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Characterizing mixed-state entanglement through single-photon interference
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Entanglement verification and measurement is essential for experimental tests of quantum mechanics and also
for quantum communication and information science. Standard methods of verifying entanglement in a bipartite
mixed state require detection of both particles and involve coincidence measurement. We present a method that
enables us to verify and measure entanglement in a two-photon mixed state without detecting one of the photons,
i.e., without performing any coincidence measurement or postselection. We consider two identical sources, each
of which can generate the same two-photon mixed state but they never emit simultaneously. We show that
one can produce a set of single-photon interference patterns, which contain information about entanglement in
the two-photon mixed state. We prove that it is possible to retrieve the information about entanglement from
the visibility of the interference patterns. Our method reveals a distinct avenue for verifying and measuring
entanglement in mixed states.
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I. INTRODUCTION

Entanglement is a fascinating trait of quantum mechanics:
in addition to its implications for the foundations of quantum
mechanics, today entanglement is a key resource in quantum
information science. Verification and measurement of entan-
glement in a quantum state is an ever-growing field of research
[1,2]. Entanglement in two-particle (more generally bipartite)
quantum states can be verified, for example, by the violation
of Bell’s inequalities [3–7], quantum state tomography [8],
entanglement witnesses [9–14], and measurements employing
multiple copies of the quantum state [15–20]. For a general
bipartite quantum state, all these methods require detection
of both particles (subsystems). Known methods of verifying
entanglement by performing measurement on one subsystem
require the bipartite state to be pure [21–24]. Whether the
entanglement of a bipartite mixed state can be verified by
detecting only one subsystem is a question of fundamental
importance.

We show by an example that it is indeed possible to ver-
ify the entanglement in a two-particle mixed state without
detecting one of the particles. No coincidence measurement
or postselection is required in our method. In order to demon-
strate our method, we choose a polarization-entangled mixed
state, which can be obtained by generalizing two Bell states.
We use two identical sources of the quantum state, but only
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one pair of photons is produced at a time; i.e., multiple copies
of the state are not produced. We employ an interferometric
technique to show that an entanglement criterion, namely,
the positive partial transpose criterion [25,26], can be tested
and the entanglement can also be measured by means of the
concurrence, a popular measure of two-qubit entanglement
[27,28].

Here, we present a detailed theoretical analysis of the en-
tanglement verification technique. Furthermore, the nonlinear
interferometer [29–31] used in our scheme has recently found
important applications to various branches of quantum science
and technology, including quantum imaging [32,33], quantum
spectroscopy [34], polarization control [35], and fundamental
tests of quantum mechanics [36,37]. All the corresponding
theoretical analyses apply to pure states only. Our theoretical
analysis also shows how to treat a mixed state in such an
interferometric arrangement. Our results are fully supported
by experimental observations [38].

The article is organized as follows. In Sec. II we outline our
entanglement analysis scheme. In Sec. III, we present the class
of states we address and discuss the relevant entanglement cri-
terion and measure. In Sec. IV, we present the analysis of our
method and the main results, which also include illustrations
by numerical examples. Finally, we summarize and conclude
in Sec. V.

II. OUTLINE OF THE SCHEME

We consider two identical sources, Q1 and Q2, each of
which can produce the same two-photon mixed state, ρ̂; how-
ever, they never emit simultaneously (Fig. 1). We denote the
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FIG. 1. Entanglement verification scheme. Two identical
sources, Q1 and Q2, individually generate the same two-photon state
(ρ̂). Source Q1 can emit a photon pair (α, β) into propagation modes
α1 and β1. Source Q2 is restricted to emit photon α also in the mode
α1. Photon α, which is never detected, interacts with a device, O,
between Q1 and Q2. Source Q2 can emit photon β in propagation
mode β2. Modes β1 and β2 are combined by a beam splitter (BS)
and an output of the BS is collected by a photon detector (PD).
Another device (�), placed before the PD, allows us to choose
the measurement basis. Sources Q1 and Q2 emit probabilistically
and never emit simultaneously. When it is impossible to know
the source of a detected photon, single-photon interference is
observed at the PD. For certain choices of basis, the entanglement
of the two-photon state determines the visibility of the interference
pattern. Information about the entanglement is retrieved from the
single-photon interference patterns.

two photons by α and β. Suppose that Q1 can emit photon α

into propagation mode α1. We ensure that Q2 can emit photon
α only in the same propagation mode (α1). This is done by
sending the beam of photon α generated by Q1 through source
Q2 and perfectly aligning the beam with the beam of photon
α generated by Q2. Therefore, if one only observes photon
α that emerges from Q2, one cannot identify the origin of
the photon. We stress that this alignment does not result in
stimulated emission (see, for example, [39,40]).

Sources Q1 and Q1 can emit photon β into distinct propa-
gation modes β1 and β2, respectively. These two modes are
superposed by a beam splitter, BS, and one of the outputs
of the BS is directed to a photon detector, PD. A device, �,
is placed in front of the PD to choose appropriate measure-
ment bases. It is important to note that only the single-photon
counting rate (intensity) is measured in the experiment and no
coincidence measurement is ever performed.

A device, O, is placed in the path of photon α between
Q1 and Q2. (This device does not affect the emission rates
at Q1 and Q2.) Although α is never detected, the interaction
with O affects the interference pattern recorded by detecting
photon β at the PD [29,30]. This striking phenomenon forms
the basis of our entanglement verification scheme. We show
that with the knowledge of this interaction, the information
about the entanglement in the two-photon quantum state can
be retrieved from single-photon interference patterns recorded
in certain measurement bases. It is evident that the choice of
devices O and � depends on the entangled degree of freedom.

In order to illustrate the scheme we work with a two-photon
polarization-entangled state which is discussed in the next
section.

III. THE QUANTUM STATE

We consider a two-photon polarization-entangled mixed
state that can be characterized by three free parameters. Such

a state can be expressed in the general form [41]

ρ̂ = IH |Hα, Hβ〉〈Hα, Hβ | + IV |Vα,Vβ〉〈Vα,Vβ |
+ (e−iφI

√
IH IV |Hα, Hβ〉〈Vα,Vβ | + H.c.), (1)

where 0 � IH � 1, IV = 1 − IH , φ is a phase, 0 � I � 1,
and H and V represent horizontal and vertical directions of
polarization, respectively. It is evident that IH , IV , I , and φ

are all real quantities. When I = 1, the density operator (ρ̂)
represents a pure state. When I = 0 and IH = 1/2 the state
is diagonal in all bases, i.e., maximally mixed.

It is to be noted that ρ̂ can be obtained by generalizing the
two following Bell States: |�+〉 = (|Hα, Hβ〉 + |Vα,Vβ〉)/

√
2

and |�−〉 = (|Hα, Hβ〉 − |Vα,Vβ〉)/
√

2.
Positive partial transpose (PPT) criterion. Since we have a

bipartite two-dimensional entangled state, the PPT criterion
[25] can be applied to ensure separability or entanglement
[26]. A partial transposition of the two-particle density ma-
trix (ρ̂) is a transposition taken with respect to only one of
the particles. The density operator ρ̂ has a positive partial
transpose if and only if its partial transposition does not have
any negative eigenvalues. According to the PPT criterion, a
bipartite two-dimensional state is separable if and only if ρ̂

has positive partial transpose ([26]; see also [1]).
We take the partial transposition of ρ̂ [Eq. (1)] with respect

to photon α and find that the resulting matrix has the following
eigenvalues:

IH , IV , I
√

IH IV , −I
√

IH IV ,

where IV = 1 − IH . Since I , IH , and IV cannot take negative
values, it follows from the PPT criterion that the state is
entangled if and only if

I
√

IH IV �= 0. (2)

Concurrence. The amount of entanglement in the two-
qubit state (ρ̂) can be quantified by the concurrence [28]. In
order to determine the concurrence one first needs to find the
so-called spin-flipped density operator

ˆ̃ρ = (σ̂y ⊗ σ̂y)ρ̂∗(σ̂y ⊗ σ̂y), (3)

where σ̂y is the second Pauli operator, ⊗ implies Kronecker
product, and the asterisk (∗) refers to the complex conjugation.
The product ρ̂ ˆ̃ρ has only real and non-negative eigenvalues. If
the square roots of these eigenvalues, in decreasing order, are
λ1, λ2, λ3, and λ4, the concurrence of ρ̂ is given by

C(ρ̂) = max{λ1 − λ2 − λ3 − λ4, 0}. (4)

It follows from Eqs. (1), (3), and (4) that, in our case, the
concurrence of the quantum state is

C(ρ̂) = 2I
√

IH IV = 2I
√

IH (1 − IH ). (5)

Below we show that for the quantum state given by Eq. (1),
the scheme allows us to test the PPT criterion as well as to
measure the concurrence.
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FIG. 2. Entanglement verification of a polarization-entangled
state. Each source (Q1, Q2) individually produces the state ρ̂

[Eq. (1)]. Device O of Fig. 1 is now a half-wave plate (HWP) and
device � projects photon β onto a horizontal (H ), vertical (V ),
diagonal (D), antidiagonal (A), right-circular (R), or left-circular (L)
polarization state. Photon β is detected at the PD and photon α is not
detected. For certain choices of HWP angle and certain choices of the
measurement basis, the single-photon interference pattern recorded
at the PD contains information of entanglement in state ρ̂.

IV. ENTANGLEMENT VERIFICATION
AND MEASUREMENT

A. Physical realization

The quantum state under consideration is entangled in
polarization. In this case, we choose the device O of Fig. 1
to be a half-wave plate (HWP). As for device �, we use a
combination of wave plates and a polarizer such that photon
β can be projected onto the horizontal (H), vertical (V ), diag-
onal (D), antidiagonal (A), right-circular (R), or left-circular
(L) polarization state. The experimental setup is illustrated
in Fig. 2.

Below we provide a detailed theoretical analysis explaining
how the information about entanglement can be obtained from
the single-photon interference patterns recorded at the PD.

B. Deriving the density operator

For the convenience of analysis, we rewrite Eq. (1) in the
following form:

ρ̂ j =
∑
μ,ν

√
IμIνIμν exp(iφμν )

∣∣μ j
α, μ

j
β

〉〈
ν j

α, ν
j
β

∣∣, (6)

where j = 1, 2 refers to the sources Q1 and Q2; μ = H,V ;
ν = H,V ; φμν = 0 for μ = ν, and φHV = −φV H = −φ; and

Iμν = Iνμ =
{

1 for μ = ν

I for μ �= ν.
(7)

We recall that sources produce only one photon pair in one
detection run. The most general state that such an arrangement
can produce is given by (Appendix A)

ρ̂ ′
αβ =

1,2∑
j,k

H,V∑
μ,ν

b jb
∗
k

√
IμIνPνk

μ j exp
(
iξνk

μ j

)∣∣μ j
α, μ

j
β

〉〈
νk

α, νk
β

∣∣, (8)

where both j = 1, 2 and k = 1, 2 refer to the sources, |bj |2
is the probability of the photon pair being emitted by source
Qj , and |b1|2 + |b2|2 = 1; the asterisk (∗) denotes complex
conjugation, the phase ξνk

μ j and the real positive quantity Pνk

μ j

must obey the relations (Appendix A)

ξνk

μ j = −ξ
μ j

νk ∀ j, k, μ, ν, and ξν j

μ j = φμν ∀ j, (9a)

Pνk

μ j = Pμ j

νk ∀ j, k, μ, ν, and Pν j

μ j = Iμν ∀ j, (9b)

and 0 � Pνk

μ j = Pμ j

νk � 1.
We now impose the condition that photon pairs emitted by

separate sources are fully coherent when they have the same
polarization, i.e.,

Pμ2

μ1 = Pμ1

μ2 = 1 for μ = H,V. (10)

This condition is easily attained in the laboratory by em-
ploying a pump laser with sufficiently long coherence length
[38]. If we apply this condition, it follows from the positive
semidefiniteness of ρ̂ ′

αβ that (Appendix B)

Pνk

μ j = Iμν, ∀ j, k, μ, ν, (11)

where Iμν is given by Eq. (7).
From Eqs. (8) and (11), we find that the density operator

representing the state of a photon pair in our system is given
by

ρ̂αβ =
1,2∑
j,k

H,V∑
μ,ν

b jb
∗
k

√
IμIνIμν exp

(
iξνk

μ j

)∣∣μ j
α, μ

j
β

〉〈
νk

α, νk
β

∣∣.
(12)

We now mathematically represent the interaction of the
HWP with photon α. Ideally, there should not be any loss of
photon in the propagation mode α1 between Q1 and Q2. How-
ever, due to experimental imperfections it is almost impossible
to avoid slight misalignment of paths and probabilistic ab-
sorption of photon α between Q1 and Q2. In order to make
our measurement scheme robust against such losses, we take
them into account quantitatively. Let Tμ be the probability
amplitude of photon α (polarized along direction μ) to arrive
at Q2 from Q1. Without any loss of generality, we can assume
that Tμ is real and therefore 0 < Tμ < 1. The combined effect
of the HWP and the losses can be represented by the following
relations involving field operators:

âH2
α

= eiφα
[
TH

(
âH1

α
cos 2θ + âV 1

α
sin 2θ

) + RH âH0

]
, (13a)

âV 2
α

= eiφα
[
TV

(
âH1

α
sin 2θ − âV 1

α
cos 2θ

) + RV âV0

]
, (13b)

where â represents a photon annihilation operator,
â†

μ
j
α

|vacuum〉 = |μ j
α〉, and âμ0 can be interpreted as the

field of a lost photon; Rμ =
√

1 − T 2
μ ; the HWP is set at angle

θ ; and φα is the phase gained due to the propagation through
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air from Q1 to Q2 (assumed to be the same for all polarization
directions).

We now proceed to derive the final form of the two-photon
quantum state in the setup. Let us rewrite Eq. (13) in the
compact form

âμ2
α

= eiφα

[
H,V∑
λ

μλ(θ )âλ1
α
+ Rμâμ0

]
, μ = H,V, (14)

where HH (θ ) = TH cos 2θ , HV (θ ) = TH sin 2θ , V H (θ ) =
TV sin 2θ , and VV (θ ) = −TV cos 2θ are all real quantities.
Using the facts that â†

μ
j
α

|vacuum〉 = |μ j
α〉 and â†

μ0
|vacuum〉 =

|μ〉0, we obtain from Eq. (14) the following transformation
law for a ket:

∣∣μ2
α

〉 = e−iφα

[
H,V∑
λ

μλ(θ )
∣∣λ1

α

〉 + Rμ|μ〉0

]
, (15)

where μλ(θ ) is defined below Eq. (14). The final form of the
density operator representing the two-photon quantum state
is obtained by substituting Eq. (15) into Eq. (12). We denote
this density operator by ρ̂

( f )
αβ and provide its explicit form in

Appendix C.
The density operator ρ̂

( f )
αβ (Appendix C) can be used to de-

termine the photon counting rate at the detector. Alternatively,
one can also use the reduced density operator (ρ̂β), which rep-
resents the state of photon β only. We use the latter approach
in our analysis. We obtain the reduced density operator (ρ̂β)
by taking partial trace of ρ̂

( f )
αβ over the subspace of photon α

and the loss modes. We find it to have the form

ρ̂β = |b1|2IH

∣∣H1
β

〉〈
H1

β

∣∣ + |b2|2IH

∣∣H2
β

〉〈
H2

β

∣∣
+ |b1|2IV

∣∣V 1
β

〉〈
V 1

β

∣∣ + |b2|2IV
∣∣V 2

β

〉〈
V 2

β

∣∣
+ [

b1b∗
2 cos 2θ

(
IH TH exp

{
i(φα + ξH2

H1

)}∣∣H1
β

〉〈
H2

β

∣∣
− IV TV exp

{
i
(
φα + ξV 2

V 1

)}∣∣V 1
β

〉〈
V 2

β

∣∣) + H.c.
]

+ [
b1b∗

2I
√

IH IV sin 2θ
(
TV exp

{
i
(
φα + ξV 2

H1

)}∣∣H1
β

〉〈
V 2

β

∣∣
+ TH exp

{
i
(
φα + ξH2

V 1

)}∣∣V 1
β

〉〈
H2

β

∣∣) + H.c.
]
. (16)

C. Determining photon counting rates and visibility

We now show how to determine the single-photon count-
ing rate. We recall that the propagation modes β1 and β2

are superposed by BS and one of the outputs of BS is sent
through a device, �, which projects photon β onto a partic-
ular polarization state (H , V , D, A, R, or L). Therefore, the
positive-frequency part of the quantized electric field at the
detector can be represented by

Ê (+)
μβ

= âμ1
β
+ ieiφβ âμ2

β
, μ = H,V, D, A, R, L, (17)

where â
μ

j
β

is the annihilation operator corresponding to pho-

ton β with polarization μ in beam β j .
The single-photon counting rate (for a given polarization)

at the detector can now be obtained by the standard formula

Rμ = tr{ρ̂β Ê (−)
μβ

Ê (+)
μβ

}, (18)

where Ê (−)
μβ

= {Ê (+)
μβ

}†
, and ρ̂β and Ê (+)

μβ
are given by Eqs. (16)

and (17), respectively. We show below in Sec. IV D that the
photon counting rates measured for various polarizations rep-
resent various interference patterns. The visibility of any such
pattern is determined by the standard formula

Vμ = Rmax
μ − Rmin

μ

Rmax
μ + Rmin

μ

, (19)

where μ represents the polarization of the detected photon
(β), and Rmax

μ and Rmin
μ are, respectively, the maximum and

the minimum values of the single-photon counting rate.
In the next section (Sec. IV D), we show that the quan-

tity I
√

IH IV , which appears in the PPT criterion [Eq. (2)]
and also in the formula of concurrence [Eq. (5)], can be
determined from the visibility of the above-mentioned single-
photon interference patterns.

D. Signature of entanglement in single-photon
interference patterns

We first consider the cases in which photon β is projected
onto |Hβ〉 and |Vβ〉 polarization states. By the use of Eqs. (16)–
(18), we find that the photon counting rates are given by (we
have applied |b1|2 + |b2|2 = 1)

RH = IH
{
1 + 2|b1||b2|TH cos 2θ sin

(
φin + ξH2

H1

)}
, (20a)

RV = IV
{
1 − 2|b1||b2|TV cos 2θ sin

(
φin + ξV 2

V 1

)}
, (20b)

where φin = φα − φβ + arg{b1} − arg{b2} is the interferomet-
ric phase that is modulated to obtain the interference patterns.
It follows from Eqs. (19) and (20) that visibilities measured
for H and V polarizations are

VH = 2|b1||b2|TH cos 2θ, (21a)

VV = 2|b1||b2|TV cos 2θ. (21b)

Clearly, when the half-wave plate is set at angle θ = 0, the vis-
ibilities measured for these polarizations have their maximum
values

VH |θ=0 = 2|b1||b2|TH , VV |θ=0 = 2|b1||b2|TV . (22)

We note that expressions of VH and VV do not contain IH ,
IV , or I . Therefore, measurement in this basis does not yield
any information about entanglement. However, VH |θ=0 and
VH |θ=0 provide us with a quantitative measure of the photon
loss in the propagation mode α1. Therefore, it is crucial to
measure them in an actual experiment.

We now consider the case when the polarization of the
detected photon is diagonal (D); i.e., photon β is projected
onto state |Dβ〉 [42]. It follows from Eqs. (16)–(18) that the
corresponding photon counting rate has the form

RD = 1
2

[
1 + 2|b1||b2| cos 2θ

{
IH TH sin

(
φin + ξH2

H1

)
− IV TV sin

(
φin + ξV 2

V 1

)}
+ 2I

√
IH IV |b1||b2| sin 2θ

{
TV sin

(
φin + ξV 2

H1

)
+ TH sin

(
φin + ξH2

V 1

)}]
, (23)

where we have applied the formulas |b1|2 + |b2|2 = 1 and
IH + IV = 1. We now set the half-wave-plate angle to be π/4,
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i.e., cos 2θ = 0 and sin 2θ = 1. Under this condition Eq. (23)
reduces to [43]

RD|θ= π
4

= 1
2

[
1 + 2I

√
IH IV |b1||b2|

×
√

T 2
H + T 2

V + 2TH TV cos
(
ξH2

V 1 − ξV 2

H1

)
× sin(φin + ζ )

]
, (24)

where φin = φα − φβ + arg{b1} − arg{b2} and tan ζ =
TH sin(ξH2

V 1 − ξV 2

H1 )/[TV + TH cos(ξH2

V 1 − ξV 2

H1 )]; the explicit
form of ζ is not required for our purpose.

Following the same procedure, we find for |Aβ〉 that the
photon counting rate is given by [44]

RA|θ= π
4

= 1
2

[
1 − 2I

√
IH IV |b1||b2|

×
√

T 2
H + T 2

V + 2TH TV cos
(
ξH2

V 1 − ξV 2

H1

)
× sin(φin + ζ )

]
. (25)

It follows from Eqs. (19), (24), and (25) that the
single-photon interference patterns recorded for D and A po-
larizations have the same visibility:

VD|θ= π
4

= VA|θ= π
4

= 2I
√

IH IV |b1||b2|

×
√

T 2
H + T 2

V + 2TH TV cos
(
ξH2

V 1 − ξV 2

H1

)
. (26)

We note that the concurrence (C(ρ̂) = 2I
√

IH IV ) appears in
the formulas of VD|θ= π

4
and VA|θ= π

4
. This fact implies that

the single-photon interference patterns recorded for diagonal
and antidiagonal polarizations contain information about the
amount of entanglement in the two-photon mixed state.

Calculations for right-circular (R) and left-circular (L)
polarizations are very similar to those for diagonal and antidi-
agonal polarizations. When the half-wave-plate angle is set
such that θ = π/4, the corresponding photon counting rates
become

RR|θ= π
4

= 1
2

[
1 − 2I

√
IH IV |b1||b2|

×
√

T 2
H + T 2

V − 2TH TV cos
(
ξH2

V 1 − ξV 2

H1

)
× sin(φin − ζ ′)

]
, (27a)

RL|θ= π
4

= 1
2

[
1 + 2I

√
IH IV |b1||b2|

×
√

T 2
H + T 2

V − 2TH TV cos
(
ξH2

V 1 − ξV 2

H1

)
× sin(φin − ζ ′)

]
, (27b)

where φin = φα − φβ + arg{b1} − arg{b2} and tan ζ ′ =
TH sin(ξH2

V 1 − ξV 2

H1 )/[TV − TH cos(ξH2

V 1 − ξV 2

H1 )]; the explicit
form of ζ ′ is not required for our purpose. Clearly, visibilities
measured for R and L polarizations are given by

VR|θ= π
4

= VL|θ= π
4

= 2I
√

IH IV |b1||b2|

×
√

T 2
H + T 2

V − 2TH TV cos
(
ξH2

V 1 − ξV 2

H1

)
. (28)

The presence of the concurrence (C(ρ̂) = 2I
√

IH IV ) in
Eqs. (27) and (28) shows that the single-photon interference
patterns recorded for right-circular and left-circular polariza-

tions contain information about the amount of entanglement
in the two-photon mixed state.

We note that the visibilities measured for diagonal, an-
tidiagonal, right-circular, and left-circular polarizations are
linearly proportional to the concurrence of the two-photon
state (ρ̂).

E. Test of the PPT criterion

We now show that if I
√

IH IV �= 0, visibilities measured
for diagonal (D) and right-circular (R) polarizations can never
be simultaneously zero when the HWP angle is set at θ =
π/4. It follows from Eqs. (26) and (28) that(

VD

∣∣
θ= π

4

)2 + (
VR

∣∣
θ= π

4

)2 = 8|b1|2|b2|2
(
T 2

H + T 2
V

)
× (I

√
IH IV )2. (29)

Since |b1|, |b2|, TH , and TV must be nonzero quantities,
VD|θ= π

4
and VR|θ= π

4
can be simultaneously equal to zero if

and only if I
√

IH IV = 0. According to the PPT criterion
(Sec. III), the condition I

√
IH IV = 0 implies that the two-

photon mixed state [Eq. (1)] is separable. Since VD|θ= π
4

=
VA|θ= π

4
and VR|θ= π

4
= VL|θ= π

4
, it follows from the PPT cri-

terion that when the HWP angle is set at θ = π/4, a nonzero
value of the visibility (of the single-photon interference pat-
terns) obtained for any one of polarizations D, A, R, and
L confirms that the two-photon mixed state, ρ̂ [Eq. (1)], is
entangled. The state is separable (not entangled) if and only if
visibilities measured for all of these polarizations are zero.

We illustrate the test of the PPT criterion by numerical
examples in Sec. IV G.

F. Determining the concurrence

It follows from the results of Sec. IV D that the concur-
rence, C(ρ̂), of the two-photon mixed state can be determined
from the single-photon patterns. By the use of Eqs. (5), (22),
and (29), we find that

C(ρ̂) =

√√√√
2

(
VD

∣∣
θ= π

4

)2 + (
VR

∣∣
θ= π

4

)2

(VH |θ=0)2 + (VV |θ=0)2
, (30)

where D and R can be replaced by A and L, respectively.
It follows from Eq. (30) that in order to determine the

concurrence, one needs to measure visibilities not only for
|Dβ〉 (or |Aβ〉) and |Rβ〉 (or |Lβ〉) but also for |Hβ〉 and |Vβ〉.
However, we recall that although measurements correspond-
ing to |Dβ〉, |Aβ〉, |Rβ〉, and |Lβ〉 yield information about
entanglement, measurements corresponding to |Hβ〉 and |Vβ〉
do not. Therefore, it is natural to ask why measuring visibility
for |Hβ〉 and |Vβ〉 is necessary to determine the concurrence.

Actually, under the ideal conditions (|b1| = |b2| = 1/
√

2
and TH = TV = 1), it is not required to measure the visibil-
ity for |Hβ〉 and |Vβ〉. It can be readily checked that in this
case the denominator on the right-hand side of Eq. (30) is
equal to 1. However, no experimental situation is perfectly
ideal. In particular, it is extremely challenging to achieve
the condition TH = TV = 1 due to photon losses and im-
perfect alignment. Furthermore, emission probabilities at the
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TABLE I. Two-photon mixed states used for illustration. The
symbol “–” implies not applicable. Parameter φ [see Eq. (1)] is not
displayed because it plays no role in determining the amount of
entanglement.

State IH IV I Concurrence

ρ̂1 1 0 – 0
ρ̂2 0.5 0.5 0 0
ρ̂3 0.5 0.5 0.32 0.32
ρ̂4 0.5 0.5 0.5 0.5
ρ̂5 0.5 0.5 1 1

two sources (Q1 and Q2) may not be equal; i.e., the con-
dition |b1| = |b2| may not always apply. The measurement
of visibility when photon β is projected onto states |Hβ〉
and |Vβ〉 allows us to take care of these experimental im-
perfections. In fact, Eq. (30) shows that in spite of all such
imperfections being present, one is able to determine the con-
currence by the use of our method. This fact has been verified
experimentally [38].

G. Numerical illustration of results

We choose five density operators whose parameters are
listed in Table I. We determine the values of concurrence of
these states by the use of Eq. (5) and find that states ρ̂1 and
ρ̂2 are separable, whereas state ρ̂5 is maximally entangled (a
Bell state). Note that the density operator ρ̂1 represents a pure
state and ρ̂2 represents a fully mixed state. States ρ̂3 and ρ̂4

are neither maximally entangled nor separable.
For testing the PPT criterion with these states, we simulate

an experimental situation in which experimental imperfec-
tions are present. In order to simulate the experimental
imperfections, we assume that probabilities of emission at
the two sources are not equal (|b1| �= |b2|) and that there are
photon losses in beam α1 due to imperfect alignment (TH �= 1,
TV �= 1). The parameters are chosen as follows: |b1|2 = 0.55,
|b2|2 = 0.45, TH = 0.9, TV = 0.85, and ξH2

V 1 − ξV 2

H1 = π/4. By
the use of Eqs. (26) and (28), we compute the visibility of the
single-photon patterns recorded for |Dβ〉, |Aβ〉, |Rβ〉, and |Lβ〉.
The values of visibility are listed in Table II.

We find that for separable states (ρ̂1 and ρ̂2) the visibilities
obtained for |Dβ〉, |Aβ〉, |Rβ〉, and |Lβ〉 are all equal to zero.

TABLE II. Test of the PPT criterion for five different two-photon
mixed states (Table I). Choice of parameters: |b1|2 = 0.55, |b2|2 =
0.45, TH = 0.9, TV = 0.85, and ξH2

V 1 − ξV 2

H1 = π/4. For separable
(not-entangled) states, visibilities measured for |Dβ〉, |Aβ〉, |Rβ〉, and
|Lβ〉 are all zero.

State VD|θ= π
4

VA|θ= π
4

VR|θ= π
4

VL|θ= π
4

PPT criterion

ρ̂1 0 0 0 0 separable
ρ̂2 0 0 0 0 separable
ρ̂3 0.76 0.76 0.31 0.31 entangled
ρ̂4 0.40 0.40 0.17 0.17 entangled
ρ̂5 0.80 0.80 0.33 0.33 entangled

FIG. 3. Determining concurrence from single-photon visibility.
Experimental imperfections are simulated by choosing |b1|2 = 0.55,
|b2|2 = 0.45, TH = 0.9, and TV = 0.85. Simulated data points (solid
circles) represent computed values of the concurrence and of S/N
for five quantum states given by Table I. (Data points for ρ̂1 and ρ̂2

coincide.) All simulated data points lie on the straight line predicted
by Eq. (30) showing that the concurrence is equal to S/N despite the
presence of experimental imperfections.

Nonzero values of visibility for one of these polarizations
confirm entanglement in the two-photon state.

We now illustrate how the concurrence of the two-photon
mixed state can be determined from the single-photon in-
terference patterns even when experimental imperfections
are present. For simplicity of notation, we denote the
quantity

√
(VD|θ= π

4
)2 + (VR|θ= π

4
)2 by S and the quantity√

[(VH |θ=0)2 + (VV |θ=0)2]/2 by N . In this notation, the right-
hand side of Eq. (30) becomes S/N .

We choose the same experimental parameters given above.
For the five states given by Table I, we compute the values of
the concurrence in two ways: (i) by the use of Eq. (5) and (ii)
by determining the values of S and N from Eqs. (22), (26), and
(28). In Fig. 3, we plot the obtained values of the concurrence
against S/N and find that they lie exactly on the straight line
predicted by Eq. (30). Since both S and N can be measured
experimentally, Fig. 3 illustrates that the concurrence of a two-
photon mixed state can be experimentally determined from
single-photon interference patterns.

V. SUMMARY AND CONCLUSIONS

Entanglement certification and measurement is an ac-
tive and widely studied field of research which is directly
connected to the fundamental topic of quantum state measure-
ment and has immediate applications to quantum information
science. It is a common perception in this field that in or-
der to certify entanglement in a two-particle mixed state one
must detect both particles. We have shown that it is possible
to verify and measure entanglement in a two-particle mixed
state without detecting one of the particles and without any
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postselection. Our method has also been successfully tested
experimentally [38].

To demonstrate our method, we have chosen a mixed state
that can be obtained by generalizing two Bell states (see
Sec. III). It is straightforward to show that our method also
applies to the mixed state which can be obtained by gener-
alizing the other two Bell states [45]. Therefore, our method
currently covers all four Bell states and any two-dimensional
mixed state that is obtained by generalizing them.

Our method is based on the concept of path iden-
tity [29,30]. This concept has recently drawn considerable
attention after it has found important applications to imag-
ing [32,33], spectroscopy [34], microwave superconducting
cavities [46], polarization control [35], optical coherence
tomography [47,48], the measurement of momentum corre-
lation [49,50], the generation of entangled states [51–55], and
fundamental tests of quantum mechanics [36,37]. Like many
of these applications, our entanglement verification method
requires detection of only one of the particles of a two-particle
system. Therefore, our method will be practically useful to test
entanglement of a two-particle mixed state when a detector for
one of the particles is not available.

The theoretical analysis is based on quantum field theory,
which shows that the method can, in principle, be applied
to nonphotonic quantum states. Finally, our results open up
a distinct avenue in verifying and measuring entanglement.
They also inspire further questions. For example, one may
now ask how to generalize the method so that it applies to
many-particle high-dimensional entangled states.
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APPENDIX A: DENSITY OPERATOR REPRESENTED
BY EQS. (8) AND (9)

Here, we derive the density operator given by Eqs. (8) and
(9). In order to derive the density operator, we first recall two
important facts: (1) the sources Q1 and Q2 emit in such a way
that they jointly produce only one photon pair at a time, i.e.,
the density operator must represent a state that is occupied
by only two photons, and (2) the sources cannot produce
biphoton states of the form |Hα,Vβ〉 and |Vα, Hβ〉. Therefore,
the most general form that the density operator can take is

given by

ρ̂ ′
αβ =

1,2∑
j,k

H,V∑
μ,ν

b jb
∗
k

√
I j
μIk

ν Pνk

μ j exp
(
iξνk

μ j

)∣∣μ j
α, μ

j
β

〉〈
νk

α, νk
β

∣∣,
(A1)

where j = 1, 2 and k = 1, 2 represent the sources; μ = H,V
and ν = H,V ; |bj |2 is the probability of the photon pair being
emitted by source Qj ; |b1|2 + |b2|2 = 1; I j

μ is the probability
with which source Qj emits the photon pair |μα,μβ〉; Pνk

μ j is a

non-negative real quantity; and ξνk

μ j is a phase (real quantity).

Since Q1 and Q2 are identical sources, I j
μ does not depend

on j; we therefore drop this superscript and obtain the form
[Eq. (8) in main text]

ρ̂ ′
αβ =

1,2∑
j,k

H,V∑
μ,ν

b jb
∗
k

√
IμIνPνk

μ j exp
(
iξνk

μ j

)∣∣μ j
α, μ

j
β

〉〈
νk

α, νk
β

∣∣.
(A2)

One can readily check that this density operator has unit trace.
Below we derive the conditions that the coefficients associated
with the density operator must obey.

If Q2 does not emit (i.e., |b2| = 0 and |b1| = 1), the density
operator, ρ̂ ′

αβ , must reduce to the state of light generated by Q1

alone [i.e., state ρ̂1 given by Eq. (6)]. Likewise, if Q1 does
not emit (i.e., |b1| = 0 and |b2| = 1), the density operator,
ρ̂ ′

αβ , must reduce to the state of light generated by Q2 alone
[i.e., state ρ̂2 given by Eq. (6)]. Using these two facts, we
immediately obtain

ξν j

μ j = φμν and Pν j

μ j = Iμν, j = 1, 2. (A3)

Furthermore, the density operator must be Hermitian. We
therefore have

ξνk

μ j = −ξ
μ j

νk and Pνk

μ j = Pμ j

νk , ∀ j, k, μ, ν. (A4)

This completes the derivation of the density operator given by
Eqs. (8) and (9).

APPENDIX B: DERIVATION OF EQ. (11)

In this Appendix, we derive Eq. (11) by the use of
Eqs. (8)–(10). Equations (8) and (9) have already been redis-
played in Appendix A. For the convenience of readers, we
display Eq. (10) once again below:

Pμ2

μ1 = Pμ1

μ2 = 1 for μ = H,V. (B1)

We note that the matrix elements of the density operator
[Eq. (8)] contain four kinds of parameters: bj , Iμ, Pνk

μ j , and ξνk

μ j .
Each of them has a distinct physical meaning, and their values
do not depend on each other. For example, the value of Pνk

μ j

does not change if the values of b j , Iμ, and ξνk

μ j are changed.
This fact allows for a very simple derivation of Eq. (11). We
set b1 = b2 = 1/

√
2, IH = IV = 1/2, and ξνk

μ j = 0 and rep-
resent the density operator in the following matrix form by
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combining Eqs. (8)–(10):⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4 0 0 I

4
1
4 0 0

PV 2

H1

4

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

I
4 0 0 1

4

PH2

V 1

4 0 0 1
4

1
4 0 0

PH2

V 1

4
1
4 0 0 I

4

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

PV 2

H1

4 0 0 1
4

I
4 0 0 1

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B2)

Since a density matrix must be positive semidefinite, all
principal minors of the matrix given by Eq. (B2) must be

non-negative [56]. It now immediately follows that

PV 2

H1 = PH2

V 1 = I . (B3)

These relationships given by Eqs. (10), (9b), and (B3) are
jointly represented by Eq. (11):

Pνk

μ j = Iμν, ∀ j, k, μ, ν. (B4)

APPENDIX C: EXPLICIT FORM OF THE FINAL
DENSITY OPERATOR

Here we provide the explicit form of the density operator,
ρ̂

( f )
αβ , representing the photon pair in our system. We substitute

Eq. (15) into Eq. (12) and find that

ρ̂
( f )
αβ =

H,V∑
μ,ν

|b1|2
√

IμIνIμν exp(iφμν )
∣∣μ1

α, μ1
β

〉〈
ν1

α, ν1
β

∣∣ +
H,V∑
μ,ν

b1b∗
2

√
IμIνIμν exp

[
i
(
ξν2

μ1 + φα

)]
Rν

∣∣μ1
α, μ1

β

〉〈
ν0, ν

2
β

∣∣

+
H,V∑
μ,ν

b∗
1b2

√
IμIνIμν exp

[
i
(
ξν1

μ2 − φα

)]
Rμ

∣∣μ0, μ
2
β

〉〈
ν1

α, ν1
β

∣∣

+
H,V∑
μ,ν

|b2|2
√

IμIνIμν exp(iφμν )

[
RμRν

∣∣μ0, μ
2
β

〉〈
ν0, ν

2
β

∣∣ + Rν

H,V∑
λ

μλ(θ )
∣∣λ1

α, μ2
β

〉〈
ν0, ν

2
β

∣∣

+ Rμ

H,V∑
λ

νλ(θ )
∣∣μ0, μ

2
β

〉〈
λ1

α, ν2
β

∣∣ +
H,V∑
λ

H,V∑
ε

μλ(θ )νε (θ )
∣∣λ1

α, μ2
β

〉〈
ε1
α, ν2

β

∣∣]. (C1)
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