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We show that it is possible to obtain perfect higher-order squeezing via strong nonlinearities in the microwave-
modified electromagnetically induced transparency (EIT). In a typical � three-level system coupled to a control
field and a microwave field, the strong nonlinearity is existent under the full-resonant conditions and can
be effectively controlled by the relative intensity of the optical and microwave fields. Via dressed-state and
Bogoliubov mode transformation, we explore that the internal nonlinearity is closely related to the squeezing
parameter and dissipative rate for two cavity modes. As a result, it is found that the two-mode higher-order
squeezing is nearly close to 100% under ideal conditions, which is verified by our numerical and analytical
results. In addition, we reveal that the higher-order squeezing in the present scheme is robust against the
dephasing rate between two lower levels. This may find potential applications in high-precision measurement
and provide a convenient way for experimental implementation.
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I. INTRODUCTION

Squeezing is one of the most important issues in the field
of quantum optics, quantum information, and nonlinear op-
tics since its wide applications in precision measurements
[1–6]. Generally, squeezing is defined with respect to Heisen-
berg’s uncertainty relation. For a pair of quadrature operators,
the squeezing occurs when the quantum fluctuations in one
quadrature are reduced well below the standard quantum limit,
while the other conjugate component increases correspond-
ingly. The theoretical investigation of a squeezed field can be
dated back to the 1970s [7] and the experimental observation
of the squeezed state was first reported in a Na atomic sys-
tem based on the nondegenerate four-wave mixing [8]. Since
then continuous interest has been paid to study the gener-
ation and manipulation of quantum squeezing. The typical
schemes include optical parametric processes [9–11], degen-
erate and nondegenerate four-wave mixing [12–15], stimu-
lated Raman processes [16], and second harmonic generation
processes [17].

Successively, the concept of higher-order squeezing was
first introduced by Hong and Mandel in 1985 [18]. Hillery
proposed another type of higher-order amplitude-squared
squeezing of the light field [19,20]. To our knowledge, there
exist different types of high-order squeezing and correlations
if and only if the uncertainty relation is satisfied. Naturally, the
idea of higher-order squeezing can be generalized to a two-
mode case in various nonlinear optical systems. For example,
Hillery defined one type of two-mode sum squeezing based
on a pair of quadrature operators [21]. The sum squeezing is
usually generated for two uncorrelated modes if one mode is
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squeezed while the other one is in a coherent state; otherwise,
it is absent if both modes are squeezed. Ansari et al. studied
the effect of atomic coherence on higher-order squeezing in a
two-photon three-level cascade atomic system [22]. In recent
years, the theoretical [23–30] and experimental investigation
[31–35] of higher-order nonclassicality has attracted extensive
attention since it plays a significant role in the high-precision
measurement and the detection of gravitational waves. With
the so-called Sen-Mandal approach, the dynamical behaviors
of higher-order squeezing and higher-order entanglement are
discussed in detail in a codirectional nonlinear optical coupler
[26], the Bose-Einstein condensates [27], the Raman process
[28], four-wave mixing process [29,30] and other systems.
Notably, these schemes are mainly focused on the transient
higher-order quantum correlations, in which the squeezing
and entanglement would disappear gradually in a long enough
period due to the saturation effects or environmental noise.

On the other hand, various novel phenomena in electro-
magnetically induced transparency (EIT) are studied widely
based on quantum interference [36–39]. When the light fields
are tuned to be subtle away from dark-state resonance, the
probe field would experience giant Kerr nonlinearity [40,41],
which is the foundation for the high-frequency quantum fluc-
tuations [42–44], quantum memory [39,45–47], and intensity
correlation and anticorrelation [48]. Of great interest, the EIT-
based systems are reported to be good candidates for the
generation of quantum squeezing and entanglement [49–55].
It is demonstrated that quantum entanglement is acquired via
the EIT-based nonlinearity [50,51]. A proof-of-principle way
is proposed by Yang et al. to generate bipartite and multi-
partite entanglement via spin coherence in EIT [53,54]. More
recently, Chuang et al. revealed that the coherent population
trapping (CPT) nonlinearity can be greatly enhanced by the
optical density to directly prepare squeezed light without any
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optical cavity [55]. In brief, the nonlinearities in EIT and
CPT have great effects on the generation or manipulation of
quantum correlations.

Specifically, it was explored that the higher-order single-
mode squeezing can be generated in the EIT-based system
[56]. By adiabatically eliminating the atomic variables, the
exact nonlinear parametric interaction processes are approx-
imately extracted, which can be used to interpret the origin
of single-mode higher-order squeezing. However, it is worth-
while to note that there are two main imperfections in the
scheme. First, the degree of squeezing, as the order of
single-mode squeezed operator increases, is significantly re-
duced. Second, the steady state higher-order squeezing is hard
to realize because the zero frequency squeezing is always
absent. To overcome these difficulties, Hu et al. utilized
atomic reservoir effects, which were first put forward in
Pielawa’s pioneering work [57], to prepare stable squeezing
and entanglement [58–61]. In their work, by applying a pair
of strong fields to drive the �-type system, the steady-state
two-mode squeezing and entanglement were established via
two-channel dissipation processes [60,61], in which the best
squeezing was enhanced from 50% to nearly 100%. Never-
theless, in these schemes, the good squeezing only existed
in a narrow frequency region, and the nonlinear effects were
very sensitive to the asymmetrical detunings. This brings forth
a challenge in experimental operations. In addition, the EIT-
based nonlinearities in realistic systems usually become worse
as the dephasing rate between the lower levels deteriorates
the atomic coherence, resulting in the reduction of quantum
squeezing.

In this paper, we show that the ideal higher-order squeezing
is possible to obtain in a �-type three-level system driven by
a strong control field and a microwave field. Being different
from previous schemes [57–61], the strong nonlinearity oc-
curs on the exact resonant conditions and can be conveniently
controlled by the relative intensity of the applied fields. This
may provide a feasible way to control the degree of squeezing
in an experiment. Physically, based on the Bogoliubov mode
transformation and adiabatic elimination of atomic variables,
we explore that two dissipation channels are formed in the
dressed-state picture to generate squeezing. In the reservoir
engineering mechanisms, the squeezing parameter, in princi-
ple, as the dissipative rate, is closely related to the nonlinear
effects in the microwave-modified EIT system. Accordingly,
the good squeezing is achieved when the nonlinearity takes a
reasonable value. Our analytical and numerical results demon-
strate that the stable higher-order squeezing is close to 100%
when the relative intensity of the driven fields is near unity.
In addition, we show that the perfect higher-order squeezing
for the output fields is also possible to obtain. The per-
fect higher-order squeezing may find potential applications
in high-precision measurement and long-distance quantum
communications.

The remaining part of the present paper is organized as fol-
lows. In Sec. II, we describe the system model that consists of
a �-type system, a strong coupling field, a strong microwave
field, and a weak probe field, and then derive the master equa-
tions. The strong nonlinearity in microwave-modified EIT is
also analyzed. In Sec. III we present the physical mechanisms
and discuss the analytical and numerical results of the two-

FIG. 1. The level scheme of three-level �-type atomic ensem-
ble. The ensemble is driven by a strong control field and a strong
microwave field with Rabi frequency �c and �m, and probed by
a weak probe field with Rabi frequency �p. The detunings of the
atomic frequencies from the corresponding field frequencies are
�p = ω31 − ωp, �c = ω32 − ωc, and �m = ω21 − ωm. The three-
wave mixing ωp = ωc + ωm is satisfied, and then �p = �c + �m.

mode higher-order squeezing for intracavity fields and output
fields. Finally, the conclusion is given in Sec. IV.

II. MODEL AND EQUATIONS

Here we consider an atomic ensemble of three-level �-type
atomic system with two metastable states |1〉, |2〉 and one
excited state |3〉. As sketched in Fig. 1, a classical coupled
field drives the electric-dipole transition |3〉 ↔ |2〉 and a weak
probe field probes the electric-dipole transition |3〉 ↔ |1〉. A
microwave field is applied to drive the electric-dipole forbid-
den atomic transition |2〉 ↔ |1〉 as those in Refs. [62–70].
In the rotating-wave approximation, the Hamiltonian of the
system is given as (h̄ = 1) [1,2]

H0 = ω21σ22 + ω31σ33 + [�pσ31e−i(ωpt−kpz)

+�cσ32e−i(ωct−kcz) + �mσ21e−i(ωmt−kmz) + H.c.], (1)

where σlm = ∑N
μ=1 |lμ〉〈mμ|(l, m = 1, 2, 3) are the projection

operators of N independent atoms for l = m and the flip
operators for l �= m, and ω j1( j = 2, 3) are atomic transition
frequencies. �p, �c, and �m are Rabi frequencies of the probe
field, the coupling field, and the microwave field, assumed to
be real with frequencies ωp, ωc, and ωm, respectively. kp, kc,
and km are the wave numbers of the corresponding fields. For
simplicity, the initial phases of the three fields are assumed
to be zero. By making a rotating-wave transformation, we
rewrite the system Hamiltonian as

Ha = �mσ22 + �pσ33 + [
�cσ32 + �pσ31

+�mσ
i(�ωt−�kz)
21 + H.c.

]
, (2)

where �m = ω21 − ωm, �p = ω31 − ωp, and �c = ω32 − ωc

are the detunings of the atomic frequencies from the corre-
sponding field frequencies. We consider the case in which the
three-wave mixing and phase-matching conditions are satis-
fied, �ω = ωp − ωc − ωm = 0, �k = kp − kc − km = 0, and
�m = �p − �c. The master equation for the density operator
ρ of the atom-field system is given by

ρ̇ = −i[Ha, ρ] + Laρ (3)
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with

Laρ =
2∑

j=1

γ jLσ j3ρ + γp

2
Lσpρ, (4)

herein the first term on the right of Eq. (4) describes
the atomic relaxations with rates γ j from the level |3〉
to | j〉 ( j = 1, 2), and the second term represents the
phase damping between two lower levels with the de-
phasing rate γp, and Loρ = 1

2 (2oρo† − o†oρ − ρo†o), o =
σ13, σ23, σp = σ22 − σ11. Then the elements of the density-
matrix equations are derived as follows:

ρ̇31 = −	31ρ31 + i�p(ρ33 − ρ11) − i�cρ21 + i�mρ32,

ρ̇32 = −	32ρ32 + i�c(ρ33 − ρ22) − i�pρ12 + i�mρ31,

ρ̇21 = −	21ρ21 + i�m(ρ22 − ρ11) − i�cρ31 + i�pρ23, (5)

ρ̇33 = −(γ1 + γ2)ρ33 + i�p(ρ31 − ρ13) + i�c(ρ32 − ρ23),

ρ̇22 = γ2ρ33 + i�m(ρ21 − ρ12) + i�c(ρ23 − ρ32),

where 	31 = 1
4 [2(γ1 + γ2) + γp] + i�p, 	32 = 1

4 [2(γ1 +
γ2) + γp] + i�c, and 	21 = γp + i�m. Diagonal elements
(ρ22, ρ33) represent level populations and off-diagonal
elements (ρ31, ρ32, ρ21) represent coherent terms.

As is well known, the response of the atoms to the probe
field is described by the susceptibility [1,2]

χ = −μ13ρ31

ε0Ep
(6)

with the free space permittivity ε0 and the electric dipole
moment μ13. Ep is the electric field intensity of the probe field
and satisfies �p = μ13Ep/h̄. The real and imaginary parts of
the susceptibility describe the dispersion and the absorption of
the atoms, respectively. The ratio of the dispersion to absorp-
tion is introduced as the nonlinear parameter [51,59]

η = Reχ

Imχ
. (7)

The absolute value |η| of the nonlinear parameter determines
the strength of the nonlinearity. The larger the value of |η| is,
the stronger the nonlinearity will be.

In Fig. 2(a), assuming that the microwave field �m is absent
and setting �c = 0, �p = �, we plot the absorption Imχ and
dispersion Reχ in units of |μ13|2/ε0 versus the probe field
detuning � in units of γ for two cases: γp = 0 (dashed line)
and γp = 0.01γ (solid line), in which we define γ1,2 = γ .
The other parameters are chosen as �p = 0.1γ , �c = 5γ .
The nonlinear parameter η is also plotted as a function of
� in units of γ in Fig. 2(c). It is obvious that the typical
EIT phenomenon is generated for γp = 0 since the value of
Imχ and Reχ are exactly equal to zero (Imχ = Reχ = 0) at
� = 0. However, when the dephasing rate γp �= 0, as shown in
the insert figure of Fig. 2(a), the exact EIT effect is spoiled due
to Imχ ≈ 4 × 10−4 �= 0. Interestingly, despite the deviation
from the zero absorption is subtle, the influence of dephasing
rate γp on the nonlinearity η is remarkable. From Fig. 2(c),
for γp = 0, we find that the strong nonlinearity is increased to
infinity (|η| → ∞) when the probe detuning is close to zero
but it is absent at the exact resonance � = 0. Nevertheless,
when γp = 0.01γ , the nonlinearity first increases to a maxi-
mum value 24.7 at � = ±0.49γ and then decreases to zero at

FIG. 2. The absorption Imχ , the dispersion Reχ of the sus-
ceptibility in units of |μ13|2/ε0 and the nonlinear parameter η =
Reχ/Imχ versus the detuning �. (a), (c) �m = 0. (b), (d) �m = 5γ .
The dashed blue lines denote no dephasing rate. The solid red lines
represent the dephasing rate with γp = 0.01γ . The black dot in
(d) means the nonlinearity at exact resonance. The other parameters
are γ1,2 = γ , �c = 0, �p,m = �, �p = 0.1γ , �c = 5γ .

� = 0. Clearly, the strong nonlinearity is sharply suppressed
when the dephasing rate is considered in the realistic atomic
system.

As we know, the strong nonlinearity contained in the dark-
state system plays an important role in controlling quantum
correlations [48–52,59–61]. In these schemes, the asymmet-
rical detuning is a key factor to modify the nonlinearity,
which is responsible for the generation of squeezing and en-
tanglement. However, under the condition of the two-photon
resonance, the system will evolve into the dark state, resulting
in the disappearance of nonlinearity, quantum squeezing, and
quantum entanglement.

Therefore, this motivates us to investigate the appearance
of strong nonlinearity under the exact resonant conditions.
To do so, we apply a microwave field to couple with the
dipole-forbidden transition |2〉 ↔ |1〉 to modify the EIT sys-
tem [62–70]. As shown by the blue dashed lines in Fig. 2(b),
we plot the evolution of absorption and dispersion versus the
detuning � in units of γ with no dephasing rate by choosing
�m = �p = � and �m = 5γ . The nonlinear parameter η is
also shown in Fig. 2(d). Due to �c = 0 and assuming that
the Rabi frequencies of the microwave field and control field
satisfy �c = �m = �, the absorption (in units of |μ13|2/ε0) is
calculated as

Imχ = −γ�2(� + 2�p)
(
�2 − �2

p − ��p
)

G
, (8)

where G = �p�
2[�4 + 3�2�2 + 7�4 + γ 2(�2 + 4�2)] +

�2
p[5�2�2 − 13�4 + γ 2(�2 + 4�2)] + 2��p�

2(�2 −
4�2) + 8��3

p�
2 + 5�4

p�
2 + �6

p. Clearly, The probe field
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FIG. 3. The nonlinear parameter η at the resonant detuning ver-
sus the amplitude ratio ξ for different dephasing rates γp = 0.1γ

(dotted line), γp = 0.01γ (dashed line), and γp = 0 (solid line). The
other parameters are γ1,2 = γ , �p = 0.1γ , �c = 5γ .

is absorbed in the region of � < −2�p(−0.2γ ) while it is
amplified when � > −2�p(−0.2γ ), which is completely
different from the first case in Fig. 2(a). Particularly, at
� = 0, the absorption value is Imχ = −1.12 × 10−2 and
the dispersion is Reχ = −1.4. This indicates that the strong
nonlinearity (η = 125) is obtained at the exact resonant
conditions, which is shown in Fig. 2(d) by the black point. In
addition, we note that the strong nonlinearities almost remain
unchanged when the dephasing rate is γp = 0.01, as shown
by the red solid lines in Fig. 2(d), implying that the generated
squeezing may be robust against the dephasing rate in the
present microwave-modified EIT system. This is sharply
different from the exact EIT cases shown in Fig. 2(c).

From now on we only focus on the cases that the driven
fields are exactly resonant with the atoms throughout the paper
(� = 0). Then the analytical expression of η is simplified as

η = 2�c�
2
m − �2

p�c − �3
c

2�pγ�m
, (9)

herein we take γp = 0. For �p 	 �c, the nonlinear parameter
η can be approximately written as

η = �2
c

�pγ

2 − ξ 2

2ξ
, (10)

wherein ξ = �c/�m is the amplitude ratio of the optical
and microwave fields. It is found that the nonlinear effect
disappears η = 0 at the critical point ξ = √

2. In the region
of 0 < ξ <

√
2, the strong nonlinearity decreases monotoni-

cally, but the absolutely value of |η| is increased in the region
of ξ >

√
2 as the ratio ξ increases. Despite the analytical

expression of the nonlinear parameter including the dephasing
rate can be obtained, it is not given here due to its cumbersome
expression. In Fig. 3 we plot the numerical dependence of
η on ξ for different dephasing rates γp = 0.1γ (dotted line),
γp = 0.01γ (dashed line), and γp = 0 (solid line). The other
parameters are chosen as γ1,2 = γ , �p = 0.1γ , �c = 5γ . It
is found that the phase damping has little influence on the
nonlinear effect. In short, the main properties are summarized
as follows: (i) the strong nonlinearity is obtained under the
exact resonant conditions and can be modified by the relative
strength of the applied fields, which may provide great conve-

niences for experimental implementation; (ii) compared with
the conventional EIT-based system, the strong nonlinearity is
robust against the dephasing rate, which may be useful for the
generation of squeezing and entanglement.

III. PERFECT HIGHER-ORDER SQUEEZING
IN MICROWAVE-MODIFIED EIT

In this section, we turn to investigate the physical mech-
anisms for the two-mode higher-order squeezing in the
microwave-modified EIT system. The approximate analyti-
cal results and numerical results for two kinds of two-mode
fourth-order squeezing are discussed in the following subsec-
tion.

A. Analysis of physical mechanisms

We first discuss the internal mechanisms for the generation
of two-mode squeezed state in the present microwave-
modified EIT system. For the �-type atomic system, we apply
a control field �c and a microwave field �m to resonantly
drive the corresponding transitions |3〉 ↔ |2〉 and |2〉 ↔ |1〉,
respectively. Two quantized field modes a1,2 are coupled with
a common transition |3〉 ↔ |1〉, simultaneously. The possible
atomic level structure is plotted in Fig. 4(a). Taking 87Rb
atoms as an example, we select |1〉 = |5S1/2, F = 1〉, |2〉 =
|5S1/2, F = 2〉, and |3〉 = |5P1/2, F = 2〉. Our scheme may
be realized in a geometrical configuration of collinear three
wave-mixing as shown in Fig. 4(c). In detail, a Rb cell is
installed in a microwave cavity which provides the standing
microwave field. Meanwhile, a two-mode cavity (DCM1-
DCM2) is applied to provide the two-mode fields a1 and a2.
The cavity fields are combined with the coupling field by
a dichroic cavity mirror DCM1 and then travel through the
sample cell and the microwave cavity collinearly with the
microwave field. After the microwave cavity, the cavity fields
can be filtered by another dichroic cavity mirror DCM2.

The master equation for the density operator ρ of atom-
field interaction system is written in an appropriate rotating
frame as

ρ̇ = −i[H, ρ] + Laρ + Lcρ (11)

with the total system Hamiltonian

H = H ′
a + H ′

I , (12)

where

H ′
a = �c(σ32 + σ23) + �m(σ21 + σ12),

H ′
I =

2∑

j=1

g j (a
†
jσ13e−iδ j t + a jσ31eiδ j t ), (13)

where a j and a†
j are the annihilation and creation operators for

the cavity modes, g j are the coupling strengths of interactions
of the jth cavity fields with the atoms, and δ j = ω31 − ν j are
the detunings of the atomic transition frequency ω31 from the
cavity field frequencies ν j ( j = 1, 2). The cavity loss term
Lcρ takes the form

Lcρ =
2∑

j=1

κ jLa j ρ, (14)
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FIG. 4. (a) Configuration with hyperfine levels of 87Rb atoms.
The microwave field is coupled resonantly with two hyperfine ground
states 5S1/2(F = 1) and 5S1/2(F = 2). The coupled field is provided
by a diode laser, which is tuned to be resonant at the transition
5S1/2(F = 2) ↔ 5P1/2(F = 2). Two mode quantum cavity fields are
coupled to the transition 5S1/2(F = 1) ↔ 5P1/2(F = 2). (b) The res-
onant dressed transitions representation, in which the cavity mode
a1(a2) is resonant with the sideband �̃(−�̃), respectively. The
dressed atomic transition |+〉 (|−〉) → |0〉 is simultaneously accom-
panied with creation of one cavity mode a1 (a2) and annihilation of
the other cavity mode a2 (a1). (c) The possible experimental setup
for two-mode higher-order squeezing, wherein DCM1,2 represent
dichroic cavity mirrors, �c,m indicate the control field and microwave
field and a1,2 are two quantized modes.

where La j ρ = 1
2 (2a jρa†

j − a†
j a jρ − ρa†

j a j )( j = 1, 2), κ j are
the cavity loss rates.

To describe clearly the physical mechanisms and the corre-
sponding conditions for dissipative reservoir effects, we resort
to the dressed atomic picture by diagonalizing the Hamilto-
nian H ′

a under the conditions of �c,m � γ j, κ j, g j ( j = 1, 2).
The dressed atomic states are expressed in terms of bare states
as [4]

|+〉 = 1√
2

(cos θ |1〉 + |2〉 + sin θ |3〉),

|0〉 = − sin θ |1〉 + cos θ |3〉, (15)

|−〉 = 1√
2

(cos θ |1〉 − |2〉 + sin θ |3〉),

with cos θ = �m

�̃
, sin θ = �c

�̃
, and �̃ = √

�2
c + �2

m. The
dressed states |0〉, |+〉, and |−〉 have their eigenvalues λ0,± =
0,±�̃, respectively. It means that the spacings between these
dressed states are identical. Now the free Hamiltonian H ′

a
becomes the diagonal form in the dressed-state picture

Hd = �̃(σ++ − σ−−), (16)

and the interaction Hamiltonian H ′
I is expressed as

HI = 1√
2

g1a†
1e−iδ1t (cos2 θσ+0 − sin2 θσ0−)

+ 1√
2

g1a†
1e−iδ1t (cos2 θσ−0 − sin2 θσ0+)

+ 1√
2

g2a2eiδ2t (cos2 θσ0+ − sin2 θσ−0)

+ 1√
2

g2a2eiδ2t (cos2 θσ0− − sin2 θσ+0)

+ sin θ cos θ

2
(g1a†

1e−iδ1t + g2a2eiδ2t )

× (σ+− + σ−+ + σ++ − 2σ00 + σ−−) + H.c., (17)

where σkl = ∑N
μ=1 |kμ〉〈lμ|(k, l = 0,±) are the projection

operators (k = l) and the flip operators (k �= l) of the en-
semble in terms of the dressed states. Making a further
unitary transformation to HI with U = exp(−iHdt ), i.e.,
UHIU †, choosing Rabi sideband resonance δ1 = −δ2 = −�̃

and neglecting fast oscillating terms such as exp(±i�̃t ) and
exp(±2i�̃t ) due to the well-separated dressed states �c,m �
γ j, κ j , we retain the second line, the third line, and the cor-
responding complex conjugate terms in Eq. (17). Then the
reduced effective Hamiltonian can be obtained as

Heff = 1√
2

[cos2 θg1a1 − sin2 θg2a†
2]σ0−

+ 1√
2

[cos2 θg2a2 − sin2 θg1a†
1]σ0+ + H.c. (18)

By transforming the bare atomic relaxation terms Laρ into
the dressed-state picture according to Eq. (15) and neglecting
the quantized modes temporarily, we obtain the steady-state
populations (Nl = 〈σll〉) of the dressed states

N+ = N− = N (cos2 θ + cos4 θ )

1 + 3 cos4 θ
,

N0 = N sin4 θ

1 + 3 cos4 θ
. (19)

Then the population differences z = N+ − N0 = N− − N0 of
the dressed states are derived as follows:

z = N± − N0 = N
2 cos2 θ − sin2 θ

1 + 3 cos4 θ
. (20)

It is clear that we have z > 0 for 0 < ξ <
√

2 and z < 0 for
ξ >

√
2. The dressed atoms as an engineered reservoir will

play either a dissipative or amplifying role in different regimes
of ξ .

To understand the internal interactions, we further intro-
duce a pair of Bogoliubov modes as b1 = a1 cosh r − a†

2 sinh r
and b2 = a2 cosh r − a†

1 sinh r [1,2]. Then the effective inter-
action Hamiltonian is rewritten as

Heff = ga(b1σ0− + b2σ0+) + H.c. for ξ < 1,
(21)

Heff = ga(b1σ+0 + b2σ−0) + H.c. for ξ > 1,

where we have effective coupling constant ga =
g
√

1
2 | cos(2θ )| by assuming g1,2 = g. The squeezing
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FIG. 5. The squeezing parameter r (solid line) and the dissipa-
tion rate R in units of κC (dashed line) versus the amplitude ratio ξ .
The changing trends of r and R are completely opposite. The shaded
regime shows the unstable region (1 � ξ �

√
2). As ξ → 1, r → ∞,

and it is possible to obtain a good squeezing. For ξ → 0 or ∞, r is
so small that the obtainable squeezing is weak.

parameter r in the two cases is defined through the hyperbolic
tangent function as

tanh r = ξ 2 for ξ < 1,

tanh r = 1

ξ 2
for ξ > 1. (22)

It is seen from the effective Hamiltonian in Eq. (18) that
the interactions are established between the quantized modes
(a1, a2) and the dressed atomic spins (σ0+, σ0−), which is
plotted in Fig. 4(b). Clearly, the absorption of mode a1(a2)
and the creation of modes a2(a1) are accompanied by a com-
mon dressed transition |−〉 → |0〉(|+〉 → |0〉), respectively.
Physically, the interactions between two parties a1 and σ0−
(a2 and σ0+) are referred to as squeezing processes while the
other ones between a2 and σ0−(a1 and σ0+) are named as
transferring processes. Accordingly, the two-mode squeezed
state of a1,2 can be established since the squeezing between
a1 and σ0− is transferred to the mode a2, i.e., a1 ↔ σ0− � a2.
It is known that the best squeezing degree via such a single
chain is about 50% under ideal conditions [57]. Here we can
obtain the perfect two-mode squeezing because there exists
an alternate chain a2 ↔ σ0+ � a1 [59–61], which is verified
by our analytical and numerical results in the following sub-
section. Essentially, the strong applied fields �c and �m are
used to establish atomic reservoir engineering, in which the
strong nonlinearity causes the generation of squeezing. We
find that the realization of squeezing is strongly dependent on
the following two points.

1. Dependence of squeezing parameter r on the nonlinear effects

From Eq. (7), it is seen that the nonlinear parameter η

becomes large when the probe field experiences the nonzero
dispersion (Reχ �= 0) and negligible absorption (Imχ → 0).
As shown in Figs. 3 and 5, as ξ → 0, we have η → ∞ and
r → 0. At �c = 0, the atoms would stay in a superposition
of ground states |2〉 and |1〉. Reasonably, the nonlinear effects
disappear since the absorption and dispersion for the probe
field are equal to zero. In this case, we can see that the
terms of sin2 θ in Eq. (18) vanish, giving rise to the absence

of transferring processes between a1(a2) and σ0+(σ0−). The
two-mode squeezed state would not be generated because the
two chains are destroyed in this manner, a1 ↔ σ0− � a2 and
a2 ↔ σ0+ � a1. For the other extreme case ξ → ∞, we also
have η → ∞ and r → 0 when �c � �m. Being different
from the first case, the atoms will be entirely trapped into
the dark state |1〉 due to �c � �p and �c = �p = � = 0,
which is the very case of typical EIT. It is well known that
the entanglement and squeezing are impossible to generate
since the nonlinear effects disappear on dark-state resonance
[50,51,59,60]. From Eq. (18), we find that the squeezing pro-
cesses are not existent due to cos2 θ → 0, which implies that
the two above-mentioned chains are spoiled in this way, i.e.,
a1 � σ0− � a2 and a2 � σ0+ � a1. Specifically, as seen
from the strong nonlinear dependence of the squeezing pa-
rameter r on the amplitude ratio ξ in Eq. (22), when ξ → 1,
we have r → ∞, and then the good squeezing may happen
since we have the strong nonlinearity η = 125 at ξ = 1. In a
word, the generation of two-mode squeezing is closely related
to the nonlinear effects in the present scheme.

2. Analysis of nonlinear dissipative rate

We assume that the atomic variables decay much more
rapidly than the cavity modes γ1,2 � κ1,2. Following the stan-
dard quantum optics techniques [1,2], we derive the master
equation of the two Bogoliubov modes by adiabatically elim-
inating the atomic variables by taking the case of ξ < 1 as an
example

˙̃ρ =
∑

l=1,2

(ALbl ρ̃ + BLb†
l
ρ̃ ) + L′ρ̃, (23)

where the two Bogoliubov modes b1,2 have identical absorp-
tion coefficient A and amplification coefficient B,

A = 2g2
a	N+

	2 − γ 2
c

, B = 2g2
a	N0

	2 − γ 2
c

, (24)

where 	 = γ

2 (1 + cos2 θ + sin2 θ cos2 θ ) and γc =
− γ

2 sin2 θ cos2 θ are the decoherence rate of the dressed atoms
and the transfer rate of the degenerate dressed transitions,
respectively. Lbl ρ̃ and Lb†

l
ρ̃ have the same form as La j ρ̃ in

Eq. (14) and the additional term L′ρ̃ has the form of

L′ρ̃ = C̃(b1ρ̃b2 + b2ρ̃b1) − D̃1ρ̃b1b2 − D̃2b1b2ρ̃ + H.c.,

(25)

which originates from the coherence transfer between de-
generate dressed-state transitions |+〉 � |0〉 and |0〉 � |−〉.
The parameters are C̃ = g2

aNγc(N+ + N0)/(	2 − γ 2
c ), D̃1 =

2g2
aNγcN0/(	2 − γ 2

c ), D̃2 = 2g2
aNγcN+/(	2 − γ 2

c ). Note that
L′ρ̃ is negligibly small because of (C̃, D̃1,2) 	 (A, B) (γc 	
	). Thanks to the dependence of population differences z in
Eq. (20) on the parameter ξ , the atomic system leads to either
absorption or amplification of Bogoliubov modes b1,2. By
defining the dissipation rate R = A − B, the system is stable
when R > 0 (absorption is dominant over amplification) while
is unstable for R < 0 (amplification is dominant over absorp-
tion). To observe the nonlinear properties of dissipation rate
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R, we analytically solved the dissipation rate as

R = κC
(ξ 4 + 4ξ 2 + 2)(ξ 4 − 1)(ξ 2 − 2)

(ξ 6 + 7ξ 4 + 12ξ 2 + 4)(ξ 4 + 2ξ 2 + 4)
, (26)

where the cooperativity parameter C = 2g2N/(κγ ) with
κ1,2 = κ . In Fig. 5, we plot the evolution of squeezing param-
eter r and dissipation rate R (in units of κC). We note that the
evolution of dissipation rate R is divided into three regions.
In the regions of ξ < 1 and ξ >

√
2, the system is stable for

R > 0. It implies that the absorption is dominant over ampli-
fication, resulting in the possibilities of generated squeezing
are confined into the two regions. Nevertheless, in the region
of 1 < ξ <

√
2 (shown in Fig. 5 by the gray region), the

system is unstable since the amplification is dominant over
absorption. Thus, the squeezing is impossible to generate in
this region. Particularly, at ξ = 1, we have R = 0 due to the
effective coupling constant ga = g

√
1
2 | cos2 θ − sin2 θ | = 0.

Correspondingly, the two-channel interactions of the Bogoli-
ubov modes b1,2 in Eq. (21) are no longer existent. When
ξ = √

2, we also have R = 0 since the dressed-state popula-
tions satisfy the relation N± = N0. In this case, the squeezing
is impossible to obtain due to the nonlinearity η = 0 and dissi-
pation rate R = 0 although both the transferring and squeezing
processes in Eq. (18) seem to be coexistent.

According to the above analysis, we find that the squeezing
parameter r and the dissipative rate R are closely related to
the nonlinear effect η. Generally, in the reservoir engineering,
good squeezing can be realized when both the squeezing pa-
rameter r and the dissipation rate R take large values [57–61].
However, from Fig. 5\, we find that as the ratio ξ increases, the
squeezing parameter first increases rapidly to infinity and then
drops quickly to zero, while the variation trend of R is inverse.
This demonstrates that the two conditions are hard to meet
simultaneously. Obviously, good squeezing can be achieved
when the squeezing parameter and the dissipation rate have a
compatible value.

B. Higher-order squeezing of intracavity fields

As proposed by Hong and Mandel in Ref. [18], a pair of
quadrature operators are defined as Xa = xa1 − xa2 and Pa =
pa1 + pa2 with the individual operators xaj = 1√

2
(a j + a†

j ),

paj = −i√
2
(a j − a†

j ) ( j = 1, 2). The two-mode fourth-order
squeezing occurs if the following inequalities are satisfied:

�X 4
a < 1, or �P4

a < 1. (27)

On the other hand, we choose the sum squeezing operator
Va = i

2 (a1a2 − a†
1a†

2) [21] as the other example to study the
four-order squeezing. Similarly, the squeezing is obtainable
when

�V 2
N = �V 2

a

R̃
< 1, (28)

with a normalized factor R̃ = 1
4 (1 + 〈a†

1a1〉 + 〈a†
2a2〉).

It should be pointed out that the quantum fluctuations for
Bogoliubov modes b1,2 are closely related to the original
modes a1,2 with the relation of

�X 4
a = e−4r�X 4

b , �P4
a = e−4r�P4

b , (29)

FIG. 6. Analytical (dashed line) and numerical (solid line) results
of the normalized variance �X 4

a (=�P4
a ) and �V 2

N versus the ampli-
tude ratio ξ . The analytical results are in very good agreement with
the numerical results except for the shadow region near ξ → 1. The
parameters of the numerical results are chosen as γ1,2 = γ , γp = 0,
κ = 0.001γ , g

√
N = 1.5γ .

and

�V 2
N = �V 2

b

R̃
, (30)

with Vb = i
2 (b1b2 − b†

1b†
2) and R̃ = 1

4 [1 + 2 sinh2 r +
cosh(2r)(〈b†

1b1〉 + 〈b†
2b2〉)].

From the reduced density matrix equation in Eq. (23),
the analytical results of the steady higher-order moments for
Bogoliubov modes can be solved by discarding of the cavity
losses temporary. The nonvanishing second-order and fourth-
order correlation terms are 〈b†

1b1〉 = 〈b†
2b2〉 = N0/(N+ − N0),

〈b†
1b†

1b1b1〉 = 〈b†
2b†

2b2b2〉 = 2〈b†
1b1b†

2b2〉 = 2〈b†
1b1〉2. Then

the normalized variances for the above-mentioned operators
are calculated as

�X 4
a = �P4

a = e−4r (N+ + N0)2

(N+ − N0)2
, (31)

and

�V 2
N = N2

+ + N2
0

4R̃(N+ − N0)2
. (32)

The approximately analytical results of �X 4
a and �V 2

N in
the case of ξ < 1 are plotted in Fig. 6. We find that the
two-mode higher-order squeezing is possible to obtain in a
wide region of ξ . Notably, it should be pointed out that the
analytical results are only valid when ξ deviates away from
ξ = 1 appropriately. Since the effective coupling constant ga

and the dissipation rate R are equal to zero at ξ = 1, the
two-mode squeezing is impossible to generate at this point.
Not only that, when ξ is very close to unity, the engineered
dissipation is not dominant over the vacuum dissipation. As a
consequence, the analytical solution does not hold in a small
region around ξ = 1, which is depicted by the square shadows
in Fig. 6.

To verify the validity of the analytical calculations, we re-
sort to the numerical simulations without discarding the cavity
losses κ1,2. Applying the master equation, we can numerically
obtain the results of second-order and fourth-order moments
for original cavity modes, which are listed in Appendix B. For
simplicity, we define the second-order moments as

Dl = 〈a†
l al〉, D3 = 〈a1a2〉, D4 = 〈a†

1a†
2〉, (33)
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FIG. 7. The normalized variance �X 4
a (= �P4

a ) and �V 2
N ver-

sus the amplitude ratio ξ for different cavity decay rates κ = 0.1γ

(dotted line), κ = 0.01γ (dashed line), and κ = 0.001γ (solid line)
by assuming κ1,2 = κ . The optimal squeezing of �X 4

a and �V 2
N

approaches 100% and 90% below what is for the minimal uncertainty
state at ξ → 1. The other parameters are the same as in Fig. 6.

and the fourth-order moments

Xl = 〈a†
l a†

l alal〉, X3 = 〈a†
1a1a†

2a2〉,
Y1 = 〈a†

1a1a1a2〉, Y2 = 〈a†
1a†

1a1a†
2〉, (34)

Z1 = 〈a1a†
2a2a2〉, Z2 = 〈a†

1a†
2a†

2a2〉,
W1 = 〈a1a1a2a2〉, W2 = 〈a†

1a†
1a†

2a†
2〉,

where l = 1, 2. The normalized fourth-order squeezing for Xa

and Pa are derived as

�X 4
a = 1 + 2(D1 + D2 − 2D3) + 1

2 (X1 + X2

+ 4X3 + 2W1 − 4Y1 − 4Z1), (35)

and �P4
a = �X 4

a . We also used the real correlations D3 = D4,
Y1 = Y2, W1 = W2, and Z1 = Z2. Similarly, the sum squeezed
operator has its variance

�V 2
N = 1 + 2(X3 − W1)

1 + D1 + D2
. (36)

From Fig. 6, it is clear that the numerical results are
very in agreement with the analytical results except for the
shadow region around ξ = 1. As the numerical results are
strongly dependent on the cavity losses, we plot the fourth-
order squeezing �X 4

a and �V 2
N for in Fig. 7 by choosing

κ = 0.1 (dotted line), κ = 0.01 (dashed line), and κ = 0.001
(solid line), respectively. With the decreasing of cavity losses,
the best squeezing for �X 4

a is changed from 70% at ξ = 0.77
to 100% at ξ = 0.97 and for �V 2

N is from 30% at ξ = 0.84 to
90% at ξ = 0.98. This indicates that the perfect higher-order
squeezing is obtained in the good cavity limit.

In addition, we showed that the strong nonlinearity is
robust against the dephasing rate for the present microwave-
modified EIT system in Fig. 3. Reasonably, the two-mode
higher-order squeezing may remain stable with the increase of
γp. In Fig. 8, the normalized variance of �X 4

a and �V 2
N versus

the ratio ξ are plotted for different dephasing rates γp = 0
(solid line), γp = 0.5γ (dashed line), and γp = γ (dotted line).
Clearly, the variances of two-mode higher-order squeezing
�X 4

a and �V 2
N nearly keep unchangeable with the increasing

of dephasing rate γp. Finally, we should point out that the
analytical and numerical results of the higher-order squeez-
ing in the other stable region ξ >

√
2 are also calculated by

following the similar procedure. However, we find that the

FIG. 8. The normalized variance �X 4
a (=�P4

a ) and �V 2
N versus

the amplitude ratio ξ for different dephasing rates γp = 0 (solid
line), γp = 0.5γ (dashed line), and γp = γ (dotted line). �X 4

a (�P4
a )

and �V 2
N are robust against the dephasing rates. We have taken

κ = 0.001γ . The other parameters are the same as in Fig. 6.

two types of higher-order squeezing are nonexistent since the
squeezing parameter r shown in Fig. 5 becomes small.

C. Higher-order squeezing of the output fields

Here we consider the higher-order squeezing of the output
fields by defining a pair of EPR-like operators as X out

a =
xout

a1
− xout

a2
and Pout

a = pout
a1

+ pout
a2

with the individual op-
erators xout

a j
= 1√

2
(aout

j + aout†
j ), pout

a j
= −i√

2
(aout

j − aout†
j ) ( j =

1, 2), wherein the operators aout
j represent the output fields.

According to the input-output theory aout
j = ain

j + √
κ ja j , the

quantum correlation of the output fields can be easily ob-
tained. The detailed calculation is presented in Appendix C.

In Fig. 9, the output spectra of �X 4
a [ω] (=�P4

a [ω]) and
�V 2

N [ω] are plotted as a function of transformation frequency
ω (units of γ ). The cavity decay rates and the amplitude ratios
in Fig. 9(a) are chosen as κ = 0.1γ , ξ = 0.82 (dotted line),
κ = 0.05γ , ξ = 0.89 (dashed line), κ = 0.01γ , ξ = 0.973
(solid line). The cavity decay rates and the amplitude ratios in
Fig. 9(b) are chosen as κ = 0.1γ , ξ = 0.85 (dotted line), κ =
0.05γ , ξ = 0.89 (dashed line), κ = 0.01γ , ξ = 0.95 (solid
line). The other parameters are the same as in Fig. 6. It
is found that the higher-order squeezing spectra are always
below the standard quantum limit in a wide frequency domain
and the minimal value appears at ω = 0. These results indicate
that the perfect higher-order squeezing of the output fields can
also be obtained in the present scheme.

FIG. 9. (a) The output spectra of �X 4
a [ω] (= �P4

a [ω]) for κ =
0.1γ , ξ = 0.82 (dotted line), κ = 0.05γ , ξ = 0.89 (dashed line),
κ = 0.01γ , ξ = 0.973 (solid line). (b) The output spectra of �V 2

N [ω]
for κ = 0.1γ , ξ = 0.85 (dotted line), κ = 0.05γ , ξ = 0.89 (dashed
line), κ = 0.01γ , ξ = 0.95 (solid line). The other parameters are the
same as in Fig. 6.
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Finally, we would like to stress the differences between the
previous schemes and the present microwave-modified EIT
system. In conventional EIT-based systems, the generation
of squeezing and entanglement is strongly dependent on the
asymmetrical detunings of the driven fields [51,54,59–61].
If the two-photon resonance is satisfied, the atoms would
be driven into a superposition of two ground states, which
is named as a “dark state.” In this case, the absorption and
dispersion of the atoms are equal to zero, leading to the
disappearance of strong nonlinearity. Consequently, quantum
entanglement and squeezing are no longer existent. In addi-
tion, the EIT-based nonlinear effects usually deteriorate with
the increase of the dephasing rate between the lower levels in
realistic atomic systems, resulting in the reduction of quantum
entanglement and squeezing. However, the main advantages
of our scheme are summarized as follows. First, when the
applied strong fields are resonant with the transitions, the
nonlinearity is obtained and can be modified conveniently by
the relative intensity of the two fields. Second, we note that
the generated squeezing is robust against the dephasing rate
of two lower states. Third, the perfect higher-order squeezing
is realized at a steady state by the two-channel squeezing and
transferring processes. The internal mechanisms are different
from the transient higher-order squeezing in the codirectional
nonlinear optical coupler [26], the Bose-Einstein condensates
[27], the Raman process [28], and four-wave mixing pro-
cess [29,30]. In past years, a large number of experimental
investigations on higher-order correlations are performed in
different quantum optics systems [31–35]. Allevi et al. imple-
mented a direct detection scheme of measuring higher-order
correlations in the experiment with a pair of hybrid pho-
todetectors [31]. Avenhaus et al. experimentally observed the
higher-order nonclassicality up to the eighth order with a
time-multiplexing detector [32]. Specifically, the higher-order
quantum correlations were usually generated based on the
nonlinear processes. The perfect higher-order squeezing in
the present scheme originates from the microwave-modified
strong nonlinearities, which may find potential applications
in high-precision measurement and quantum information
tasks.

IV. CONCLUSION

In conclusion, we showed that the two-mode fourth-order
squeezing can almost approach 90%–100% in the microwave-
modified EIT system. When the control field and microwave
field are exactly resonant with the atomic system, the strong
nonlinearity is generated and can be controlled by the relative
intensity of the dressed fields. In the dressed-state picture, it is
found that the atomic system acts as a reservoir, by which the
perfect higher-order squeezing is achieved at a steady state via
two-channel dissipation processes. Since the evolution of the
squeezing parameter and the dissipation rate are opposite each
other, good squeezing is usually obtainable when the strong
nonlinearity takes a proper value. Moreover, we explore that
the higher-order squeezing in the present scheme is robust
against the dephasing rate between two ground states. This
provides a feasible way for experimental realization and may
find promising applications in high-precision measurement.
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APPENDIX A: REDUCED DENSITY MASTER EQUATION

The reduced master equation in terms of the original a1,2

modes in an explicit form

ρ̇c = α11(a1ρca†
1 − a†

1a1ρc) + α22(a†
1ρca1 − a1a†

1ρc)

+β11(a2ρca†
2 − a†

2a2ρc) + β22(a†
2ρca2 − a2a†

2ρc)

+α12(a†
2ρca†

1 − a†
1a†

2ρc) + α21(a1ρca2 − a2a1ρc)

+β12(a†
1ρca†

2 − a†
2a†

1ρc) + β21(a2ρca1 − a1a2ρc)

+ κ1

2
(a1ρca†

1 − a†
1a1ρc) + κ2

2
(a2ρca†

2 − a†
2a2ρc)

+ H.c., (A1)

wherein the parameters are given as follows:

α11 = g2
1[(	2 sin4 θ − γc1 sin2 θ cos2 θ )N0

+ (	1 cos4 θ − γc2 sin2 θ cos2 θ )N−]/�,

α22 = g2
1[(	2 sin4 θ − γc1 sin2 θ cos2 θ )N+

+ (	1 cos4 θ − γc2 sin2 θ cos2 θ )N0]/�,

β11 = g2
2[(	2 cos4 θ − γc1 sin2 θ cos2 θ )N+

+ (	1 sin4 θ − γc2 sin2 θ cos2 θ )N0]/�,

β22 = g2
2[(	2 cos4 θ − γc1 sin2 θ cos2 θ )N0

+ (	1 sin4 θ − γc2 sin2 θ cos2 θ )N−]/�,

α12 = g1g2[(γc1 cos4 θ − 	2 sin2 θ cos2 θ )N0

+ (γc2 sin4 θ − 	1 sin2 θ cos2 θ )N−]/�,

α21 = g1g2[(γc1 sin4 θ − 	2 sin2 θ cos2 θ )N0

+ (γc2 cos4 θ − 	1 sin2 θ cos2 θ )N−]/�,

β12 = g1g2[(γc1 sin4 θ − 	2 sin2 θ cos2 θ )N+
+ (γc2 cos4 θ − 	1 sin2 θ cos2 θ )N0]/�,

β21 = g1g2[(γc1 cos4 θ − 	2 sin2 θ cos2 θ )N+
+ (γc2 sin4 θ − 	1 sin2 θ cos2 θ )N0]/�, (A2)

with � = 2(	1	2 − γc1γc2 ), 	1 = γ 0+
ph + 1

4 (γ 0−
ph + γ +−

ph ) +
1
2 (γ0+ + γ+0 + γ−0 + γ−+), 	2 = γ 0−

ph + 1
4 (γ 0+

ph + γ +−
ph ) +

1
2 (γ+0 + γ0− + γ−0 + γ+−); N0, N± represent the steady-state
populations of the dressed states. The damping rates in terms
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of the dressed atomic states are

γ0+ = γ0− = γ1 sin4 θ

2
+ γp sin2 2θ

16
,

γ+0 = γ−0 = γ1 cos4 θ

2
+ γ2 cos2 θ

2
+ γp sin2 2θ

16
,

γ+− = γ−+ = γ1 sin2 2θ

16
+ γ2 sin2 θ

4
+ γp(cos2 θ + 1)2

8
,

γ 0+
ph = γ 0−

ph = γ1 sin2 2θ

4
+ γp sin4 θ

2
,

γ +−
ph = −γ1 sin2 2θ

8
+ γ2 sin2 θ

2
− γp sin4 θ

2
,

γc1 = γc2 = −γ1 sin2 2θ

8
+ γp sin2 2θ

16
. (A3)

APPENDIX B: SECOND-ORDER AND FOURTH-ORDER
CORRELATIONS OF TWO INTRACAVITY FIELDS

A closed set of equations for the second-order and fourth-
order moments between the modes a1 and a2 can be derived
from the reduced master equation Eq. (A1) as

d〈a†
1a1〉

dt
= −2ξ1〈a†

1a1〉 + η1(〈a1a2〉 + 〈a†
1a†

2〉) + 2α22,

d〈a†
2a2〉

dt
= −2ξ2〈a†

2a2〉 + η2(〈a1a2〉 + 〈a†
1a†

2〉) + 2β22,

d〈a1a2〉
dt

= −ξ12〈a1a2〉 + η2〈a†
1a1〉 + η1〈a†

2a2〉 − η3,

d〈a†
1a†

2〉
dt

= −ξ12〈a†
1a†

2〉 + η2〈a†
1a1〉 + η1〈a†

2a2〉 − η3, (B1)

and

d〈a†
1a†

1a1a1〉
dt

= −4ξ1〈a†
1a†

1a1a1〉 + 2η1(〈a†
1a1a1a2〉

+ 〈a†
1a†

1a1a†
2〉) + 8α22〈a†

1a1〉,
d〈a†

2a†
2a2a2〉

dt
= −4ξ2〈a†

2a†
2a2a2〉 + 2η2(〈a1a†

2a2a2〉

+ 〈a†
1a†

2a†
2a2〉) + 8β22〈a†

2a2〉,
d〈a†

1a1a†
2a2〉

dt
= −2ξ12〈a†

1a1a†
2a2〉 + η2(〈a†

1a1a1a2〉

+ 〈a†
1a†

1a1a†
2〉) + η1(〈a1a†

2a2a2〉
+ 〈a†

1a†
2a†

2a2〉) + 2β22〈a†
1a1〉 + 2α22〈a†

2a2〉
− η3(〈a1a2〉 + 〈a†

1a†
2〉),

d〈a†
1a1a1a2〉

dt
= −(2ξ1 + ξ12)〈a†

1a1a1a2〉 + 2η1〈a†
1a1a†

2a2〉

+ η1〈a1a1a2a2〉 + η2〈a†
1a†

1a1a1〉
− 2η3〈a†

1a1〉 + 4α22〈a1a2〉,

d〈a†
1a†

1a1a†
2〉

dt
= −(2ξ1 + ξ12)〈a†

1a†
1a1a†

2〉 + 2η1〈a†
1a1a†

2a2〉

+ η1〈a†
1a†

1a†
2a†

2〉 + η2〈a†
1a†

1a1a1〉
− 2η3〈a†

1a1〉 + 4α22〈a†
1a†

2〉,
d〈a1a†

2a2a2〉
dt

= −(2ξ2 + ξ12)〈a1a†
2a2a2〉 + 2η2〈a†

1a1a†
2a2〉

+ η2〈a1a1a2a2〉 + η1〈a†
2a†

2a2a2〉
− 2η3〈a†

2a2〉 + 4β22〈a1a2〉,
d〈a†

1a†
2a†

2a2〉
dt

= −(2ξ2 + ξ12)〈a†
1a†

2a†
2a2〉 + 2η2〈a†

1a1a†
2a2〉

+ η2〈a†
1a†

1a†
2a†

2〉 + η1〈a†
2a†

2a2a2〉
− 2η3〈a†

2a2〉 + 4β22〈a†
1a†

2〉,
d〈a1a1a2a2〉

dt
= −2ξ12〈a1a1a2a2〉 + 2η2〈a†

1a1a1a2〉

+ 2η1〈a1a†
2a2a2〉 − 4η3〈a1a2〉,

d〈a†
1a†

1a†
2a†

2〉
dt

= −2ξ12〈a†
1a†

1a†
2a†

2〉 + 2η2〈a†
1a†

1a1a†
2〉

+ 2η1〈a†
1a†

2a†
2a2〉 − 4η3〈a†

1a†
2〉, (B2)

with ξ1 = α11 − α22 + κ1
2 , ξ2 = β11 − β22 + κ2

2 , ξ12 = ξ1 +
ξ2, η1 = β21 − α12, η2 = α21 − β12, η3 = α12 + β12. By set-
ting d

dt = 0, we can solve for the steady-state values for the
second-order and fourth-order moments.

APPENDIX C: OUTPUT SECOND-ORDER AND
FOURTH-ORDER CORRELATION SPECTRA

The equations of motion for two cavity fields operators can
be also derived from the reduced master equation Eq. (A1) as

da†
1

dt
= −ξ1a†

1 + η1a2 − Fa†
1
(t ) − √

κ1ain†
1 (t ),

da2

dt
= −ξ2a2 + η2a†

1 − Fa2 (t ) − √
κ2ain

2 (t ). (C1)

Here the input noise operators ain
j satisfy the nonzero cor-

relations 〈ain
j (t )ain†

j′ (t ′)〉 = δ j j′δ(t − t ′). The F ′s are the zero
means noise operators from the atomic reservoir and sat-
isfy the correlations 〈Fo(t )Fo′ (t ′)〉 = Doo′δ(t − t ′), where the
nonzero diffusion coefficients Da1a†

1
= 2α11, Da†

1a1
= 2α22,

Da2a†
2
= 2β11, Da†

2a2
= 2β22, Da1a2 = Da†

1a†
2
= −η3.

By performing the Fourier transformation O(t ) =∫ ∞
−∞ e−iωt O[ω]dω/

√
2π on Eq. (C1), we have

−iωa†
1[−ω] = −ξ1a†

1[−ω] + η1a2[ω] − Fa†
1
[−ω]

−√
κ1ain†

1 [−ω],

−iωa2[ω] = −ξ2a2[ω] + η2a†
1[−ω] − Fa2 [ω] − √

κ2ain
2 [ω].

(C2)

With the input-output relations aout
j [ω] = ain

j [ω] + √
κ ja j[ω],

we can express the output fields in terms of the input
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ones as

aout
1 [ω] = M11Fa1 [ω] + M12Fa†

2
[−ω] + M13ain

1 [ω]

+ M14ain†
2 [−ω],

aout
2 [ω] = M21Fa†

1
[−ω] + M22Fa2 [ω] + M23ain†

1 [−ω]

+ M24ain
2 [ω], (C3)

where

M11[ω] = (−iω + ξ2)
√

κ1

η1η2 + (ω + iξ1)(ω + iξ2)
,

M12[ω] = η1
√

κ1

η1η2 + (ω + iξ1)(ω + iξ2)
,

M13[ω] = (−iω + ξ2)κ1 + η1η2 + (ω + iξ1)(ω + iξ2)

η1η2 + (ω + iξ1)(ω + iξ2)
,

M14[ω] = η1
√

κ1κ2

η1η2 + (ω + iξ1)(ω + iξ2)
, (C4)

M21[ω] = η2
√

κ2

η1η2 + (ω + iξ1)(ω + iξ2)
,

M22[ω] = (−iω + ξ1)
√

κ2

η1η2 + (ω + iξ1)(ω + iξ2)
,

M23[ω] = η2
√

κ1κ2

η1η2 + (ω + iξ1)(ω + iξ2)
,

M24[ω] = (−iω + ξ1)κ2 + η1η2 + (ω + iξ1)(ω + iξ2)

η1η2 + (ω + iξ1)(ω + iξ2)
.

The second-order correlation spectra can be obtained as
follows:

〈
aout†

1 [−ω]aout
1 [ω]

〉

= |M11[−ω]|2Da†
1a1

+ |M12[−ω]|2Da2a†
2

+ (M12[−ω])∗M11[−ω]Da1a2

+ (M11[−ω])∗M12[−ω]Da†
1a†

2
+ |M14[−ω]|2,

〈
aout†

2 [−ω]aout
2 [ω]

〉

= |M21[−ω]|2Da1a†
1
+ |M22[−ω]|2Da†

2a2

+ (M21[−ω])∗M22[−ω]Da1a2

+ (M22[−ω])∗M21[−ω]Da†
1a†

2
+ |M23[−ω]|2,

〈
aout

1 [ω]aout
2 [ω]

〉

= M11[ω]M21[−ω]Da1a†
1
+ M12[ω]M22[−ω]Da†

2a2

+ M11[ω]M22[−ω]Da1a2 + M12[ω]M21[−ω]Da†
1a†

2

+ M13[ω]M23[−ω]. (C5)

By performing the Fourier transformation on Eq. (B2),
we can obtain the fourth-order correlation spectra
Xk[ω],Yj[ω], Zj[ω],Wj[ω](k = 1 − 3, j = 1, 2), respec-
tively. The output spectra of �X 4

a [ω] (=�P4
a [ω]) and �V 2

N [ω]
can be derived from the second-order and fourth-order
correlation spectra.
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