adjacent sites.

Unlike other notable quantum simulation platforms, such
as those composed of ultracold atoms in optical lattices
[41–43], an array of TLS-enabled nonlinear cavities does
not provide an exact analog of the Bose-Hubbard model.
For one, the JCH Hamiltonian is composed of both bosonic
and psuedospin operators, while the Bose-Hubbard Hamil-
tonian contains only the former. In addition, whereas the
insulator-to-superfluid phase transition of the Bose-Hubbard
model is understood through analysis of the competition be-
tween on-site repulsion U and hopping strength J , the various
phases of the JCH model are determined by three compet-
ing energy scales: on-site repulsion U , hopping strength J ,
and TLS-cavity detuning �. Despite these differences, it
has been shown that the JCH model admits an insulator-
to-superfluid phase transition much like that of the Bose-
Hubbard model [33,36–39,44–47] and, consequently, the two
have been closely compared in a number of publications
[33,35,37–39,44–57].

Here, we present a thorough analysis of the many-body
character underlying the Jaynes-Cummings Hamiltonian and
ultimately revisit the analogy between the JCH and Bose-
Hubbard models for the simplest possible implementation: a
two-site system. We begin by considering just a single Jaynes-
Cummings system and introduce a parameter-independent
strategy for studying its intrinsic nonlinearities using unitary
transformation, exposing an infinite hierarchy of effective
bosonic many-body interactions in the process. In contrast
to similar methods prominent in the literature [58–60], our
approach is nonperturbative and is therefore valid for general
system parameters, facilitating analysis of both dispersive and
resonant light-matter coupling regimes. This procedure ulti-
mately leads to the primary result of this paper—an exact
many-body representation of the Jaynes-Cummings Hamil-
tonian which brings effective boson-boson interactions to
the forefront at the level of dressed operators. We show
that this representation offers a unique perspective on the
comparison between the Jaynes-Cummings and on-site Bose-
Hubbard terms, the former containing an infinite hierarchy of
many-body interactions and the latter only two-body interac-
tions. Furthermore, we derive explicit mathematical relations
between the parameters and operators appearing in the Jaynes-
Cummings Hamiltonian and its many-body representation.
We then apply this methodology toward analysis of a two-
site JCH model and show that the dispersive coupling limit
provides an approximate analog to the Bose-Hubbard model,
albeit with weak nonlinearities. By restricting to the subspace
of two or fewer total excitations, we perform a block-by-block

analysis of the truncated Hamiltonian in matrix form to facil-
itate further comparison. We illustrate that, in the dispersive
regime, correspondence with the Bose-Hubbard model can
be understood as the two-site JCH Hamiltonian becoming
approximately block-diagonal when expressed in the basis
of dressed excitations. In contrast, appreciable couplings be-
tween the individual blocks emerge for resonant coupling,
ultimately provoking a disconnect between the two models.
We then conclude with an analysis of the truncated two-site
JCH Hamiltonian’s two-excitation ground state as a function
of system parameters. In analogy to the Bose-Hubbard model,
we find that both dispersive and resonant coupling lead to an
insulator-to-superfluid-like transition. For the case of resonant
coupling, we demonstrate that this transition (i) is accompa-
nied by a polaritonic-to-photonic transition and (ii) admits a
third, intermediary phase consistent with a polaritonic super-
fluidlike (SF-like) state, highlighting the distinct possibilities
afforded by the JCH model over the Bose-Hubbard case.
Taken together, the goal of this paper is to present a unique,
parameter-independent approach for studying the effective
many-body interactions realizable in Jaynes-Cummings-type
systems and, via extension to a two-site system, fully explore
the various parameter regimes of a simple, finite JCH system
with an eye toward experimental study of many-body phe-
nomena using photonics-based platforms.

The subsequent sections are organized as follows. In
Sec. II, we derive a many-body representation for the Jaynes-
Cummings Hamiltonian in terms of dressed operators and
discuss its limiting cases for various parameter regimes.
This is carried out in three parts: Section II A contains
a derivation of the dressed operator representation of the
Jaynes-Cummings Hamiltonian, followed by a discussion of
the behavior of the dressed operators in Sec. II B and, in
Sec. II C, a derivation and analysis of our main result—an
exact, many-body representation of the Jaynes-Cummings
Hamiltonian. Section III extends our methods to the two-site
JCH model, beginning with a brief comparison between the
Bose-Hubbard and JCH models in Sec. III A. This is followed
by a more thorough analysis of the two-site JCH in the disper-
sive and two-excitation limits in Secs. III B and III C. We then
examine the various quantum phases of the two-site JCH in
Sec. III D before concluding with a summary of our findings
in Sec. IV.

II. NONPERTURBATIVE MANY-BODY REPRESENTATION
OF THE JAYNES-CUMMINGS HAMILTONIAN

We begin by examining the hidden bosonic many-body
nature of the Jaynes-Cummings Hamiltonian, one of the sim-
plest and most versatile models in quantum optics describing
the coherent interaction between a single cavity mode and a
TLS, as shown in Fig. 1. Defining a† and a as creation and
annihilation operators for the bosonic cavity mode and σ+ =
|e〉 〈g| and σ− = |g〉 〈e| as psuedospin raising and lowering
operators describing transitions between the ground |g〉 and
excited |e〉 states of the TLS, the Jaynes-Cummings Hamilto-
nian is given by

H = h̄ωca†a + 1
2 h̄ωaσ

z + h̄g(a†σ− + aσ+). (1)
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FIG. 1. (a) A realization of the Jaynes-Cummings model consist-
ing of a single cavity mode and a two-level system (TLS) of resonant
frequency ωc and ωa, respectively. The two interact, exchanging
quanta at a rate determined by the coupling strength g. (b) The
eigenspectrum of the Jaynes-Cummings Hamiltonian for � > 0. The
left set of horizontal black lines indicates the eigenenergies of the
bare cavity mode and TLS, while the right portrays the impact
of light-matter coupling. Pairs of states with the same total num-
ber of excitations n hybridize, yielding pairs of dressed eigenstates
|n,±〉 which are split by the frequency �n. If the system begins
in the ground state |0, −〉, absorption of one photon of frequency
(E1,− − E0,−) prohibits absorption of a second of the same frequency
due to the additional energy cost U . This phenomenon is known as
photon blockade, and may be used to realize effective photon-photon
interactions.

Here, ωc is the resonant frequency of the cavity mode and
ωa that of the TLS or “atom”—terminology which will be
used interchangeably for the remainder of this paper. We
emphasize that the physical implementation of the TLS need
not be an atom, and may instead describe the energy levels
of a so-called artificial atom such as a superconducting qubit
[60–63] or quantum dot [32,64–68]. The rate of energy ex-
change between the cavity and TLS is defined by the coupling
strength g, here assumed to be fast enough such that the
atom and cavity are strongly coupled and dissipation may be

neglected at first approximation [67,69], yet not so fast that
the counter-rotating terms of the Rabi model be considered
(i.e., g � {ωc, ωa}) [70,71]. Finally, σ z is the Pauli operator
σ z = [σ+, σ−] = |e〉 〈e| − |g〉 〈g|.

The eigenvectors and eigenvalues of Eq. (1) are most easily
found by recognizing that the Hamiltonian conserves the total
number of quanta

N = a†a + σ+σ−. (2)

Consequently, only states within the same excitation num-
ber manifold couple and Eq. (1) may be rewritten as a
block-diagonal matrix with each 2 × 2 block independently
diagonalizable. Following Ref. [58], we define

λ = g/�, (3)

where � = ωa − ωc is the atom-cavity detuning. Then the
eigenvalues may be written as

En,± =
(

n − 1

2

)
h̄ωc ± h̄

2
�

√
1 + 4λ2n, (4)

with associated eigenvectors

|n,−〉 = cos θ |n, g〉 − sin θ |n − 1, e〉 ,

|n,+〉 = sin θ |n, g〉 + cos θ |n − 1, e〉 , (5)

where n are eigenvalues of the total number operator N
which label the excitation manifold and the mixing angle
θ = tan−1(2λ

√
n)/2 describes the degree of hybridization be-

tween photonic and atomic degrees of freedom, taking values
in the range −π/4 � θ � π/4. For |λ| � 1 (θ ≈ ±π/4), the
system is said to be resonantly coupled and the eigenstates are
maximally mixed. Consequently, the fundamental excitations
of the system are not those of the bare photonic and TLS
components but are instead hybrid light-matter quasiparti-
cles known as polaritons. Assuming the few excitation limit,
for |λ| � 1 (small θ ), the system is said to be dispersively
coupled and the eigenstates approximate the bare, uncou-
pled states of the cavity and TLS up to a small perturbative
correction.

The eigenspectrum of Eq. (1) is often referred to as
the Jaynes-Cummings ladder [72–75], shown in Fig. 1(b).
Crucially, this spectrum is nonlinear in n, leading to a
phenomenon known as photon blockade [26,28], whereby ab-
sorption of a photon at a particular frequency inhibits further
absorption of photons at that same frequency [see Fig. 1(b)].
In this way, the Jaynes-Cummings Hamiltonian facilitates
effective photon-photon interactions in the few photon limit.
Caution must be exercised, however, in attempting to write
down an effective Hamiltonian which accounts for these ef-
fects. In particular, it is clear from Fig. 1(b) that transition to
the state |2,−〉 through absorption of successive photons of
frequency ω = (E1,− − E0,−)/h̄ requires an additional energy
of U > 0, leading to an effective repulsion of the second
photon. This effect is similar to a Kerr-type nonlinearity of
the form

HKerr = Ueff N (N − 1) (6)

and therefore parallels the on-site interactions of the Bose-
Hubbard model [37,50,76]. However, this comparison must
be approached with caution due to two key subtleties. First,
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applicability for an arbitrary number of excitations requires
that Ueff itself depends on the number operator N , as in the
large excitation limit the Jaynes-Cummings ladder approaches
a linear spectrum [77,78]. This idea—defining an explicit, ex-
citation number dependent Ueff – has been explored in several
publications to date [35,37,39] but, as noted in Ref. [39], leads
to inaccuracies in the dispersive coupling regime. Second, the
operators appearing in Eq. (6) correspond not to the number
of photons in the cavity but to the total number of hybrid-light
matter quanta. As a result, the very nature of the underlying
excitations themselves depend upon the parameter regime,
changing from photonic in the dispersive regime to polaritonic
for resonant coupling, behavior which is not apparent from
Eq. (6). A useful effective bosonic many-body representation
of Eq. (1) therefore requires a more careful consideration of
these subtleties.

In the following subsections, we present a transformed
representation of Eq. (1) which makes explicit the bosonic
many-body interactions generated through photon block-
ade for general system parameters. In contrast with similar
methods in the literature relying on Schrieffer-Wolff per-
turbation theory [58–60], our approach is applicable for
both resonant (|λ| � 1) and dispersive (|λ| � 1) light-matter
coupling. Through techniques of unitary transformation, we
systematically develop an exact many-body description of
the Jaynes-Cummings Hamiltonian and expose a hierarchy
of normally ordered, effective k-body interactions and their
parameter-dependent scaling. The end result is an exact gen-
eralization of Eq. (6) which is absent of excitation number
dependent coefficients. Particular attention is given in iden-
tifying the physically appropriate basis for the many-body
interactions as it has been shown that insulator-to-superfluid
quantum phase transition of the JCH model is accompanied
by a polaritonic-to-photonic transition in the nature of the
excitations [36–38].

A. Unitary diagonalization
of the Jaynes-Cummings Hamiltonian

While it is straightforward to find the eigenvalues and
eigenvectors of the Jaynes-Cummings Hamiltonian by con-
sidering each excitation number manifold individually, an
alternate route toward diagonalizing Eq. (1) involves unitary
transformation of the canonical operators. This approach was
first reported in Ref. [79] and has since been adopted in a
number of more recent works [58–60]. At first glance, this
strategy appears to be a more complicated pathway toward
computing the well-known eigenvalues and eigenvectors of
Eqs. (4) and (5). However, it provides additional physical
insight into the diagonal form of the Hamiltonian through an
analytic understanding of the dressed canonical operators and
will allow us to more clearly compare between Hamiltonians
endowed with Jaynes-Cummings interactions and those hav-
ing two-body bosonic interactions of the form of Eq. (6).

We begin by writing the Jaynes-Cummings Hamiltonian as

H = H0 + h̄gI+, (7)

where we have adopted the shorthand notation [58]

H0 = h̄ωca†a + 1
2 h̄ωaσ

z, I± = a†σ− ± aσ+. (8)

Defining the unitary transformation operator

U = e−	I− , (9)

we aim to find the appropriate choice of 	 for which the
Hamiltonian is diagonal once cast in terms of the trans-
formed operators ã = U†aU and σ̃− = U†σ−U . Due to the
unitarity of U , all commutation relations are invariant under
transformation.

Here we employ the method of active transformation
[80], whereby the Hamiltonian H is rewritten in terms of
transformed operators. This strategy typically entails finding
closed analytic relationships between each canonical operator
O and its transformed pair Õ using the Baker-Campbell-
Hausdorff formula [81],

Õ = U†OU

= O + [O, S] + 1

2!
[[O, S], S] + 1

3!
[[[O, S], S], S] + . . . ,

(10)

where U = eS . In the case of the Jaynes-Cummings Hamilto-
nian, however, direct application of Eq. (10) to the canonical
operators a and σ− leads to an infinite series of commutation
relations which do not close, and a “nonunitarian short circuit”
must be employed to obtain closed form expressions through
this approach [81]. Instead, it is advantageous to transform H0

and I+ in their entirety. Using the commutation relations

[H0, I−] = −h̄�I+, [I+, I−] = 2Nσ z, (11)

along with the inverted form of Eq. (10), it can be shown that

H0 = H̃0 + 	[H̃0, I−] + 	2

2!
[[H̃0, I−], I−] + . . .

= H̃0 − h̄�
∑
n=1

	n

n!
F̃n−1,

I+ = Ĩ+ + 	[̃I+, I−] + 	2

2!
[[̃I+, I−], I−] + . . .

=
∑
n=0

	n

n!
F̃n, (12)

where F̃n is the nth order commutator of Ĩ+ and I− given by

F̃n =
{

(−1)
n−1

2 (2
√

N )n+1 σ̃ z/2 n odd

(−1)
n
2 (2

√
N )n Ĩ+ n even,

(13)

and tildes denote transformed operators (e.g., H̃0 = U†H0U ).
Note that both N and I− commute with U and, consequently,
tildes on these operators are neglected for simplicity.

Using the relations in Eq. (13), the commutator expansions
of H0 and I+ may be formally summed and substituted into
Eq. (7), yielding

H = h̄ωc

(
N − 1

2

)
− h̄

2
√

N
[� sin(2	

√
N ) − 2g

√
N cos(2	

√
N )]̃I+

+ h̄

2
[� cos(2	

√
N ) + 2g

√
N sin(2	

√
N )]σ̃ z. (14)
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Diagonalization is achieved through elimination of the second
term proportional Ĩ+, leading to the constraint

	(N ) ≡ θ (N )√
N

= 1

2
√

N
tan−1(2λ

√
N ), (15)

defined here in terms of the mixing angle θ , previously in-
troduced in Eq. (5) but now appearing as a function of the
number operator N rather than its eigenvalue n. Critically,
	 is also a function of the operator N . This is allowed only
because N commutes with H0 and I± and therefore may be
effectively treated as a scalar in writing the commutation se-
ries of Eq. (12). We emphasize, however, that caution must be
exercised in endowing 	 with arbitrary operator dependence.

With the above choice of 	, simplification of Eq. (14)
yields

H = h̄ωc

(
N − 1

2

)
+ h̄

2
�

√
1 + 4λ2N σ̃ z. (16)

The above Hamiltonian is now entirely diagonal written in
terms of the dressed bosonic and TLS operators, the former
appearing via the total number operator N = ã†̃a + σ̃+σ̃−.
While it is evidently clear that this Hamiltonian returns
the same eigenvalues previously reported in Eq. (4), this
procedure allows for an exact representation of the Jaynes-
Cummings Hamiltonian in terms of the dressed operators
rather than a description at the level of the dressed states
provided by the manifold-by-manifold approach. As will
be shown in later sections, the dressed operator form of
the Jaynes-Cummings Hamiltonian provides a deeper under-
standing of the underlying bosonic many-body interactions
mediated by the TLS. More immediately, it is imperative to
first understand how the dressed operators act on the compos-
ite Hilbert space of the dressed states of the Jaynes-Cummings
Hamiltonian.

B. Behavior of the dressed operators

As previously discussed, direct transformation of the
bosonic and TLS operators a and σ− does not yield easily
interpretable closed-form expressions for the dressed opera-
tors ã and σ̃−. Despite this, one may still determine the action
of the dressed operators on the eigenstates written in Eq. (5)
by transforming both the states and operators to the original
basis where the action of the bare operators is known. Given
the unitary transformation Eq. (9), the state |
〉 transforms
according to

|
〉S = e−S |
〉 , (17)

where the subscript identifies a state transformed with respect
to the generating function S = −	I−. To work out trans-
formations of the states explicitly, it is helpful to first cast
the unitary operator U = eS in an alternate form via Taylor
expansion and subsequent resummation. In particular, it may
be shown that

e±S = cos(θ ) ∓ 1√
N

sin(θ )I−, (18)

where θ is the mixing angle defined in Eq. (15). Then the basis
states {|n, g〉 , |n, e〉} transform as

|n, g〉S = |n,−〉 = cos(θ ) |n, g〉 − sin(θ ) |n − 1, e〉 ,

|n − 1, e〉S = |n,+〉 = sin(θ ) |n, g〉 + cos(θ ) |n − 1, e〉 ,

(19)

where we have made explicit the equivalence between the
transformed states and the well-known eigenstates of the
Jaynes-Cummings Hamiltonian introduced in Eq. (5). As ex-
pected, then, the unitary operator U† maps the bare basis
states onto the set of eigenstates {|n, g〉S , |n, e〉S}. It is impor-
tant to note that the ground state is included within the set
{|n,−〉} which corresponds to the lower branch of the Jaynes-
Cummings ladder for � � 0+ (θ > 0) and to the upper branch
for � � 0− (θ < 0), where superscripts indicate the direction
of approach for the case � = 0. We note, however, that the
choice of which branch includes the ground state is arbitrary,
and the roles of |n,−〉 and |n,+〉 may be reversed by adding
an overall minus sign to S or, equivalently, swapping U and
U† in the convention adopted for the similarity transform
Eq. (10). Nonetheless, a choice has been made in identifying
|0,−〉 with the ground state and, because the n = 0 manifold
consists of only one state, |0,+〉 does not represent a physical
state of the system.

Turning now to the action of the dressed operators, one
may show that for a general operator O,

Õ |n, m〉S = e−SO |n, m〉 = (O |n, m〉)S, (20)

where m = {g, e}. Accordingly, the action of the operator Õ
in the basis of transformed states |n, m〉S is exactly analo-
gous the action of O in the original basis spanned by the
Fock states |n, m〉. The action of the dressed operators on the
conventionally labeled states |n,±〉, however, is more subtle
as here n indicates the excitation manifold or, equivalently,
the total number of combined bosonic and TLS excitations
rather than the number of dressed bosonic excitations alone
as in the labeling |n, m〉S . We emphasize that these subtleties
are solely a consequence of notation and are of little physical
importance, and as a result it is often simpler to work with
the more physically apparent notation |n, m〉S , labeling Fock
states in the dressed boson/TLS basis. Still, the action of the
dressed operators on the states |n,±〉 may be easily worked
out through combination of Eqs. (19) and (20), with results
summarized for reference in Table I and Fig. 2.

TABLE I. Behavior of the dressed operators acting on the
Jaynes-Cummings ladder states |n, ±〉.

|n, −〉 = |n, g〉S |n, +〉 = |n − 1, e〉S

ã
√

n |n − 1, −〉 √
n − 1 |n − 1, +〉

ã†
√

n + 1 |n + 1, −〉 √
n |n + 1, +〉

ã†̃a n |n, −〉 (n − 1) |n, +〉
σ̃− 0 |n − 1, −〉
σ̃+ |n + 1, +〉 0
σ̃ z − |n, −〉 |n,+〉
σ̃+σ̃− 0 |n,+〉
σ̃−σ̃+ |n, −〉 0
N n |n, −〉 n |n, +〉
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FIG. 2. Action of the dressed operators on the Jaynes-Cummings
ladder. Upon diagonalization, the Jaynes-Cummings Hamiltonian
may be repackaged into a positive and negative branch, the for-
mer comprising the states |n, −〉 and the latter |n, +〉. The dressed
bosonic operators ã† and ã induce transitions between states of the
same branch, raising and lowering the total number of excitations by
one, respectively. In contrast, the dressed psuedospin operators σ̃+

and σ̃− facilitate transitions between the two branches. Similar to the
bare pseudospin operators σ+ and σ− acting on the states |e〉 and |g〉,
respectively, applying σ̃± to a state denoted by the same sign returns
zero.

Although the description of the dressed operators thus far
has been exact for general system parameters, it is instructive
to again contrast two important parameter regimes of the
Jaynes-Cummings model: resonant coupling (|λ| � 1) and
dispersive coupling (|λ| � 1). As previously discussed, in
the former case the mixing angle θ approaches ±π/4 and
the eigenvectors of Eq. (19) are maximally mixed superposi-
tions of bosonic cavity and atomic excitations. Consequently,
the dressed bosonic and TLS operators induce transitions
between the hybridized light-matter eigenstates which com-
prise the Jaynes-Cummings ladder, as shown in Fig. 2. In
contrast, the dispersive regime is most easily analyzed by
first recognizing that Taylor expansion of the rightmost side
of Eq. (15) yields 	 ≈ λ and therefore the unitary trans-
formation operator may be approximated as U = e−	I− ≈
e−λI− . Approximate forms of the transformed operators are
then obtained through Schrieffer-Wolff perturbation theory for
|λ| � 1 [58,60], leading to

ã = a − λσ− + O(λ2),

σ̃− = σ− − λaσ z + O(λ2),
(21)

where terms second order in λ are small and may be neglected.
Here, the bosonic operators ã† and ã create and destroy pho-
tons weakly dressed by the TLS. Likewise, the perturbed
operators σ̃+ and σ̃− include the expected action of raising

or lowering the bare TLS and additionally inherit a small
photonic contribution conditioned on the state of the bare TLS
via σ z.

We emphasize that the exact behavior of the dressed opera-
tors described here generalizes the Schrieffer-Wolff approach
and is exact to infinite order in λ. Consequently, the trans-
formed operators ã and σ̃− form an appropriate operator basis
regardless of the parameter regime, and their action on the
transformed states is independent of whether the system is
resonantly or dispersively coupled. However, the underlying
character of the transformed operators and states changes as
a function of system parameters, most easily seen by relating
the transformed operators and states back to those describing
the uncoupled system as shown above. For example, it is clear
that the bosonic operators ã and ã† describe either creation and
annihilation of polaritons or photons depending on the value
of the mixing angle θ (or equivalently, λ). As a result, the
dressed operator description of the Jaynes-Cummings Hamil-
tonian is appropriate independent of the parameter regime
under consideration. Still, it is crucially important to main-
tain an understanding of the parameter-dependent underlying
physical character of the excitations described by the trans-
formed operators and states. This will hold especially true in
Sec. III where it will be shown that the physical interpretation
of the distinct quantum phases of a two-site JCH model re-
quires knowledge of the underlying nature of the transformed
states across parameter space.

C. Revealing the hidden many-body nature
of the Jaynes-Cummings Hamiltonian

Paired with the results of the previous section, the Hamil-
tonian of Eq. (16) provides a complete description of the
Jaynes-Cummings Hamiltonian in the dressed operator ba-
sis. In its present form, the second term clearly endows the
system with a nonlinear dependence on the total number of
excitations, reminiscent of the Kerr-like, two-body bosonic
interactions of the Bose-Hubbard model in Eq. (6). The goal
of this section is to make this analogy more apparent by
casting Eq. (16) in a form which accentuates the underlying
many-body bosonic interactions. One route for achieving this
involves Taylor expansion of Eq. (16) about small values of
λ and truncating at finite order [58]. Alternatively, identical
results are attained by direct Schrieffer-Wolff transformation
of the Jaynes-Cummings Hamiltonian in its original represen-
tation, whereby the unitary operator U = e−	I− is replaced by
its approximate form U ≈ e−λI− for |λ| � 1 [58,60] and all
transformations are carried out to finite order, as in Eq. (21).
However, the two described strategies are only applicable in
the dispersive limit, and it is therefore the purpose of this
section to leverage the exact solution of Eq. (16) toward a non-
perturbative method equally applicable in both the dispersive
and resonant coupling regimes.

Focusing on the nonlinear portion of Eq. (16) alone, it is
useful to define the function

f (x) =
√

1 + 4λ2x (22)
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such that the dressed operator representation of the Jaynes-
Cummings may be written as

H = h̄ωc

(
N − 1

2

)
+ h̄

2
� f (N )σ̃ z. (23)

Using the identity σ̃ z = σ̃+σ̃− − σ̃−σ̃+ and defining the pro-
jection operator P±

n = |n,±〉 〈n,±|, the product f (N )σ̃ z may
be further reexpressed as

f (N )σ̃ z = −P0 +
∑
n=1

f (n)(P+
n − P−

n ). (24)

As shown in Appendix A, one may Taylor expand f (n) about
n = n0 and recast in terms of dressed operators to find

f (N )σ̃ z =
∞∑

r=0

r∑
m=0

(
1/2

r

)(
r

m

)
(2λ)2r f (n0)1−2r (−n0)r−m

×
m∑

k=0

(̃a†)k (̃a)k

[{
m + 1

k + 1

}
σ̃+σ̃− −

{
m

k

}
σ̃−σ̃+

]
,

(25)

where {n
k} are Stirling numbers of the second kind. Taking care

to adjust upper and lower bounds as needed, the three sums
appearing in Eq. (25) may be reordered such that the total
Hamiltonian becomes

H = h̄ωc

(
N − 1

2

)
+

∞∑
k=0

1

k!
[C+

k σ̃+σ̃−+C−
k σ̃−σ̃+](̃a†)k (̃a)k,

(26)

where the coefficients of the k-body terms include the remain-
ing sums over m and r in Eq. (25). After partial resummation
and further manipulation (see Appendix A), it may be shown
that these k-body interaction coefficients are given by

C−
k /h̄ = −�

2

k∑
p=0

(
k

p

)
(−1)k+p

√
1 + 4λ2 p,

C+
k /h̄ = �

2

k∑
p=0

(
k

p

)
(−1)k+p

√
1 + 4λ2(p + 1). (27)

Together, Eqs. (26) and (27) form an exact bosonic many-
body representation of the Jaynes-Cummings Hamiltonian
and constitute one of the primary results of this paper. Crit-
ically, this final form of the Hamiltonian is independent of the
expansion point n0. We note that

1

k!
(̃a†)k (̃a)k |n,−〉 =

(
n

k

)
|n,−〉 ,

1

k!
(̃a†)k (̃a)k |n,+〉 =

(
n − 1

k

)
|n,+〉 , (28)

and thus each k-body term scales as C±
k multiplied by a com-

binatorial factor. When applied to the eigenstates |n,±〉, the
infinite sum of k-body interactions may be evaluated, resulting
in the closed form

∞∑
k=0

1

k!
C±

k (̃a†)k (̃a)k |n,±〉 = ± h̄

2
�

√
1 + 4λ2n |n,±〉 , (29)

thus verifying that the dressed operator many-body form of
the Jaynes-Cummings Hamiltonian in Eq. (26) returns the
well-known eigenvalues in Eq. (4).

Critical to the usefulness of Eq. (26) is a clear partitioning
of the Hilbert space into two branches, each spanned by either
set of states |n − 1, e〉S = |n,+〉 or |n, g〉S = |n,−〉. Because
the two branches are uncoupled, one may consider each sub-
space independently. As previously discussed, it is the latter
set which includes the global ground state |0, g〉S = |0,−〉,
and we thus focus our analysis on the negative branch, noting
that much of the discussion follows similarly for the positive
branch with the caveat that, there, the state |0, e〉S = |1,+〉
effectively serves as the ground state within the subspace
spanned by |n,+〉. We reemphasize, however, that the states
|n,−〉 are the lower energy eigenstates of each excitation
number manifold for � � 0+ (θ > 0) only, and the eigen-
states |n,−〉 exceed |n,+〉 in energy for � � 0− (θ < 0). As
a result, one may access the entirety of the Jaynes-Cummings
ladder for the resonant coupling case simply by choosing to
approach � = 0 either from the positive or negative direction,
yielding θ = π/4 or θ = −π/4, respectfully. We will find
that this freedom allows for a mathematical description of
either repulsive or attractive many-body interactions within
the subspace of states |n,−〉 depending on the sign of θ . Sepa-
rately, in the dispersive regime, the negative branch comprises
perturbed photonic excitations with the weakly dressed TLS
in its unexcited state.

Before proceeding with a closer analysis of the coefficients
C±

k , it is important to note that the effects of environmental
coupling have, up to this point, not been considered. As a
result, the many-body terms of Eq. (26) seemingly play an
important role for all C±

k �= 0 and, as illustrated in Fig. 1(b),
perfect photon blockade is achieved as long as g �= 0. In an
experimental setting, however, coupling to the environment
broadens the levels of the Jaynes-Cummings ladder such
that photon blockade is impaired when the dominant rate of
dissipation � = max{κ, γ } exceeds the light-matter coupling
strength g, where κ and γ denote the cavity and atomic
linewidth, respectively. As a consequence, strong effective
many-body interactions are realizable only in the strong cou-
pling regime (i.e., g > �), as the impact of each k-body term
depends not on C±

k alone, but rather on the ratio C±
k /h̄�.

Although the effects of environmental coupling will not be
explicitly considered in the present work, given the discussion
above it is convenient to consider all parameters in units of
� as it determines the appropriate time scale for a specific
realization of the Jaynes-Cummings Hamiltonian, allowing
for a general discussion agnostic of the particulars of each
experimental platform.

While Eqs. (26) and (27) provide an exact bosonic many-
body representation of the Jaynes-Cummings Hamiltonian for
general system parameters, the infinite sum over competing
k-body terms obscures simple interpretation. It is therefore
advantageous to closely analyze several limiting cases to gain
insight into the contributions of the hierarchy of many-body
terms appearing in Eq. (26). In the following, we restrict
analysis to the few excitation limit and investigate both the
dispersive and resonant coupling regimes independently. We
note that the few excitation limit is not only a mathematically
instructive, but also experimentally realizable in cavity and
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circuit QED systems [28,29,68]. We then conclude the current
section with a brief discussion of the more general n excitation
case.

1. The few excitation limit: n � 2

We begin by examining the Hamiltonian in Eq. (26) in the
limit where the total number of excitations is fixed to two or
fewer. In this scenario, the normally ordered terms (̃a†)k (̃a†)k

do not contribute for k > 3 for the negative branch and k > 2
for the positive branch. Consequently, the n � 2 limit allows
for analysis of the Hamiltonian in the scenario where the
highest order contributing many-body interactions correspond
to two-body terms, leading to the effective Hamiltonian

H eff
n�2 = σ̃+σ̃−

[
(h̄ωc + C+

1 )̃a†ã + 1

2
h̄ωc + C+

0

]
+ σ̃−σ̃+

[
(h̄ωc + C−

1 )̃a†ã − 1

2
h̄ωc + C−

0

+ C−
2

2
ã†ã† ã̃a

]
, (30)

where the first and second lines correspond to the effec-
tive Hamiltonian projected onto the positive and negative
branches, respectively, and

C−
0 /h̄ = −�

2
,

C−
1 /h̄ = −�

2
(−1 +

√
1 + 4λ2),

C−
2 /h̄ = +�

2
(−1 + 2

√
1 + 4λ2 −

√
1 + 8λ2),

C+
0 /h̄ = +�

2
(
√

1 + 4λ2),

C+
1 /h̄ = +�

2
(−

√
1 + 4λ2 +

√
1 + 8λ2) (31)

are the explicit forms of the interaction coefficients. In all
cases, the above coefficients are written in such a way that the
factor in parenthesis is positive for all values of λ and there-
fore the overall sign of the coefficient is indicated explicitly in
the prefactor. Notably, the overall sign of the coefficients C±

i
depends upon the sign of the detuning �. Two-body bosonic
interaction terms appear only for the negative branch as the
positive branch consists of states with the dressed TLS in its
excited state, and limiting the total number of excitations to
two or fewer therefore ensures at most one dressed photonic
excitation.

Focusing only on the negative branch, the Hamiltonian
may be written within this subspace as

H eff(−)
n�2 = (h̄ωc + C−

1 )N + C−
2

2
N (N − 1) − 1

2
h̄ωc + C−

0 ,

(32)

where we have used the fact that N and ã†̃a are identical for
the negative branch. This effective Hamiltonian is, up to an
overall energy shift, identical in form to the on-site terms of
the Bose-Hubbard model [37],

HBH,on-site = −μN + U

2
N (N − 1), (33)

where the on-site interaction strength U is determined by C−
2

and N describes the number of dressed bosonic excitations.
Despite the fact that the linear energy h̄ωc + C−

1 is strictly
positive for realistic parameters and thus naturally describes
a system with μ < 0, we note that one may transform to
a rotating frame via the unitary operator e−iωcã†ãt such that
C−

1 , which is negative for � � 0+, becomes analogous to the
chemical potential. As discussed in Sec. II B, the dressed op-
erators ã† and ã describe creation and annihilation of bosonic
excitations whose character varies from polaritonic (|λ| � 1)
to photonic (|λ| � 1), depending on the choice of g and
�. Furthermore, as the overall sign of C−

2 is determined
by the sign of �, the interaction energy U can be either
positive or negative. The former case results in an effective
polariton-polariton (or photon-photon) repulsion, whereas the
latter corresponds to polariton-polariton (or photon-photon)
attraction.

Figure 3(a) shows the absolute value of C−
2 as a function

of system parameters g and �, all relative to a fictitious dissi-
pation rate � which sets the relevant energy scale pertaining
to a particular experimental platform, as discussed previously.
As expected, the scaling of the two-body interaction is largest
for resonant coupling where the bosonic modes and TLS
maximally mix. Evaluating C−

2 for the perfectly resonant case
leads to

C−
2 /h̄ = ±(2 −

√
2)g (resonant), (34)

where the sign of C−
2 is determined by the direction in which

� = 0 is approached and it is assumed that g � 0. Then for
resonant coupling, C−

2 scales linearly with g and strong two-
body interactions (|C−

2 | � h̄�) are achieved for

g/� � 1/(2 −
√

2), (35)

a slightly higher threshold than strong coupling.
In the dispersive regime, C−

k depends nonlinearly on λ and,
as a result, spans many orders of magnitude for constant �

depending upon the value of g. Expanding C−
2 about small

values of λ leads to the result

C−
2 /h̄ ≈ 2λ3g (dispersive), (36)

indicating that the fall off of two-body interactions for de-
creasing g is dependent on how far into the dispersive regime
the system is tuned. To realize strong two-body interactions
(i.e., |C−

2 /h̄�| � 1) in the dispersive coupling regime, excep-
tionally large values of g/� must be attained such that the
condition

g/� � |1/2λ3| (37)

is satisfied, a limit which has been approached in circuit QED
platforms (for λ ∼ 0.1), reaching values of g/� in the several
hundreds [62]. Equation (37) may be thought of as a higher
order generalization of the strong-dispersive regime [82,83],
defined by the condition g/� � |1/λ| (for |λ| � 0.1) which
characterizes the portion of parameter space in which the first
order frequency shift C±

1 exceeds h̄� in magnitude.
While boson-boson interactions are most easily attained in

the case of resonant coupling, it is in the dispersive parameter
regime in which the bosonic many-body interactions take on a
photonic nature. As we shall see in Sec. III where the present
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FIG. 3. (a) Sign and magnitude of the two-body coefficient C−
2 as

a function of � and g. For practical purposes, all parameters are nor-
malized to � which sets the relevant frequency scale for the particular
experimental platform in consideration. Regardless of the parameter
regime, C−

2 always takes the same sign as �. As discussed in the
main text, C−

2 is discontinuous at � = 0 and may take on a positive
or negative values depending on the direction of approach. For all g,
C−

2 is maximized for resonant coupling (|λ| � 1), and is comparably
smaller for dispersive coupling (|λ| � 1), requiring g/� � |1/2λ3|
to achieve strong photon-photon interactions (|C−

2 /h̄�| � 1). The
dashed line indicates λ = ±0.1, typically considered the onset of
the dispersive regime. (b) Sign and magnitude of the three-body
coefficient C−

3 as a function of � and g, all normalized to �. C−
3

displays a qualitatively similar trend to C−
2 , taking on a maximal

magnitude at � = 0 and falling off rapidly for decreasing |λ|. For
all g and �, |C−

3 | < |C−
2 | and, in contrast to C−

2 , the sign of C−
3 is

opposite to that of �.

analysis is extended to a two-site JCH system, it is photonic
two-body interactions in the dispersive regime, rather than
polaritonic two-body interactions on resonance, which will
most clearly provide a route for analog quantum simulation
of Bose-Hubbard physics.

2. The few excitation limit: n � 3

The Hamiltonian in Eq. (30) is exact for n � 2. Consid-
eration of states with n = 3 requires inclusion of three-body

terms, leading to the effective Hamiltonian

H eff
n�3 = H eff

n�2 + σ̃+σ̃−
[

C+
2

2
ã†ã† ã̃a

]
+ σ̃−σ̃+

[
C−

3

2
ã†ã†ã† ã̃ãa

]
, (38)

where

C−
3 /h̄ = −�

2
(−1+3

√
1 + 4λ2−3

√
1 + 8λ2 +

√
1 + 12λ2),

C+
2 /h̄ = −�

2
(−

√
1 + 4λ2 + 2

√
1 + 8λ2 −

√
1 + 12λ2)

(39)

describe the strength of three-body (two-body) interactions
within the negative (positive) branch of the Jaynes-Cummings
ladder. Similar to the the n � 2 case, three-body terms do not
appear for the positive branch as the states considered allow
for up to two bosonic excitations. We note that the trends
followed by the positive branch for n � 3 are similar to those
of the negative branch for n � 2 (with signs reversed), and
therefore will not be explicitly discussed.

Figure 3(b) shows the magnitude of C−
3 as a function of

� and g, again relative to the maximal dissipative rate � =
max{κ, γ }. Notably, C−

2 and C−
3 differ by an overall sign with

the latter of smaller magnitude for all parameters. Otherwise,
the two follow a similar trend, albeit with C−

3 declining much
more rapidly with decreasing g. Following the analysis of
the two-body interaction strength C−

2 , it is helpful to derive
expressions for C−

3 for the cases of resonant and dispersive
coupling. For the former, evaluating C−

3 for � = 0 leads to

C−
3 = ∓(3 − 3

√
2 +

√
3)g (resonant), (40)

where, similar to Eq. (34), the sign of C−
3 is dependent on

the direction in which � = 0 is approached and the overall
expression is proportional to g, here with a smaller prefactor
such that |C−

2 | > |C−
3 |.

In contrast, evaluating C−
3 for small values of λ via Taylor

expansion yields

C−
3 ≈ −12λ5g (dispersive), (41)

similar to the result Eq. (36) yet scaling at fifth order in
λ rather than third. Consequently, C−

3 falls off much more
rapidly than C−

2 in the dispersive regime, indicating that the
strength of three-body interactions are small relative to their
two-body counterparts and may therefore be discarded for
small enough λ. For all g and �, C−

2 and C−
3 are of opposite

sign and therefore counteract one another in systems with
at least three excitations, with positive and negative valued
interactions describing repulsion and attraction, respectively.

3. Nature of the many-body coefficients for arbitrary n

Following the preceding analysis of the parameter depen-
dent strength of two- and three-body interactions in the few
excitation limit, extension to the general n excitation limit is
straightforward. Focusing again on the negative branch, it is
convenient to independently analyze the form of the k-body
coefficient C−

k for the cases of resonant and dispersive cou-
pling. It is worth emphasizing again that for any finite n, each
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k-body term will only contribute if k � n, and the sum in
Eq. (26) therefore always terminates. However, the n → ∞
limit of the Jaynes-Cummings Hamiltonian is important to
analyze as the eigenspectrum becomes approximately linear,
inhibiting photon blockade for large values of n [77,78]. Eval-
uating the general form of C−

k for � = 0 [see Eq. (27)], we
find

C−
k = ±(−1)k

[
k∑

p=1

(
k

p

)
(−1)p+1√p

]
g (resonant), (42)

where the upper and lower signs corresponds to the limit � →
0± and θ = ±π/4. Therefore, the linear relationship with g
previously found for C−

2 and C−
3 is general for all k. Further-

more, the factor in parentheses is positive and convergent for
all k. The overall sign of the coefficients C−

k therefore alternate
in k, a trend which can be shown more generally from Eq. (27)
without specializing to the case of resonant coupling. In the
limit of very large k, the above sum asymptotically trends to-
ward the closed expression [84] C−

k = (−1)kg/
√

π ln(k) and
thus vanishes in the limit k → ∞.

For the case of dispersive coupling (|λ| � 1), C−
k may be

written as

C−
k /h̄ ≈ −k!

(
1/2

k

)
(2λ)2k−1g (dispersive), (43)

where only the lowest order term in λ has been retained. In
deriving this expression,

√
1 + 4λ2 p was evaluated using a bi-

nomial expansion which, strictly speaking, is convergent only
for p � k < |1/4λ2|, setting an upper bound of |λ| <

√
1/4k

for which Eq. (43) is valid.
Figures 4(a) and 4(b) contrast the behavior of C−

k for
resonant [Eq. (42)] and dispersive [Eq. (43)] coupling. As
stated previously, the sign of C−

k alternates in k independent
of parameter regime, indicated by the color of the markers. In
particular, blue (red) markers represent coefficients which are
positive (negative) for � � 0+, with signs inverted for � �
0−. For dispersive coupling, the relative strength of |C−

k /h̄�|
falls off rapidly due to the λ2k−1 dependence in Eq. (43) and,
as a result, the sum in Eq. (26) may be truncated at some cutoff
order kmax dependent upon the coupling strength g, dispersive
parameter λ, and the desired accuracy. For kmax = 2, Eq. (26)
becomes an approximate analog to the on-site portion of the
Bose-Hubbard Hamiltonian in Eq. (33). In contrast, perfectly
resonant coupling is characterized by many-body coefficients
C−

k which fall off slowly in k and, consequently, the sum in
Eq. (26) cannot be truncated unless only a finite number of
excitations n are considered.

For all k, the trend followed by the coefficients C−
k as a

function of g and � resembles that of C−
2 and C−

3 shown in
Fig. 3, differing only in the rapidity with which the magnitude
of C−

k falls off as � trends away from zero. Figure 4(c)
illustrates the relative magnitude of various coefficients C−

k
across all parameter space, with colored sections correspond-
ing to regions where |C−

k /h̄�| � 0.1. Note that this threshold
is somewhat arbitrary and therefore should not be taken as
an exact measure of the importance of each term, as this
is dependent upon the particular system and context under
study. Still, the relative importance of higher order k-body
interactions is clearly evident both for perfect resonant cou-

FIG. 4. Top panels: Sign and magnitude of the k-body coefficient
C−

k normalized to h̄g for (a) resonant and (b) dispersive coupling,
plotted for discrete values of k. Red circles correspond to a negative
value, blue a positive value, and gray a value of zero, with black
interpolating lines shown as a guide. (a) Resonant coupling is charac-
terized by a relatively slow falloff in magnitude of C−

k for increasing
k, asymptotically approaching the value g/

√
π ln(k) for very large

k and vanishing for k → ∞. (b) In contrast, |C−
2 | falls off very

rapidly for dispersive coupling, allowing for truncation of the sum
over k-body interactions at a small, finite value of k according to the
accuracy desired. The three lines show this trend for distinct values
of λ, with smaller λ displaying a faster fall off. (c) The region of
parameter space for which |C−

k /h̄�| > 0.1, with each colored region
corresponding to a particular value of k. As seen explicitly for C−

2 and
C−

3 in Fig. 3, each coefficient follows a similar trend, with areas of
highest (lowest) magnitude coinciding with |λ| � 1 (|λ| � 1). For
increasing k, the subset of parameter space in which the threshold
|C−

k /h̄�| > 0.1 is met tightens, with each region corresponding to
order k encompassing the smaller region corresponding to k + 1.
The maximal value k = 20 was chosen for simplicity, with higher
values of k continuing the same trend. (d) The evolution of |C−

k /h̄�|
from resonant to dispersive coupling, shown as a function of �/�

for constant coupling strength tuned to the onset of strong coupling
g/� = 1 (white dashed line in panel (c)). Red and blue lines dis-
play the alternating sign of C−

k . All large k coefficients experience
a similar, rapid falloff as � is increased from the resonant case.
In comparison, smaller k coefficients decrease in magnitude more
slowly. A fan-out effect is observed as the detuning trends toward
� = 10g, corresponding to the onset of dispersive coupling (i.e.,
λ = 0.1). In contrast, all coefficients take on values comparable in
magnitude for � = 0.

pling (� = 0) and for near-resonant coupling (|λ| � 1). This
is further illustrated by Fig. 4 showing the magnitude of the
many-body coefficients C−

k (relative to h̄�) at the onset of
strong coupling, g/� = 1, indicated by a white dotted line
in Fig. 4(c). Similar to Figs. 4(a) and 4(b), blue (red) lines
indicate a positive (negative) value of C−

k for � � 0+, with
signs reverse for � � 0−.
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Finally, we note that the presented many-body form of the
Jaynes-Cummings Hamiltonian must become approximately
linear in the limit n → ∞, inhibiting photon blockade en-
tirely. This behavior of the Jaynes-Cummings Hamiltonian
is well-known [37,77,78] and can most easily be seen by
analyzing the difference En+1,± − En,± [see Eq. (4)] in the
large n limit. In the form Eq. (26), however, this limiting
behavior is not at all obvious, particularly for resonant cou-
pling, as the contributions of the individual, normally ordered
k-body products (̃a†)k (̃a†)k/k! return the binomial coefficient
(n
k) when acted on a dressed Fock state and therefore diverge

for n → ∞. Despite this, Eq. (29) shows that the k-body
interactions sum together to produce the correct eigenvalues
and, as a result,

lim
n→∞

∞∑
k=0

1

k!
C±

k (̃a†)k (̃a)k (|n + 1,±〉 − |n,±〉) = 0. (44)

More qualitatively, this behavior is understood as a conse-
quence of the alternating sign of the many-body coefficients
C±

k , causing all odd k-body interactions to counteract those
with even k. As a result, the individual nonlinear interac-
tions together conspire to give a purely linear spectrum, in
alignment with the known behavior of the Jaynes-Cummings
ladder in the large n limit.

III. EXTENSION TO A TWO SITE
JAYNES-CUMMINGS-HUBBARD SYSTEM

AND ANALYSIS OF ITS QUANTUM PHASES

The results of the previous section hint at a similarity
between the on-site portion of the Bose-Hubbard and Jaynes-
Cummings Hamiltonians—the former containing bosonic
two-body interactions and the latter k-body interactions up
to some order kmax dependent upon the ratio λ = g/� and
maximum number of excitations considered. Because only a
single site was under study, the most interesting aspects of
the Bose-Hubbard model, e.g., the superfluid to insulating
quantum phase transition, were not discussed. The purpose of
the present section is to revisit this comparison for the simplest
extension possible: a two-site system. We note that qualitative
and quantitative analogies between the Bose-Hubbard and
JCH models are numerous in literature [33,35,37–39,44–57]
and, as such, we refer to these other works for a mathe-
matically rigorous analysis of the quantum phase transition
admitted by the JCH model for both a finite [33,47] and
infinite [37,39,50,85] number of sites. Here, our aim is to
illustrate the unique and complementary perspective afforded
by the many-body form of the Jaynes-Cummings Hamiltonian
presented in Eq. (26). Furthermore, we hope that the analysis
and discussion contained herein can provide guidance for
analog quantum simulators which aim to simulate many-body
bosonic Hamiltonians using Jaynes-Cummings nonlinearities.
Lastly, we remark that because the presented analysis in this
section pertains to systems with a finite number of sites and
excitations, we use the terminology Mott-insulator-like (MI-
like) and superfluid-like (SF-like) to distinguish from true
Mott-insulating and superfluid states as conventionally de-
fined in the thermodynamic limit.

A. Comparison between the Jaynes-Cummings-Hubbard
and Bose-Hubbard models

The two-site Bose-Hubbard model is given by

HBH =
∑
i=1,2

H (i)
BH,on-site + HBH,hop,

H (i)
BH,on-site = −μb†

i bi + U

2
b†

i b†
i bibi,

HBH,hop = J (b†
1b2 + b1b†

2). (45)

Here, b and b† are bosonic annihilation and creation operators,
J the hopping rate between the two sites labeled i = 1, 2,
and U and μ are the on-site interaction strength and chemi-
cal potential, here assumed to be identical for both sites for
simplicity. It is well-known that the Bose-Hubbard Hamilto-
nian admits a quantum phase transition facilitated by tuning
the ratio J/U at zero temperature [41,86]. For J � U , the
system is said to be in a superfluid phase, characterized by a
large variance in single site particle number and a delocalized
many-body ground state of the form

|
SF〉 ∝
(∑

i=1,2

(∓)ib†
i

)n

|0〉 , (46)

where n is the total number of particles in the ground state
(fixed through choice of μ) and the upper (lower) sign corre-
sponds to J > 0 (J < 0). For simplicity, the convention J > 0
will be assumed for the remainder of this manuscript. In
the opposite limit J � U , the repulsive interaction dominates
site-to-site tunneling and single site particle number fluctua-
tions are suppressed as a result. Consequently, the ground state
becomes the localized MI-like state:

|
MI〉 ∝
∏

i=1,2

(b†
i )n/2 |0〉 . (47)

Similar to Eq. (45), the two-site JCH model may be written as

HJCH =
∑
i=1,2

H (i)
JC + Hhop,

H (i)
JC = h̄ωca†

i ai + 1

2
h̄ωaσ

z
i + h̄gi(a

†
i σ

−
i + aiσ

−
i ),

Hhop = J (a†
1a2 + a1a†

2), (48)

where on-site parameters ωc, ωa, and g have been taken to
be identical for both sites for simplicity. Here, Hhop describes
pure photonic hopping between sites—such terms arise in
arrays of cavities, for example, due to the overlap between
the evanescent fields of adjacent cavities [34,38,87,88].

The parallel structure of Eqs. (45) and (48) underscores
an obvious connection between the Bose-Hubbard and JCH
models: both contain identical bosonic tunneling terms and
similar on-site interactions, with the only distinguishing fea-
tures appearing as the source of nonlinearity in H (i)

BH,on-site and

H (i)
JC , the former naturally including bosonic two-body terms,

and the latter comprising an additional degree of freedom
in the form of a TLS which ultimately mediates effective
photon-photon interactions. Still, qualitative comparison be-
tween the two is merited and previous works have shown the
JCH model to admit a superfluid-to-insulator-like quantum
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phase transition similar to that of the Bose-Hubbard model
[33,36–39,44–47], albeit with some key differences. For one,
while the quantum phases of the Bose-Hubbard model are
realized at opposing limits of the ratio J/U , the JCH model
involves three distinct tunable parameters (J , �, g) and, con-
sequently, multiple pathways exist for tuning across a phase
transition [33,37,39,50]. In addition, the very nature of the in-
teracting bosonic excitations are themselves dependent upon
the parameter regime, leading to a photonic-to-polaritonic
transition which accompanies the superfluid-to-insulator-like
transition in the JCH model [33,36], behavior which is absent
in the Bose-Hubbard case. Finally, as noted previously, the
JCH Hamiltonian becomes approximately linear in the limit
of large n, while the Bose-Hubbard model maintains nonlin-
earity for all n. These distinguishing features have received
qualitative recognition in the literature, yet have not been
formally analyzed in the context of dressed operators where
bosonic many-body interactions are brought to the forefront,
as in Eq. (26). The findings of the previous section therefore
compel a close reexamination of the differences between the
JCH and Bose-Hubbard models, and consequences thereof,
using the techniques of unitary transformation.

Following the procedure of Sec. II A, we begin analysis by
transforming Eq. (48) into the dressed basis. Here, we apply
the transformation operator U = eS1+S2 where the generator Si

is defined as

Si = −	(Ni )I
(i)
− , (49)

where I (i)
− and 	(Ni ) = θ (Ni )/

√
Ni are defined exactly as be-

fore [see Eqs. (8) and (15)] with the subscript i inserted where
appropriate to label quantities which differ between sites. For
example, here Ni represents the total number operator at site
i alone, and the total number of excitations in the system is
therefore given by N = N1 + N2. It is important to emphasize
that the generators S1 and S2 commute and the operator U
may therefore be rewritten as a product of unitary operators
U = U1U2 where U1 = eS1 and U2 = eS2 . Critically, Ui com-
mutes with all operators associated solely with the opposite
site and, as a result, transformation of the on-site contributions
to the JCH proceeds exactly as in Sec. II A. The two-site JCH
Hamiltonian may therefore be written as

HJCH = J (a†
1a2 + a1a†

2) +
∑
i=1,2

h̄ωc

(
Ni − 1

2

)

+
∑
i=1,2

∞∑
k=0

1

k!
[C+

k σ̃+
i σ̃−

i + C−
k σ̃−

i σ̃+
i ](̃a†

i )k (̃ai )
k,

(50)

where notation has been maintained from the previous sec-
tion such that the coefficients C±

k are defined by Eq. (27)
and

ãi = U†aiU , σ̃−
i = U†σ−

i U (51)

are the transformed operators describing annihilation of the
dressed excitations at site i. We remark that Eq. (50) is
similar in form to the effective Hamiltonian presented in
Refs. [36,89]. There, on-site contributions to the JCH model
are written for the case � = 0 in terms of branch-dependent
polaritonic operators obeying neither bosonic nor psuedospin
commutation relations. The form presented here is therefore
unique in that the dressed operators describe the true quasi-
particle excitations at each site, maintaining the appropriate
commutation relations, and all many-body interactions are
described without use of excitation number dependent coef-
ficients for general g and �.

Because Hhop = J (a†
1a2 + a1a†

2) describes an exchange of
purely photonic quanta, writing this explicitly in terms of
dressed operators for general system parameters yields an
infinite set of terms which are not obviously expressible in
a closed form. Up to first order in 	 alone, transforma-
tion of Hhop yields terms corresponding to polariton hopping
J (̃a†

1ã2 + ã1̃a†
2), linear cross-site interactions J	(N1)(̃a†

2σ̃
−
1 +

ã2σ̃
+
1 ) + J	(N2)(̃a†

1σ̃
−
2 + ã1σ̃

+
2 ), and, in addition—because

the hopping term preserves the total number of excitations
N1 + N2 but not the number of excitations at each site
Ni – a number of nonlinear terms which vanish in the dis-
persive regime (where 	(Ni ) ≈ λ) but become important
near-resonant coupling. Matters are further complicated at
second order in 	, primarily due to a cascade of additional
two-site terms which do not commute with Ni. As a result,
there is little to be gained by attempting to write Hhop in
terms of dressed operators for general system parameters as
the physics of the site-to-site hopping is most apparent in the
bare photonic basis, and it is advantageous to instead consider
several limiting cases independently.

B. Dispersive coupling: |λ| � 1

As previously discussed in Sec. II C, when projected onto
the negative branch, the on-site terms of the JCH model
directly mirror those of Bose-Hubbard model for dispersive
coupling due to a sharp drop off in the coefficients C−

k for
increasing k. Neglecting terms second order and higher in λ,
the full two-site JCH Hamiltonian may be expressed as

HJCH ≈ P−
1 P−

2

[ ∑
i=1,2

(
h̄�−

0 ã†
i ãi + U −

eff

2
ã†

i ã†
i ãĩai

)
+ J (̃a†

1ã2 + ã1̃a†
2) + 2E−

0

]

+P+
1 P+

2

[ ∑
i=1,2

(
h̄�+

0 ã†
i ãi + U +

eff

2
ã†

i ã†
i ãĩai

)
+ J (̃a†

1ã2 + ã1̃a†
2) + 2E+

0

]

+P+
1 P−

2

[
h̄�+

0 ã†
1ã1 + U +

eff

2
ã†

1ã†
1ã1̃a1 + h̄�−

0 ã†
2ã2 + U −

eff

2
ã†

2ã†
2ã2̃a2 + J (̃a†

1ã2 + ã1̃a†
2) + E+

0 + E−
0

]
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+P−
1 P+

2

[
h̄�−

0 ã†
1ã1 + U −

eff

2
ã†

1ã†
1ã1̃a1 + h̄�+

0 ã†
2ã2 + U +

eff

2
ã†

2ã†
2ã2̃a2 + J (̃a†

1ã2 + ã1̃a†
2) + E+

0 + E−
0

]
+ Jλ(̃a†

1σ̃
−
2 + ã1σ̃

+
2 ) + Jλ(̃a†

2σ̃
−
1 + ã2σ̃

+
1 ), (52)

where �±
0 = ωc + C±

1 /h̄ denotes an effective resonant en-
ergy, U ±

eff = C±
2 an effective interaction strength, E±

0 = C±
0 ±

h̄ωc/2 a constant energy shift, and P±
i = σ̃±

i σ̃∓
i the projector

onto the positive (upper sign) or negative (lower sign) branch
of the ith site.

In writing Eq. (52), the on-site terms were cast into the
dressed basis using the techniques of Sec. II C, while the hop-
ping Hamiltonian Hhop was reexpressed in terms of dressed
operators using the transformed form of the relations Eq. (21).
Thus, using the techniques presented here, we have made
the analogy between the two-site JCH and Bose-Hubbard
models for |λ| � 1 as explicit as possible—Eq. (52) illus-
trates that, in the dispersive limit, the two-site JCH describes
physical behavior which mirrors the Bose-Hubbard model
independently within each of its four branches. Interestingly,
these four branches allow for realization of either a sym-
metric (∝P±P±) or an asymmetric (∝P±P∓) Bose-Hubbard
type system. Unlike the single Jaynes-Cummings Hamilto-
nian, however, transitions between the various branches are
allowed due to the cross-site boson-TLS couplings induced
by transformation of Hhop. This effect was previously noted
and analyzed in Refs. [33,39], there described in the context
of polariton operators as an interconversion between + and −
polariton types. Due to their scaling with |λ| � 1, these
terms only weakly contribute in comparison to the dressed
bosonic hopping term J (̃a†

1ã2 + ã1̃a†
2) for arbitrary J . This

fact is not unsurprising as, in the dispersive regime, the
dressed bosonic operators are photonlike. As a result, the
purely photonic hopping term Hhop is well-approximated by
a photonlike dressed bosonic hopping and, consequently, the
influence of the last two terms of Eq. (52) may be either
approximated using second-order perturbation theory or, de-
pending on the value of λ and the accuracy desired, entirely
neglected.

It is clear from a qualitative argument alone that the Hamil-
tonian in Eq. (52) admits an insulator-to-SF-like transition
analogous to that of the Bose-Hubbard model largely un-
altered by the final two interbranch terms. As previously
discussed in Sec. II C, C±

2 (and, by extension, U ±
eff) can

be either positive or negative depending on the sign of �,
yielding effective photon-photon repulsion in the former case
and attraction in the latter. For the following argument, let
us specialize to � > 0 such that U −

eff > 0. Focusing on the
branch corresponding to the projector P−

1 P−
2 and recalling

that C−
2 /h̄ ≈ 2λ3g in the dispersive regime, the limit J/U −

eff �
1 (equivalent to J/h̄g � 2λ3 in terms of basic system pa-
rameters) yields a localized, MI-like n particle ground state
identical to Eq. (47). In the opposite limit J/U −

eff � 1 (or, iden-
tically, J/h̄g � 2λ3), the influence of the interbranch terms is
felt only at second-order perturbation theory in λ. For λ � 1,
the n particle ground state becomes identical to the delocal-
ized, SF-like state in Eq. (46).

C. The n � 2 limit

As evidenced in Sec. II C, another useful strategy for the-
oretical analysis involves truncating the composite Hilbert
space by restricting the total number of excitations to a finite,
maximal value. This approach is particularly relevant for com-
parison with the Bose-Hubbard model, where the chemical
potential μ naturally determines the total number of particles
in the many-body ground state [90]. Fixing to a particular
excitation number in the JCH Hamiltonian therefore facili-
tates a straightforward comparison. Furthermore, truncating
the Hilbert space allows for closer inspection of the resonant
coupling regime which, as previously discussed, is challeng-
ing to analyze for general n due to the difficulty of casting Hhop

in terms of dressed operators for general system parameters.
For simplicity, we specialize to the case of n � 2. As shown in
Sec. II C, this limit results in an exact analogy between the on-
site terms of the Bose-Hubbard model and the negative branch
of the many-body representation of the Jaynes-Cummings
model for both resonant and dispersive coupling. In addition,
we restrict to the case � � 0 (or, equivalently, λ � 0) such
that effective repulsion (Ueff > 0) is realized for the negative
branch excitations.

It is convenient to first reexpress the two-site JCH Hamil-
tonian in terms of projectors onto the positive and negative
branch at each site:

HJCH =
∑

s1,s2,s′
1,s

′
2

|s′
1, s′

2〉 〈s′
1, s′

2| H |s1, s2〉 〈s1, s2| . (53)

Here, each si is summed over the values + and −, the first
and second entries of each bra/ket indicate the state of the
TLS at the first and second sites, and the subscript JCH has
been dropped from the various matrix elements for simplicity.
For convenience, we define the notation Hs1s2 to represent to
subspace spanned by the states {|m1, m2, s1, s2〉}, where the
four indices denote, in order, the eigenvalues of ã†

1ã1, ã†
2ã2,

σ̃ z
1 , and σ̃ z

2 . Note that here we are adopting notation for the
states which is slightly modified from Sec. II, as the first index
no longer corresponds to the total number of excitations at
the ith site but rather the number of quanta in the dressed
bosonic mode alone. This simplification is made not only
to avoid confusion with the prefactors returned by dressed
operators (see Table I) but also because N1 and N2 are no
longer independently conserved quantities and therefore their
notational utility is diminished.

Drawing upon the discussion of the Jaynes-Cummings
Hamiltonian in Sec. II C, it is the subspace H−− which in-
cludes the vacuum state. Consequently, our analysis will focus
on the many-body physics within this subspace. As previously
shown for the case of dispersive coupling, the two-site JCH
Hamiltonian differs from the single-site Jaynes-Cummings
Hamiltonian in that interbranch transitions can occur due to
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nonzero off-diagonal elements of Eq. (53) contributed by the
purely photonic hopping term. To simplify discussion of these
matrix elements in the present formalism, we introduce the
notation

H̄ ≡ 〈−,−| H |−,−〉 (54)

to denote the block of HJCH which contributes to dynamics
confined within the target subspace H−−. Similarly, let

Vs1s2 ≡ 〈s1, s2| H |−,−〉 (55)

denote the set of matrix elements describing allowed tran-
sitions from H−− to its complement H+− ∪ H−+ ∪ H++.
Because HJCH is Hermitian, for every allowed transition from
H−− to Hs1s2 , there exists a transition of equal probability de-
scribing the inverse process described by the matrix elements
of V †

s1s2
.

Constraining the full Hilbert space to two or fewer exci-
tations, the projection of H onto the subspace H−− may be
expressed in the block-diagonal form

H̄ =
⎡⎣H̄n=0 0 0

0 H̄n=1 0
0 0 H̄n=2

⎤⎦, (56)

where H̄n is a square matrix of dimension 2n corresponding
to the subspace of n excitations, containing diagonal and off-
diagonal entries given by the on-site and hopping terms of
Eq. (50), respectively. Because the JCH conserves the total
number of excitations, transitions between states of different
total particle number n are not allowed, hence the block-
diagonal form of Eq. (56). Discarding the vacuum energy
H̄n=0 = 2C−

0 − h̄ωc, the single- and double-excitation blocks
of H̄ may be written in the form

H̄n=1 =
[

h̄�0 J (1)
eff

J (1)
eff h̄�0

]
,

H̄n=2 =

⎡⎢⎣2h̄�0 + Ueff 0
√

2J (2)
eff

0 2h̄�0 + Ueff

√
2J (2)

eff√
2J (2)

eff

√
2J (2)

eff 2h̄�0

⎤⎥⎦. (57)

Here, the effective on-site resonant energy and interaction
strength are �0 = ωc + C−

1 /h̄ and Ueff = C−
2 , where negative

sign superscripts have been removed from �0 and Ueff relative
to Eq. (52) for simplicity. In addition, the effective hopping
strengths are defined by

J (1)
eff = J cos2 θ (1),

J (2)
eff = J cos θ (1)[cos θ (1) cos θ (2) + sin θ (1) sin θ (2)/

√
2],

(58)

where θ (N ) is the mixing angle previously defined in Eq. (15)
and the vector space is ordered as {|10〉 , |01〉} for n = 1 and
{|20〉 , |02〉 , |11〉} for n = 2. Both J (1)

eff and J (2)
eff are propor-

tional to the bare hopping rate J , with multiplicative factors
that are positive for all λ. We emphasize again that Eq. (57)
does not fully describe the dynamics of the two-site JCH, even
for the limit n � 2, due to possible transitions to and from the
target subspace H−− described by Vs1s2 . Still, it is useful to
first examine the similarities between Eq. (57) and the Bose-
Hubbard model in isolation. Making as explicit a comparison

as possible, projecting the Bose-Hubbard Hamiltonian onto
the subspace n � 2 leads to

HBH,n=1 =
[−μ J

J −μ

]
,

HBH,n=2 =
⎡⎣−2μ + U 0

√
2J

0 −2μ + U
√

2J√
2J

√
2J −2μ

⎤⎦. (59)

Though nearly identical in form to Eq. (57), a few key differ-
ences must be highlighted. First, the one- and two-excitation
manifolds of the two-site JCH are characterized by different
tunneling strengths J (1)

eff and J (2)
eff which identically approach J

in the dispersive limit, but plateau to different values for the
resonant case (see Fig. 5(a), top panel). Second, as already
emphasized, underlying the two-site JCH is a larger range of
independently tunable parameters (ωc, �, g, J) compared to
the two-site Bose-Hubbard model which is characterized by
μ, U , and J alone. At the level of the effective parameters in
Eq. (57), however, it is important to be mindful—particularly
for the purpose of quantum simulation of Bose-Hubbard mod-
els with JCH systems—that tuning Ueff while holding Jeff

constant, for example, requires explicit understanding of how
these effective parameters depend upon the base system pa-
rameters (e.g., �, g) as demonstrated here. Likewise, changing
g while holding � constant can impact not only the effective
repulsion strength Ueff, as expected but also the effective two-
excitation tunneling strength J (2)

eff . Thus, the analytic forms for
these parameters is not of just theoretical, but also experimen-
tal interest.

To better illustrate the nontrivial relationship between the
effective parameters (Ueff and J (2)

eff ) and their base parameter
counterparts (g and J), Fig. 6(a) displays the ratio J (2)

eff /Ueff as
a function of λ and J/h̄g. In computing these values, the cavity
resonant frequency and light-matter coupling strength were
fixed at ωc/� = 103 and g/� = 1 while � and J were allowed
to vary. Notably, the limits J (2)

eff /Ueff � 1 and J (2)
eff /Ueff � 1,

relevant for realization of MI-like and SF-like phases, are
reached not just through choice of J/h̄g but also λ. Figure 5(b)
therefore serves to illustrate the complexity in navigating the
comparably larger parameter space of the JCH model for
realization of behavior analogous to the Bose-Hubbard model,
while also serving as a useful guide for achieving a particular
effective parameter regime of interest.

In isolation, Eqs. (57) and (59) define Hamiltonians closely
mirroring one another and thus describe analogous physi-
cal behavior. However, a more honest comparison must take
into account the matrix elements of Vs1s2 . In total, there are
ten unique transitions (20 including the reverse processes
described by V †

s1s2
), all of which may be divided into two

categories: linear cross-site bosonic-TLS couplings and more
complicated nonlinear interactions involving both on-site and
cross-site exchange of quanta. Symmetry of the two sites dic-
tates that each transition is accompanied by a parity reversed
pair. All 20 allowed transitions may therefore be summarized
by the outcoupling coefficients

M1 ≡ 〈0, 0|V+− |0, 1〉 = 〈0, 0|V−+ |1, 0〉 ,

M2 ≡ 〈0, 1|V+− |0, 2〉 = 〈1, 0|V−+ |2, 0〉 ,
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FIG. 5. (a) The top panel shows the one- and two-excitation
effective hopping strengths J (1)

eff and J (2)
eff while the bottom panel

displays the value of the unique linear (M1, M2, M3) and nonlinear
(K1, K2) transition amplitudes M1, M2, M3, K1, and K2. All are plotted
as a function of λ and normalized to the bare photonic hopping rate
J . Notably, the first set of parameters J (i)

eff describe the amplitude of
intrabranch transitions within the subspace H−−, while the second
set describes the amplitudes of interbranch transitions between the
subspace H−− and its complement H+− ∪ H−+ ∪ H++ via cross-
site light-matter interactions in the dressed representation. In the
dispersive limit, all interbranch transition amplitudes become small
and the effective hopping strengths tend toward J . In the opposite
regime, J (1)

eff and J (2)
eff differ by scalar prefactors and the coefficients Mi

and Ki become comparable to J , leading to appreciable dissimilarity
with the two-site Bose-Hubbard model. (b) Illustration of the two-site
JCH Hamiltonian HJCH in the dispersive (top panel) and resonant
(bottom panel) coupling regimes. For the truncated space of two or
fewer total excitations, each panel represents a 13 × 13 matrix com-
prising the four branches shown along each diagonal and denoted
by the state of each dressed TLS. Note that in place of −− is the
6 × 6 matrix H̄ , defined via the projection of the two-site JCH onto
the target subspace H−−. In general, the ten nonvanishing matrix
elements of Vs1s2 yield five unique values given by the coefficients Mi

and Ki defined in Eq. (60). In the dispersive regime, HJCH becomes
approximately block diagonal in the dressed basis as Mi/J � 1 and
Ki/J � 1 and interbranch transitions become negligible. As a result,
H̄ becomes an appropriate effective Hamiltonian and analogy to the
Bose-Hubbard model is realized. In the resonant regime, interbranch
transitions become important and, consequently, direct correspon-
dence with the Bose-Hubbard model collapses.

M3 ≡ 〈1, 0|V+− |1, 1〉 = 〈0, 1|V−+ |1, 1〉 ,

K1 ≡ 〈0, 1|V+− |2, 0〉 = 〈1, 0|V−+ |0, 2〉 ,

K2 ≡ 〈0, 0|V++ |2, 0〉 = 〈0, 0|V++ |0, 2〉 , (60)

and their Hermitian conjugates, where Mi denotes a linear
cross-site interaction (i.e., exchange of a single quantum)
and Ki labels a nonlinear transition (i.e., exchange of multi-

ple quanta). All are similar in form to the effective hopping
strength J (i)

eff – proportional to J but otherwise dependent only
on the mixing angle θ or, equivalently, λ = g/�, via products
of trigonometric functions. All are odd functions of λ aside
from K2 which is even. For explicit analytic forms of each
coefficient, see Appendix B.

As shown in the bottom panel of Fig. 5(a), the magnitude
of the coefficients Mi and Ki depend drastically on λ and, as
a result, the transition rate out of the subspace H−− differs
between the dispersive and resonant coupling regimes. In the
former case, the various outcouplings may be approximated
to lowest order as

M1 ≈ M3 ≈ λJ, M2 ≈
√

2λJ, (61)

where the nonlinear transition amplitudes K1 ≈ O(λ3) and
K2 ≈ O(λ4) are comparatively small and may therefore be
neglected. This result is in agreement with the more general
Hamiltonian of Eq. (52). As previously established, tunnel-
ing within the subspace H−− clearly dominates outcoupling
for λ � 1 and, to first approximation, Eq. (56) serves as
an appropriate effective Hamiltonian without consideration
of outcouplings. It is interesting to note, however, that the
outcouplings which contribute most meaningfully – namely,
M1, M2, and M3—all resemble single-excitation losses from
the perspective of the dressed bosons. This suggests the possi-
bility for a nonperturbative treatment via projective methods,
ultimately leading to a repackaging at the level of effec-
tive dissipation rates and energy shifts which renormalize
the matrix elements of Eq. (56) [69]. This approach would
not qualitatively alter the parallel structure with the Bose-
Hubbard model, however, so we leave the described strategy
as a possible future avenue for analyses where quantitative
agreement is desired.

In contrast with the dispersive case, resonant coupling is
characterized by nonvanishing linear and nonlinear transition
amplitudes which plateau to values of order J . In the limit
Ueff � J , these contributions are unimportant as Mi, Ki <

J for all λ and the system is therefore dominated by on-
site interactions, leading to a MI-like, two particle ground
state comprising polaritonic excitations. In the opposite limit
Ueff � J , however, Eq. (57) fails to capture the entirety of the
dynamics due to the importance of inter-branch transitions, as
illustrated in Fig. 5(c).

D. The n = 2 ground state: Quantum phases in the dispersive
and resonant coupling regimes

To better understand the turn-on of these interbranch
transitions and their impact on the quantum phase tran-
sition admitted by the two-site JCH, we numerically
compute the two-particle ground state as a function of
J/h̄g and λ taking into account both intra- and inter-
branch dynamics of Eq. (50). In general, this ground state
is a superposition of the eight possible two excitation
states {|2, 0,−,−〉, |0, 2,−,−〉, |1, 1,−,−〉, |1, 0,+,−〉,
|0, 1,+,−〉, |1, 0,−,+〉, |0, 1,−,+〉, |0, 0,+,+〉}, gaining
contributions not only from the target subspace H−− but also
its complement. Similar to Fig. 5(b), all calculations were
carried out for the fixed values ωc/� = 103 and g/� = 1,
allowing � and J to independently vary. Following Ref. [33],
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FIG. 6. (a) Ratio of the analytically derived effective two-excitation hopping rate J (2)
eff and dressed boson-boson interaction strength Ueff as

a function of λ and J/h̄g. (b) Variance of the total number of excitations at site i as a function of λ and J/h̄g. Due to symmetry there is no
distinction in the variance at site one or two. This quantity serves as a useful order parameter for finite lattice systems, with var(Ni ) vanishing
for a MI-like state but taking a finite value for a SF-like state, reaching var(Ni ) = 0.5 for an ideal n = 2 SF-like state. Clearly, panel (b) suggests
the possibility for both an insulating and superfluid phase in either the dispersive or resonant regimes independently. Comparing to panel (a),
regions of J (2)

eff /Ueff � 1 and J (2)
eff /Ueff � 1 correlate nearly perfectly with regions of vanishing and nonvanishing variance, respectively, with

J (2)
eff /Ueff ∼ 1 demarcating the boundary. (c)–(f) Overlap of the two-particle ground state |
0〉 with the idealized (c) dressed MI-, (d) photonic

MI-, (e) dressed SF- and (f) photonic SF-like states, defined in Eq. (62), as a function of λ and J/h̄g. Depending on the value of λ, the dressed
states take on a either a photonic (λ � 1) or polaritonic (λ � 1) character. Consequently, there is noticeable agreement between top and
bottom panels for λ � 1. In the dispersive regime, tuning from small to large values of J/h̄g facilitates a transition from a photonic MI-like
phase to a photonic SF-like phase. In the resonant coupling regime, tuning J/h̄g results in three distinct phases, with a polaritonic MI-like state
occuring for Jeff/h̄g � 1, a polaritonic SF-like state for Jeff/h̄g ∼ 1, and a photonic SF-like state Jeff/h̄g � 1.

we use the variance in particle number at the ith site, var(Ni ),
as an order parameter. The computed variance for the two-
particle ground state is shown in Fig. 6(b) as a function of
J/h̄g and λ.

Comparing Figs. 6(a) and 6(b), it is clear that the variance
tracks the value of J (2)

eff /Ueff, as would be expected in the
Bose-Hubbard model, with regions of vanishing variance (i.e.,
MI-like) corresponding to J (2)

eff /Ueff � 1 and regions which
plateau to var(Ni ) = 0.5 (i.e., SF-like), where J (2)

eff /Ueff � 1.
In the dispersive regime, the onset of the SF-like phase occurs
at increasingly smaller values of J/h̄g as λ is decreased. This
phenomenon is easily understood by appealing to the analytic
correspondence Ueff = C−

2 and referencing previously derived
results. In particular, in Sec. II C it was shown that C−

2 /h̄ ≈
2λ3g in the dispersive regime. Then, simultaneously maintain-
ing a constant photon-photon interaction strength (C−

2 ) while
increasing � (i.e., decreasing λ) requires a relative increase in
g, pushing the regime where photon-photon interactions dom-
inate over photonic hopping toward smaller values of J/h̄g as
the system moves further into dispersive coupling. Oppositely,
on resonance, it was found that C−

2 /h̄ = (2 − √
2)g. Then Ueff

is equivalent to g up to some scalar prefactor and the phase
transition will occur at roughly the same value of J/h̄g for all
λ � 1.

It is important to reemphasize that Ni commutes with the
unitary transformation operator U = eS1+S2 , and thus Fig. 6(b)
may equally well be interpreted as the variance in the total
number of bare or dressed photonic and atomic excitations.
Given this, it is notable that the phase boundary is qualita-
tively demarcated by the J (2)

eff /Ueff = 1 line, entirely dependent
on effective parameters appearing in the dressed basis. This
agreement therefore indicates not only that the effective
parameters J (2)

eff and Ueff analytically derived here are the
appropriate JCH model counterparts of the Bose-Hubbard
parameters J and U , but also that the dressed operator basis
provides the most appropriate representation for understand-
ing the many-body phenomena of the JCH.

Because the order parameter var(Ni ) does not distinguish
between excitations which are photonic in nature and those
which are polaritonic, Fig. 6(b) provides little insight into
the physical makeup of the excitations composing the two-
particle ground state. For instance, the black, var(Ni ) = 0
region of Fig. 6(b) clearly suggests that the system is in an
insulatinglike state, characterized by a constant number of
quanta at each site. It does not, however, provide any in-
formation about whether these excitations are fundamentally
photonic or polaritonic. To gain a deeper understanding of the
ground state, we compute its squared overlap with the four
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distinct states

|
̃MI〉 = ã†
1ã†

2 |0〉 , (62a)

|
MI〉 = a†
1a†

2 |0〉 , (62b)

|
̃SF〉 = 1

2
√

2
(̃a†

1 − ã†
2)2 |0〉 , (62c)

|
SF〉 = 1

2
√

2
(a†

1 − a†
2)2 |0〉 , (62d)

which denote MI-like (a), (b) and SF-like (c), (d) states in
both the bare and dressed excitation bases via action of the
appropriate creation operators on the vacuum state |0〉 =
|0, 0, g, g〉 = |0, 0,−,−〉. The explicit forms of these states
may be written down as follows:

|
̃MI〉 = |1, 1〉 ⊗ |−,−〉 , (63a)

|
MI〉 = |1, 1〉 ⊗ |g, g〉 , (63b)

|
̃SF〉 = 1
2 (|2, 0〉 + |0, 2〉 −

√
2 |1, 1〉) ⊗ |−,−〉 , (63c)

|
SF〉 = 1
2 (|2, 0〉 + |0, 2〉 −

√
2 |1, 1〉) ⊗ |g, g〉 , (63d)

where untilded (tilded) states are expressed in the bare
(dressed) basis. Figures 6(c) and 6(e) show the squared pro-
jection of the computed ground state onto the dressed MI-like
and SF-like states, while Figs. 6(d) and 6(f) show the corre-
sponding projections onto their bare photonic counterparts.
Focusing first on the dispersive regime (i.e., roughly the
bottom third of each plot), comparison of the upper and
lower panels agrees with theoretical intuition—for λ � 1, the
dressed basis is a merely perturbed version of the bare basis
due to the weak light-matter mode mixing and, as a result,
there is little distinction between the bare and dressed photons.
Using Fig. 6(a) as a visual guide, regions where Jeff/Ueff � 1
correspond to near unity overlap with the photonic MI-like
state |
MI〉 while regions of Jeff/Ueff � 1 perfectly conform to
the photonic SF-like state |
SF〉. The phase boundary occurs
roughly at Jeff/Ueff ≈ 1, further establishing the utility of the
analytic mapping between basic system parameters and the
effective Bose-Hubbard like parameters presented here. Thus,
the quantum phase transition as J/h̄g is tuned for constant
λ � 1 behaves exactly as predicted in Sec. III C.

In the resonant coupling regime (roughly the top third of
each plot), the physical character of bare and dressed excita-
tions fundamentally differ as θ ≈ π/4 and the operators ã†

i
and ãi therefore describe creation and annihilation of polari-
tons. This divergence in physical character between dressed
and bare excitations is evident in Figs. 6(c)–6(f) as top and
bottom panels bear little resemblance for λ � 1. Interestingly,
the ground-state overlap with the dressed MI-, dressed SF-,
and photonic SF-like states all display regions of near unity as
J/h̄g is tuned, indicating a much more complicated phase tran-
sition in comparison to the dispersive case. Referring again
to Fig. 6(a), regions where the polariton-polariton repulsion
strength Ueff dominates the effective tunneling strength J (2)

eff

coincide with a polaritonic MI-like ground state |
̃MI〉, as
expected. In the far-opposite regime, where the effective tun-
neling dominates, it is evident that the dressed MI-like and
SF-like states fail to accurately capture the character of the
ground state. Instead, it is the photonic SF-like state |
SF〉

which characterizes the ground state in the regime J/h̄g �
1, λ � 1. To understand this phenomenon, it is helpful to
consider the original, untransformed form of the JCH Hamil-
tonian in Eq. (48) where the cross-site tunneling appears in
terms of purely photonic operators. For J � h̄g, the on-site
light-matter interactions contribute only perturbatively and
may be neglected at first approximation. In this limit, then,
the dressed operators no longer describe the fundamental ex-
citations of the system and purely photonic character underlies
the resulting SF-like ground state.

Remarkably, Fig. 6(e) indicates that a third phase, consis-
tent with a polaritonic superfluid, appears between the regions
coinciding with a polaritonic Mott-insulator and photonic su-
perfluid for λ � 1. The existence of such a phase in the JCH
model has been both theoretically [46] and experimentally
[53] examined in literature, and may be explained as fol-
lows: As the ratio between the photonic hopping strength and
light-matter coupling rate is tuned from its far limit J/h̄g � 1
(leading to localized polaritonic excitations) to its counter-
part J/h̄g � 1 (resulting in delocalized photonic excitations),
the system passes through an intermediate region J/h̄g ∼ 1
where J is large enough such that the cross-site cavity-TLS
couplings M2 and M3 become appreciable, yet not so large
that the photonic hopping completely dominates light-matter
interactions and the atomic degrees of freedom are eliminated.
The result is a two-particle ground state which assumes a
near-unity overlap with the polaritonic SF-like state, reach-
ing | 〈
̃SF|
0〉 |2 ≈ 0.95 at its peak. It is interesting to note
that in this parameter regime, the dynamics are not entirely
restrained to the subspace H−− as was the case for dispersive
coupling. Yet, the ground state is well-characterized by |
̃SF〉
which is composed of the three individual states |2, 0,−,−〉,
|0, 2,−,−〉, and |1, 1,−,−〉, which collectively span the
two-excitation manifold of H−−. Inspection of the excited
states illustrates that this is not the case, in general, indicating
that quantum interference between the interbranch transitions
likely plays an important role in the system dynamics near the
ground-state energy.

We conclude our analysis by making a few remarks on
additional phenomena of the JCH model not explored here.
The preceding calculations are restricted to the case � > 0
which, as discussed in Sec. II C, corresponds to repulsive
on-site boson-boson interactions. Not included in the present
analysis is the � < 0 limit of the two-site JCH, where at-
tractive on-site boson-boson interactions are realized and,
consequently, multiple photon (or polariton) bound states may
be formed. We defer discussion of these effects to existing
literature on this subject (see, for example, Refs. [91,92] and
[92] for theoretical analyses pertaining to JCH systems and
Refs. [93,94] for related studies in atomic Rydberg platforms),
and leave an in-depth analysis through the lens of the bosonic
many-body form of the JCH model presented here as an
interesting potential future avenue. Separately, dispersive cou-
pling offers additional possibilities not explicitly discussed
here, such as the realization of XY spin models by either (i)
mapping polariton operators onto psuedospin operators in the
Mott regime [33,39] or, alternatively, (ii) explicit separation
of photonic and atomic degrees of freedom and realization
of photon-mediated spin-spin-like interactions between the
weakly dressed atoms [95,96]. Here, the former approach
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is equivalent to consideration of Eq. (52) in the hardcore
limit U ±

eff → ∞, while the latter involves inclusion of terms
proportional to σ̃+

1 σ̃−
2 + σ̃−

1 σ̃+
2 which appear at second or-

der in λ in Eq. (52) and play a particularly important role
in the low energy dynamics of the atomic dispersive limit
(|λ| � 1 with � < 0). Finally, we remark that the analysis
presented here involves specialization to a single branch of
the Jaynes-Cummings eigenspectrum, and its extension to
two sites, to facilitate comparison with the Bose-Hubbard
model. As seen throughout this paper, this analogy is im-
perfect in part due to the additional psuedospin degrees of
freedom absent in the Bose-Hubbard model. Extension of
our methods to incorporate the full Hilbert space (i.e., all
possible dressed-emitter states) presents a future avenue for
potential realization of related quantum many-body mod-
els, such as the two-component Bose-Hubbard Hamiltonian
[39,97–101] and those describing Bose-Bose mixtures [102].
Thus, the results presented here not only provide a direct
route for comparison between the two-site JCH and Bose-
Hubbard models but also demonstrate a more general utility
as a potential aid for theoretical discovery and experimen-
tal realization of other quantum Hamiltonians of interest for
analog quantum simulation using cavity and circuit QED
platforms.

IV. CONCLUSION

Systems of interacting photons are among the most promis-
ing experimental platforms for studying quantum many-body
phenomena. As photons do not naturally interact with each
other, however, a nonlinear element, such as an atom, quan-
tum dot, or superconducting qubit, is required to mediate
effective photon-photon interactions. Here, we have presented
a comprehensive theoretical study of the effective many-
body interactions underlying the Jaynes-Cummings model,
the prototypical description of light-matter coupling in cavity
and circuit QED systems. This was achieved through tech-
niques of unitary transformation, ultimately resulting in a
reexpression of the Jaynes-Cummings Hamiltonian in terms
of dressed bosonic and pseudospin operators. Upon nonper-
turbative expansion of its diagonal form, we have shown that
the resulting dressed operator representation of the Jaynes-
Cummings Hamiltonian includes an infinite sum of bosonic
k-body interactions partitioned into two distinct branches. We
have demonstrated that this many-body representation facil-
itates a close inspection of the parameter-dependent analogy
between the Jaynes-Cummings Hamiltonian and the on-site
portion of the Bose-Hubbard model. While prior studies have
qualitatively compared the two—even going so far as to de-
fine an effective Hubbard-like interaction strength Ueff for
the Jaynes-Cummings Hamiltonian [35,36,39]—our approach
is unique in that the resulting many-body form is exact for
both resonant and dispersive regimes for an arbitrary number
of excitations. Furthermore, our results provide an insightful
interpretation of the breakdown in this analogy for resonant
coupling, occurring due to the emergent role of higher ef-
fective k-body interactions which suppress the influence of
the two-body terms. These findings thus not only serve as a
unique lens for comparison with the on-site interactions of the
Bose-Hubbard model but also provide a theoretical avenue for

explicit study of large effective k-body interactions facilitated
by the Jaynes-Cummings interaction for potential realization
of exotic quantum behavior not realizable in conventional
quantum systems [103,104].

In addition, we have extended our analysis to the two-site
JCH model and have demonstrated that, in the dispersive
coupling regime, unitary transformation to the dressed op-
erator representation allows for a near exact realization of
the two-site Bose-Hubbard model, complete with explicit,
analytic forms for all effective parameters. To better under-
stand the resonant coupling case, we then restricted to a
total of two excitations or fewer, derived an explicit form
for the dressed state representation of the two-site JCH,
and identified the block of matrix elements which map
to Bose-Hubbard-like dynamics, deriving effective two ex-
citation hopping (J (2)

eff ) and effective two-body interaction
(Ueff) strengths in the process. Drawing upon this theoretical
foundation, we have illustrated that, for resonant coupling,
the turn-on of interbranch transitions induced by cross-site
dressed light-matter couplings is ultimately the downfall of
analogy with the two-site Bose-Hubbard model. We then
concluded with an analysis of the quantum phases of the
two-site JCH model for n = 2 excitations, illustrating the
possibility for either a photonic (dispersive coupling) or po-
laritonic (resonant coupling) MI-like state for J (2)

eff /Ueff � 1,
while J (2)

eff /Ueff � 1 uniformly leads to a photonic SF-like
state. Finally, we identified the possibility for a third quantum
phase near J (2)

eff /Ueff ∼ 1 for resonant coupling, correspond-
ing to a polaritonic SF-like state. While these four unique
quantum phases have been identified in the literature previ-
ously [36–38,46], the dressed operator picture developed here
provides an explicit analytic mapping between the parame-
ters of the JCH model and those of the effective many-body
representation through which its quantum phases are easily
understood, resulting in a clear, all-encompassing exposition
of the various parameter regimes and their association with
the quantum phases of the JCH model. The present paper thus
demonstrates the general utility of the dressed many-body
description of the Jaynes-Cummings model and its extensions
to a lattice, opening avenues for further exploration of quan-
tum many-body phenomena realizable in coupled light-matter
systems.
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APPENDIX A: DERIVATION OF THE MANY-BODY
COEFFICIENTS C±

k

The purpose of this Appendix is to expand upon the steps
taken in arriving at Eqs. (26) and (27). As mentioned in the
main text, a crucial step involves Taylor expanding f (n) not
about small λ as is typical for studies in the dispersive regime
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[58,60], but about n = n0 where n0 is an undetermined con-
stant chosen to be sufficiently large such that the convergence
condition n0 > (n − 1/4λ2)/2 is satisfied. Carrying out this
expansion leads to

f (n) =
∞∑

r=0

( 1
2

r

)
(2λ)2r f (n0)1−2r (n − n0)r

=
∞∑

r=0

r∑
m=0

( 1
2

r

)(
r

m

)
(2λ)2r f (n0)1−2r (−n0)r−mnm,

(A1)

where the binomial theorem was used in going from the
first to second line. Reexpressing in terms of operators using
Eq. (24),

f (N )σ̃ z =
∞∑

r=0

r∑
m=0

( 1
2

r

)(
r

m

)
(2λ)2r f (n0)1−2r (−n0)r−m

× [(̃a ã†)k σ̃+σ̃− + (̃a†ã)mσ̃−σ̃+], (A2)

where the commutator [̃a, ã†] = 1 has been used in rewriting
the projected number operator Nσ+σ− = ã†̃a + 1 as ã ã†. The
above relation can be further rewritten using the identity [105]

(̃a†ã)m =
m∑

k=0

{
m

k

}
(̃a†)k (̃a)k, (A3)

where the coefficients {m
k } are Stirling numbers of the second

kind, related to the binomial coefficients via{
m

k

}
= 1

k!

k∑
p=0

(
k

p

)
(−1)p−k pm (A4)

Similarly, through combination of Eq. (A3) and the binomial
theorem, the following identity may be derived:

(̃a ã†)m =
m∑

k=0

{
m + 1

k + 1

}
(̃a†)k (̃a)k . (A5)

Then Eq. (A2), using the above identities, may be written in
the form given by Eq. (25), restated here for clarity:

f (N )σ̃ z =
∑
r=0

r∑
m=0

( 1
2

r

)(
r

m

)
(2λ)2r f (n0)1−2r (−n0)r−m

×
m∑

k=0

(̃a†)k (̃a)k

[{
m + 1

k + 1

}
σ̃+σ̃− −

{
m

k

}
σ̃−σ̃+

]
.

(A6)

As currently written, the above expression is nearly in the
desired form, containing terms proportional to the normally
ordered product (̃a†)k (̃a)k describing effective k-body bosonic
interactions. To write a Hamiltonian as a sum over these
interactions, the three nested sums of Eq. (A6) must be re-
ordered such that all k-body terms can be factored. Noting
that the indices obey 0 � k � m � r � ∞, the ordering of the
nested sums may be reversed by rewriting the upper and lower

bounds, leading to Eq. (26) of the main text:

H = h̄ωc

(
N − 1

2

)
+

∞∑
k=0

1

k!
[C+

k σ̃+σ̃− + C−
k σ̃−σ̃+](̃a†)k (̃a)k,

(A7)
where

C−
k

k!
= − h̄

2
�

∞∑
m=k

{
m

k

}
(−n0)−m f (n0)

∞∑
r=m

( 1
2

r

)(
r

m

)
βr,

C+
k

k!
= h̄

2
�

∞∑
m=k

{
m + 1

k + 1

}
(−n0)−m f (n0)

∞∑
r=m

( 1
2

r

)(
r

m

)
βr,

(A8)

and β = −4λ2n0/ f (n0)2. The above expressions may be sim-
plified through explicit evaluation of the sum over m using
properties of the generalized binomial coefficients. In particu-
lar, it can be shown that

∞∑
r=m

( 1
2

r

)(
r
m

)
βr =

( 1
2

r

)
βm(1 + β )

1
2 −m

=
( 1

2

r

)
(4λ2)m(−n0)m/ f (n0). (A9)

Focusing on C−
k , evaluating the sum over m gives

C−
k

k!
= − h̄

2
�

∞∑
m=k

{
m

k

}( 1
2

m

)
(4λ2)m

= − h̄

2k!
�

k∑
p=0

(
k

p

)
(−1)p−k

∞∑
m=0

( 1
2

m

)
(4λ2 p)m,

(A10)

where the identity in Eq. (A4) has been applied and the two
sums reordered. Evaluating the rightmost sum (and ignoring
issues of convergence as the double sum, taken together, must
be convergent) yields the desired result

C−
k = − h̄

2
�

k∑
p=0

(
k
p

)
(−1)p+k

√
1 + 4λ2 p, (A11)

which is identical to the form of C−
k Eq. (27). The derivation

of C+
k follows in an analogous fashion and is therefore not

made explicit here.
Finally, we verify the form of C−

k through explicit action
of the sum over all k-body terms on the a generic basis state
|n,−〉. The methods here may again be trivially extended to
verify C+

k through action on the positive branch |n,+〉. Using
the properties of bosonic creation and annihilation operators,

HMB|n,−〉 =
∞∑

k=0

1

k!
C−

k (̃a†)k (̃a)k|n,−〉

=
n∑

k=0

(
n
k

)
C−

k |n,−〉. (A12)

Substituting the definition for C−
k and reordering the two

resulting sums, again taking care to change the bounds as
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needed, yields

HMB|n,−〉 = − h̄

2
�

n∑
p=0

(−1)p
√

1 + 4λ2 p

×
n∑

k=p

(
n
k

)(
k
p

)
(−1)k|n,−〉. (A13)

Applying the identity

n∑
k=p

(
n
k

)(
k
p

)
(−1)k = (−1)nδnp, (A14)

the above relation becomes

HMB|n,−〉 = − h̄

2
�

√
1 + 4λ2n|n,−〉, (A15)

thus verifying that the form of the Jaynes-Cummings Hamil-
tonian given in Eq. (26) returns the known eigenvalues for the
negative branch states |n,−〉.

APPENDIX B: EXPLICIT FORMS FOR Mi

AND Ki, AND BLOCK-MATRIX FORM OF HJCH

The following lists the explicit analytic forms for the co-
efficients Mi and Ki, each of which describes the amplitude
of an allowed transition from the Hilbert space H−− to its
complement as well as its inverse process:

M1 = J cos θ (1) sin θ (1),

M2 = J sin θ (1)[
√

2 cos θ (1) cos θ (2) + sin θ (1) sin θ (2)],

M3 = J cos θ (1)[
√

2 cos θ (1) sin θ (2) − sin θ (1) cos θ (2)],

K1 = J cos θ (1)[
√

2 sin θ (1) cos θ (2) − cos θ (1) sin θ (2)],

K2 = J sin θ (1)[
√

2 sin θ (1) cos θ (2) − cos θ (1) sin θ (2)],

(B1)

where θ (n) = (1/2) tan−1(2λ
√

n) In the limit n � 2, the two-
site JCH Hamiltonian may be written in block-matrix form as

HJCH =

⎡⎢⎢⎣
H̄ V †

+,− V †
−,+ V †

+,+
V+,−
V−,+ T
V+,+

⎤⎥⎥⎦, (B2)

where

H̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Egnd 0 0 0 0 0
0 h̄�0 + Egnd J (1)

eff 0 0 0

0 J (1)
eff h̄�0 + Egnd 0 0 0

0 0 0 2h̄�0 + Ueff + Egnd 0
√

2J (2)
eff

0 0 0 0 2h̄�0 + Ueff + Egnd

√
2J (2)

eff

0 0 0
√

2J (2)
eff

√
2J (2)

eff 2h̄�0 + Egnd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B3)

defines the block within H−− and Egnd = −h̄ωc + 2C−
0 . Separately, the lower-right block T is the 7 × 7 matrix describing

possible transitions within its complement H+− ∪ H−+ ∪ H++. The transitions between these two subspaces are defined by

V+,− =
⎡⎣0 0 M1 0 0 0

0 0 0 0 0 M3

0 0 0 K1 M2 0

⎤⎦, (B4)

V−,+ =
⎡⎣0 M1 0 0 0 0

0 0 0 M2 K1 0
0 0 0 0 0 M3

⎤⎦, (B5)

and

V−,+ = [0 0 0 K2 K2 0] (B6)

define all possible transitions between H−− and its complement. As we have specialized to n � 2, the upper-left block of
Eq. (B2) contains six basis states, ordered as |−,−〉 ⊗ {|0, 0〉 , |1, 0〉 , |0, 1〉 , |2, 0〉 , |0, 2〉 , |1, 1〉}. Likewise, the subspaces
H+,− and H−,+ are spanned by three states each, ordered as |+,−〉 ⊗ {|0, 0〉 , |1, 0〉 , |0, 1〉} and |−,+〉 ⊗ {|0, 0〉 , |1, 0〉 , |0, 1〉},
respectively. The subspace H+,+ contains just the state |+,+〉 ⊗ |0, 0〉.

While not important to our analysis in the main text, for reference, the explicit form of T is

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T11 0 0 T14 0 0 0
0 T22 T23 0 T25 0 T27

0 T32 T33 0 0 T36 0
T41 0 0 T44 0 0 0
0 T52 0 0 T55 T56 0
0 0 T63 0 T65 T66 T67

0 T72 0 0 0 T76 T77

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (B7)
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with diagonal entries defined as

T11 = T44 = C+
0 + C−

0 = −C−
1 , T22 = T66 = h̄ωc + C+

1 + C+
0 + C−

1 = h̄ωc + C+
1 − C−

1 ,

T33 = T55 = h̄ωc + C−
1 + C+

0 + C−
0 = h̄ωc, T77 = h̄ωc + 2C+

0 , (B8)

where we have simplified on the right-hand side where possible using the explicit forms for C±
k in Eq. (31). Likewise, the nonzero

off-diagonal matrix elements are given by

T14 = T41 = J sin2 θ (1),

T23 = T32 = T56 = T65 = J cos θ (1)[cos θ (1) cos θ (2) +
√

2 sin θ (1) sin θ (2)],

T25 = T52 = T36 = T63 = J sin θ (1)[
√

2 cos θ (1) sin θ (2) − cos θ (1) sin θ (2)],

T27 = T67 = J sin θ (1)[cos θ (1) cos θ (2) +
√

2 sin θ (1) sin θ (2)]. (B9)

[1] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[2] E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler,
C. Chin, B. DeMarco, S. E. Economou, M. A. Eriksson,
Kai-Mei C. Fu et al., Quantum simulators: Architectures and
opportunities, PRX Quantum 2, 017003 (2021).

[3] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[4] S. Lloyd, Universal quantum simulators, Science 273, 1073
(1996).

[5] D. S. Abrams and S. Lloyd, Simulation of Many-Body Fermi
Systems on a Universal Quantum Computer, Phys. Rev. Lett.
79, 2586 (1997).

[6] D. S. Abrams and S. Lloyd, Quantum Algorithm Provid-
ing Exponential Speed Increase for Finding Eigenvalues and
Eigenvectors, Phys. Rev. Lett. 83, 5162 (1999).

[7] P. Hauke, F. M. Cucchietti, L. Tagliacozzo, I. Deutsch, and
M. Lewenstein, Can one trust quantum simulators? Rep. Prog.
Phys. 75, 082401 (2012).

[8] J. I. Cirac and P. Zoller, Goals and opportunities in quantum
simulation, Nat. Phys. 8, 264 (2012).

[9] J. R. McClean, Z. Jiang, N. C. Rubin, R. Babbush, and H.
Neven, Decoding quantum errors with subspace expansions,
Nat. Commun. 11, 636 (2020).

[10] E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads to-
wards fault-tolerant universal quantum computation, Nature
(London) 549, 172 (2017).

[11] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi,
P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos et
al., Self-verifying variational quantum simulation of lattice
models, Nature (London) 569, 355 (2019).

[12] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation,
Rev. Mod. Phys. 86, 153 (2014).

[13] I. Buluta and F. Nori, Quantum simulators, Science 326, 108
(2009).

[14] D. Jaksch and P. Zoller, The cold atom Hubbard toolbox, Ann.
Phys. (NY) 315, 52 (2005).

[15] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen,
and U. Sen, Ultracold atomic gases in optical lattices: Mim-
icking condensed matter physics and beyond, Adv. Phys. 56,
243 (2007).

[16] I. Bloch, J. Dalibard, and S. Nascimbene, Quantum simula-
tions with ultracold quantum gases, Nat. Phys. 8, 267 (2012).

[17] R. Blatt and C. F. Roos, Quantum simulations with trapped
ions, Nat. Phys. 8, 277 (2012).

[18] C. Schneider, D. Porras, and T. Schaetz, Experimental quan-
tum simulations of many-body physics with trapped ions, Rep.
Prog. Phys. 75, 024401 (2012).

[19] A. Aspuru-Guzik and P. Walther, Photonic quantum simula-
tors, Nat. Phys. 8, 285 (2012).

[20] A. A. Houck, H. E. Türeci, and J. Koch, On-chip quantum
simulation with superconducting circuits, Nat. Phys. 8, 292
(2012).

[21] L. Lamata, A. Parra-Rodriguez, M. Sanz, and E. Solano,
Digital-analog quantum simulations with superconducting cir-
cuits, Adv. Phys.: X 3, 1457981 (2018).

[22] J. Braumüller, M. Marthaler, A. Schneider, A. Stehli, H.
Rotzinger, M. Weides, and A. V. Ustinov, Analog quantum
simulation of the Rabi model in the ultra-strong coupling
regime, Nat. Commun. 8, 779 (2017).

[23] T. Hensgens, T. Fujita, L. Janssen, X. Li, C. Van Diepen, C.
Reichl, W. Wegscheider, S. D. Sarma, and L. M. Vandersypen,
Quantum simulation of a Fermi–Hubbard model using a semi-
conductor quantum dot array, Nature (London) 548, 70 (2017).

[24] D. Lv, S. An, Z. Liu, J.-N. Zhang, J. S. Pedernales, L. Lamata,
E. Solano, and K. Kim, Quantum Simulation of the Quantum
Rabi Model in a Trapped Ion, Phys. Rev. X 8, 021027 (2018).

[25] J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller, and
J. I. Cirac, Analogue quantum chemistry simulation, Nature
(London) 574, 215 (2019).
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