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Quantum spatial dynamics of high-gain parametric down-conversion accompanied
by cascaded up-conversion
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Quantum cascaded up-conversion (CUpC) of parametric down conversion (PDC) in a finite nonlinear χ (2)

crystal is studied theoretically within parametric approximation. The exact solution for creation and annihilation
operators presented in the form of Bogoliubov transformation is valid for the high-gain regime and explicitly
includes the nonzero wave-vector mismatch both for PDC and CUpC. Characteristic equation is used to analyze
parametric amplification and oscillating regimes for degenerate, three- and four-mode cases. We show that the
parametric amplification exists under the fulfillment of the cascaded phase-matching conditions while both the
PDC and CUpC processes are separately non-phase-matched. The influence of CUpC on quadrature squeezing
of degenerate PDC is estimated.
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I. INTRODUCTION

Quantum light sources and frequency converters based on
nonlinear optical effects are of special interest in quantum op-
tics and technologies [1–3]. Nowadays, the most widespread
nonclassical light sources are based on the second-order non-
linear effect of parametric down-conversion (PDC) [1]. PDC
is the parametric amplification of electromagnetic vacuum
fluctuations that occur in nonlinear crystals and lead to photon
pair creation in so-called signal and idler modes. On the output
of the crystal, the squeezed vacuum state [4] (or the bright
squeezed vacuum state in the high-gain regime [5]) is realized.
Signal and idler photons reveal quantum correlations that al-
low one, e.g., to prepare entangled states [3,6] and overcome
shot-noise limit [7,8].

Simultaneously with PDC, signal and idler photons can be
involved in the same nonlinear crystal into additional nonlin-
ear processes, called “cascaded” or “multistep” processes [9].
One of such processes is the cascaded up-conversion (CUpC)
of signal (or idler) PDC photons, which generally leads to
coupling of four modes: signal, idler, and their up-converted
modes. The CUpC of PDC is known also as “cascaded hy-
perparametric scattering” [1] or “parametric amplification at
low-frequency pump” [10], when the seed in signal (or idler)
wave is present.

PDC with CUpC is of interest as nonclassical light source
with unique properties. The first observations of CUpC from
PDC were obtained in the 1970s for the three-mode in-
teraction, when CUpC process took place for the signal
PDC mode [11,12], and the nonclassical statistical proper-
ties of the generated light were studied theoretically [13–17].
Later, the tripartite entangled states based on the CUpC
were implemented [18–21] and the properties of the CUpC
from high-gain PDC were experimentally studied [22,23]. In
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addition to the three-mode case, the degenerate regime (where
signal and idler modes are not distinguishable) [24,25] and
four-mode generation (where both the signal and idler waves
are up-converted) [26,27] were theoretically considered.

The effect of PDC with CUpC arises also in the quantum
frequency converters (QFC) that are used for the detection
of IR radiation at the single-photon level [28,29] or for the
entanglement support between remote ions [30]. The non-
phase-matched PDC is present in QFC as a fundamental noise
that was demonstrated, e.g., in Refs. [31–34].

The common quantum description of PDC with CUpC
is realized in terms of the temporal evolution [16,17,20,25–
27,35], while the nonzero wave-vector mismatch for consid-
ered nonlinear processes is omitted or involved effectively
into the coupling constants with the use of short-length crys-
tal approximation. However, the properties of quantum light
generated via nonlinear optical effects are determined by the
spatial dynamics of interacting waves in nonlinear crystal,
e.g., correct accounting of nonzero wave-vector mismatches is
critical for the broadband multimode high-gain PDC [36,37].

In contrast to the temporal evolution, the dynamics of the
quantized electromagnetic field inside nonlinear crystals can
be described in terms of the spatial evolution [38,39]. This ap-
proach was successfully applied to the PDC generation (e.g.,
Refs. [39–42]), analysis of optical harmonics generation from
multimode broadband PDC [43,44], and the investigation of
the properties of quantum nonlinear couplers [24,45].

In this paper, we apply the formalism of the spatial evolu-
tion of the quantized light to the PDC accompanied by CUpC.
The paper is organized as follows: In Sec. II, we consider the
main aspects of the studied nonlinear optical processes and
reduce the initial Heisenberg equations for annihilation op-
erators to the ordinary differential system for the Bogoliubov
functions that is solved analytically. In Sec. III, the degenerate
PDC with CUpC is studied and the oscillating regime and
parametric amplification are analyzed. In addition, the influ-
ence of CUpC on PDC squeezing properties is considered.
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In Sec. IV, our approach is applied to the three- and four-mode
CUpC of PDC and the parametric amplification for cascaded
phase-matching conditions is demonstrated.

II. THEORETICAL APPROACH

For the quantum description of PDC coupled with CUpC
in the transparent one-dimensional finite nonlinear crystal,
we use the formalism based on momentum operator of the
electromagnetic field [38,39]. In Heisenberg representation,
the light that propagates along the z axis inside the dispersive
medium is presented in terms of discrete temporal modes,
with the frequencies ωm = 2πm/T , where m = 0, 1, 2 . . .

and T is quantization time. The electric field operator (the
polarization indexes are omitted) has the form

Ê (z, t ) =
∑

ω

√
h̄ω

2ε0cT n(ω)
f̂ (ω, z)e−iωt + H.c., (1)

where f̂ (ω, z) and f̂ †(ω, z) are annihilation and creation op-
erators with the bosonic commutation relations

[ f̂ (ω, z), f̂ †(ω′, z)] = δωω′ ,

[ f̂ (ω, z), f̂ (ω′, z)] = [ f̂ †(ω, z), f̂ †(ω′, z)] = 0. (2)

The annihilation operators satisfy the Heisenberg equation
[39]

d f̂ (ω, z)

dz
= i

h̄
[ f̂ (ω, z), Ĝ(z)], (3)

where the momentum operator Ĝ(z) is the generator for spatial
evolution.

In this paper, we assume that the state on the input of
the nonlinear crystal is vacuum one, and thus the quantum-
mechanical averaging 〈...〉 is obtained over the vacuum state
|0〉. The mean number of photons Nω(z) in the mode f̂ (ω, z)
has the form

Nω(z) ≡ 〈0| f̂ †(ω, z) f̂ (ω, z)|0〉. (4)

In addition to the mean number of photons, the squeezing
properties of interacting modes are studied. For the arbitrary
collective mode

F̂ (δ, z) = f̂ (ω1, z) + eiδ f̂ (ω2, z)√
2

, (5)

the quadrature operator

X̂F (θ, δ, z) = F̂ (δ, z)eiθ + F̂ †(δ, z)e−iθ . (6)

can be introduced. For θ = 0 and θ = π/2, this operator cor-
responds to the position Q̂F and momentum P̂F quadratures,
respectively. The variance of the quadrature (6) has the form

[�XF (θ, δ, z)]2 = 〈X̂ 2
F (θ, δ, z)〉 − 〈X̂F (θ, δ, z)〉2. (7)

The quadrature variance (7) depends on two parameters
(θ, δ) and its minimal value (�X min

F )2 can be used as the
characteristic of the squeezing properties. For the vacuum
state, the minimal variance of quadrature (�X min

vac )2 = 1 and
does not depend on the angles (θ, δ). For the arbitrary quan-
tum state, the minimal variance (�X min)2 can be either larger

FIG. 1. (a) Phase space plot, showing the uncertainty for three
different states: 1, vacuum state; 2, squeezed state with (�X min

2 )2 <

(�X min
vac )2; and 3, state with (�X min

3 )2 > (�X min
, )2. The minimal

quadrature variance for states 2 and 3 is achieved at angles θ2 and θ3,
respectively. (b) Schematic representation of PDC with CUpC with
multiple pump waves. At each point of the nonlinear crystal three si-
multaneous processes occur: PDC (photons are created in signal and
idler modes) and cascaded up-conversion of signal photons and idler
photons. In the case of a single pump wave, Ep(z) ≡ Ei(z) ≡ Es(z).

(antisqueezed state) or lower (squeezed state) than the vacuum
one [Fig. 1(a)].

In the case of quadrature squeezing of single mode
f̂ (ω, z), it is sufficient to consider the quadrature in the form
X̂ f (θ, z) = f̂ (ω, z)eiθ + f̂ †(ω, z)e−iθ .

A. Spatial dynamics of PDC with CUpC

Our description of PDC with CUpC is based on several
assumptions. First, we omit all the effects caused by the po-
larization of the light: The coupling of the interacting modes is
described by effective susceptibilities. Second, the parametric
approximation is applied: A classical monochromatic wave in
the form Ep = 1

2Epe−i(ωpt−kpz) + c.c. is used as a pump wave,
where Ep is the complex amplitude of the field, ωp is pump
frequency, and kp = k(ωp) is pump wave vector in the non-
linear crystal. The use of a monochromatic pump leads to the
coupling between monochromatic PDC and CUpC modes and
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instead of broadband radiation in the form (1) one can con-
sider nonlinear interaction between separate monochromatic
modes that satisfy the energy conservation law (the dynamic
of broadband radiation can be assembled from the solution for
monochromatic modes [39]).

As a result, three simultaneous second-order processes are
considered in the nonlinear crystal: PDC (ωp = ωas + ωai),
signal CUpC (ωp + ωas = ωbs), and idler CUpC (ωp + ωai =
ωbi). Here and further in the text, the indexes a and b cor-
respond to the PDC and CUpC modes, respectively, and
indexes s and i indicate signal and idler waves. Thereby, four
quantized modes are involved into the nonlinear interaction
[Fig. 1(b)]:

âs(z) = α̂s(z)eikasz ≡ f̂ (ωas, z) (PDC signal), (8)

âi(z) = α̂i(z)eikaiz ≡ f̂ (ωai, z) (PDC idler), (9)

b̂s(z) = β̂s(z)eikbsz ≡ f̂ (ωbs, z) (CUpC signal), (10)

b̂i(z) = β̂i(z)eikbiz ≡ f̂ (ωbi, z) (CUpC idler), (11)

where the slowly varying annihilation operators α̂(z) and β̂(z)
are introduced, and kn = k(ωn) are the wave vectors for each
mode in nonlinear medium.

The momentum operator for studied system in Heisenberg
representation consists of two terms Ĝ(z) = Ĝl (z) + Ĝnl(z).
The linear part Ĝl (z) describes the propagation for each mode
in the linear dielectric medium

Ĝl (z) = h̄

2

∑
n=s,i

[kanâ†
n(z)ân(z) + kbnb̂†

n(z)b̂n(z)] + H.c. (12)

The nonlinear term Ĝnl characterizes the nonlinear opti-
cal interaction that is present as a sum of two contributions,
Ĝnl(z) = Ĝpdc(z) + Ĝupc(z), where

Ĝpdc(z) = h̄κ â†
s (z)â†

i (z)eikpz + H.c. (13)

corresponds to PDC (photon creation in signal and idler
modes). The momentum operator for signal (s) and idler (i)
CUpC is the following:

Ĝupc(z) = h̄ηs âs(z)b̂†
s (z)eikpz

+ h̄ηi âi(z)b̂†
i (z)eikpz + H.c. (14)

Here κ ∝ χ
(2)
pdc Ep, ηs,i ∝ χ

(2)
s,i Ep are the complex coupling

constants for PDC and for signal and idler CUpC, respec-
tively. The χ (2)

n are the effective nonlinear susceptibilities for
each process.

By substituting (12), (13), and (14) into (3) and applying
the expression dâ(z)/dz = ikaâ(z) + eikaz dα̂(z)/dz, the two
independent systems of Heisenberg equations for slowly vary-
ing operators are obtained. The first one is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dα̂s (z)
dz = iκei�̃zα̂

†
i (z) + iη∗

s ei�szβ̂s(z),
dβ̂s (z)

dz = iηse−i�szα̂s(z),
dα̂

†
i (z)

dz = −iκ∗e−i�̃zα̂s(z) − iηie−i�izβ̂
†
i (z),

dβ̂
†
i (z)
dz = −iη∗

i ei�izα̂
†
i (z),

(15)

while the second one has the same form as (15) but with the
replaced indexes i ↔ s. Here the �̃ = kp − kas − kai is the
wave-vector mismatch of PDC and �s,i = kbs,bi − kas,ai − kp

are the wave-vector mismatches of CUpC for signal (s) and
idler (i) modes.

1. Multiple pump waves

One should notice that our approach and Eqs. (15) are
valid also for the case when CUpC is generated by additional
pump waves different from PDC pump. Then CUpC of each
PDC mode can be initiated by its own monochromatic pump
waves: Es,i = 1

2Es,ie−i(ωps,pit−kps,piz) + c.c. [Fig. 1(b)]. Thus, the
frequencies of signal CUpC and idler CUpC are ωbs,bi =
ωps,pi + ωas,ai, respectively, and each coupling parameter is
proportional to the corresponding complex field amplitude:
κ ∝ Ep, ηs,i ∝ Es,i with its own initial phase. In turn, the
wave-vector mismatches �s,i = kbs,bi − kas,ai − kps,pi can be
independently controlled by varying pump frequencies.

Regardless of pump wave number and experimental re-
alization (crystal type, pump lasers, etc.), the solution and
analysis of PDC with CUpC can be performed in terms of
six parameters: κ, ηs, ηi, �̃,�s,�i, and thus, further, without
loss of generality we consider all this parameters independent.

2. Exact solution

In this paper, the exact solution of Eqs. (15) is found by
using the approach presented in Ref. [36]. So far as the mo-
mentum operator has the bilinear form and the equations (15)
are linear on creation and annihilation operators, the solution
can be presented in the form of Bogoliubov transformation
(see Appendix A)

(
α̂s(z)

β̂s(z)

)
=
(

Us(z) Vs(z) Ws(z) Qs(z)

Ks(z) Ls(z) Ms(z) Ns(z)

)⎛⎜⎜⎜⎜⎝
α̂s(0)

α̂
†
i (0)

β̂s(0)

β̂
†
i (0)

⎞⎟⎟⎟⎟⎠.

(16)

The similar transformation for the operators αi(z) and βi(z)
have the form (16) with replaced indexes s ↔ i.

By substituting (16) into the system (15) and combining the
coefficients before the operators, one can get two differential
systems for the introduced Bogoliubov’s functions⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dUs (z)
dz = iκ ei�̃z V ∗

i (z) + iη∗
s ei�sz Ks(z),

dV ∗
i (z)
dz = −iκ∗e−i�̃zUs(z) − iηie−i�izL∗

i (z),
dKs (z)

dz = iηs e−i�sz Us(z),
dL∗

i (z)
dz = −iη∗

i ei�iz V ∗
i (z),

Us(0) = 1,V ∗
i (0) = 0, Ks(0) = 0, L∗

i (0) = 0,

(17)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dWs (z)
dz = iκei�̃z Q∗

i (z) + iη∗
s ei�sz Ms(z),

dQ∗
i (z)

dz = −iκ∗e−i�̃zWs(z) − iηie−i�izN∗
i (z),

dMs (z)
dz = iηs e−i�sz Ws(z),

dN∗
i (z)

dz = −iη∗
i ei�iz Q∗

i (z),

Ws(0) = 0, Q∗
i (0) = 0, Ms(0) = 1, N∗

i (0) = 0.

(18)

013702-3



A. V. RASPUTNYI AND D. A. KOPYLOV PHYSICAL REVIEW A 104, 013702 (2021)

The equations for the functions Ui(z), V ∗
s (z), Ki(z), L∗

s (z),
and Ws(z), Q∗

i (z), Ms(z), N∗
i (z) are similar to Eqs. (17) and

(18), respectively, but with replaced indexes i ↔ s.
Thus, the initial systems of differential equations for the

operators (15) are transformed to the systems of ordinary
differential equations for Bogoliubov functions (16). This sys-
tem can be solved by the standard methods of differential
equations, including numerical ones. After the Bogoliubov
functions are calculated, all the averaged values of the field
on the output of the crystal for a given input state can be
calculated, including number of photons (4) and quadrature
variance (7).

It should be noted that Bogoliubov transformation (16) is
valid for any coupling constants and wave-vector mismatches
and determines the exact solution of studied system (15) that
gives a possibility to study the high-gain regime of PDC
accompanied by CUpC.

3. Averaged solution

The alternative way to study the CUpC of PDC with
nonzero wave-vector mismatch is to exploit averaging over
the crystal length L (this approach can be found, e.g., in
Refs. [25,40]). Applying this procedure to the oscillating
terms ei�z, one can obtain

ζ (�) = 1

L

∫ L

0
dz ei�z = sinc

(
�L

2

)
e

i�L
2 , (19)

and in the system (15) the wave-vector mismatch is effectively
considered by multiplying the initial coupling parameters on
the averaged values: κ → κ × ζ (�̃), ηi → ηi × ζ (�i ), and
ηs → ηs × ζ (�s).

So the initial system with nonzero wave-vector mismatch is
replaced by the phase-matched system with reduced coupling
constants. After averaging, Eqs. (15) become autonomous
and their solutions were obtained for different cases of PDC
with CUpC in Refs. [16,20,25–27,35]. For the initial nonau-
tonomous system of Eqs. (15), this solution is approximate
and differs from the exact one, presented in terms of Bogoli-
ubov transformations (16).

B. Characteristic equation

For the system of differential equations (17) and (18), the
analytical solution is found (see Appendix B). In spite of
this, its direct analysis is sophisticated: There are 16 complex
Bogoliubov functions which depend on three complex param-
eters κ, ηs, ηi and three real ones �̃,�s,�i. However, from
the analytical solution for Bogoliubov functions (B8), (B9),
one can notice that Bogoliubov functions reveal exponential
spatial dependence (see Appendix B)

U (z),V (z)... ∼ eλz. (20)

Here λ are the roots of characteristic equation that has the
depressed quartic form (see Appendix B 3)

λ4 + Pλ2 + iQλ + R = 0, (21)

where

P = g2
s + g2

i + φ2

2
− |κ|2, (22)

Q = φ(g2
i − g2

s ) − |κ|2 �i − �s

2
, (23)

R =
[

g2
s − φ2

4

][
g2

i − φ2

4

]
− |κ|2

4
(φ − �s)(φ − �i ), (24)

and g2
s = |ηs|2 + �2

s /4, g2
i = |ηi|2 + �2

i /4, and φ = �̃ −
(�s + �i )/2.

So far as the roots of characteristic equation (21) are com-
plex, their imaginary parts lead to the oscillating terms in
Bogoliubov functions, while the positive real parts lead to
the exponentially increasing contributions. Thus, the para-
metric amplification exists when at least one of the roots of
the characteristic equation has a real positive part. At some
distance the exponentially increasing terms predominate over
the oscillating contributions and the high-gain regime of PDC
with CUpC can be realized (in this case, the mean number of
photons is larger than 1).

In a general case, while all the parameters
κ, ηs, ηi, �̃,�s,�i are independent, the roots of the
characteristic equation take sophisticated form. Nevertheless,
the nature of the roots defines the criteria for parametric
amplification and the quartic equation can be obtained from
the set of inequalities that involves the discriminant and the
parameters P, Q, R (see Appendix B 3 and Ref. [46]).

C. Experimental ranges of coupling constants

Let us discuss the experimental parameters when PDC
with CUpC could be realized. In the case of a single pump
wave, the wave-vector mismatches are fixed and determined
by the dispersion of nonlinear crystals. The coupling param-
eters |κ| and |ηs,i| linearly depend on the pump amplitude,
while the ratios rs,i = |ηs,i|/|κ| are determined by the crystal
parameters (refractive indexes and effective nonlinear suscep-
tibilities), e.g., for degenerate PDC from BBO crystal pumped
by 800 nm r ≈ 0.9. As a result, the coupling parameters could
be assumed to be on the same order |ηs,i| ∼ |κ|. The typical
experimental gain value for the phase-matched high-gain PDC
is ≈5–10 [5], and for the crystal length L = 0.5–2 cm the PDC
coupling takes the values of κ ≈ 1–20 cm−1 (to the best of
our knowledge, the maximal experimental coupling constant
κ ≈ 36 cm−1 was achieved in Ref. [23]).

The most flexible and controllable way to obtain PDC with
CUpC is to use multiple pump lasers, when each coupling
constant is proportional to the corresponding pump amplitude.
Consequently, each coupling parameter could be varied inde-
pendently (e.g., in Ref. [21] experimental coupling constants
are κ, ηs ≈ 3–6 cm−1).

In order to consider the main aspects of PDC with CUpC,
we do not focus on the specific experimental realization of
studied processes; however, we use the values achievable in
experiments. So, for the analysis, we take κ = 3 cm−1 and
L = 2 cm (parametric gain � = 6) and consider PDC with
CUpC close to the phase matching. Using these parameters,
the main features of high-gain PDC accompanied by CUpC
are demonstrated further, in Secs. III and IV.

Summarizing Sec. II, the exact solution of PDC with CUpC
is presented in terms of Bogoliubov transformation and all the
observable values of electromagnetic field and their spatial
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dynamics along the nonlinear crystal can be expressed in
terms of Bogoliubov functions. The root analyses of char-
acteristic equation provide the criterion for the parametric
amplification and in the next sections are explicitly presented
for degenerate and three- and four-mode cases of PDC with
CUpC.

III. RESULTS AND DISCUSSION: DEGENERATE CASE

Let us consider frequency degenerate case when the two
interacting modes are present: the degenerate PDC mode with
the wave vector ka and the frequency ωa = ωp/2; and the
CUpC mode with the wave vector kb and the frequency ωb =
ωp/2 + ωps (for the single pump scheme ωb = 3ωp/2). In this
case ηi = ηs and �i = �s and all the indexes i and s in the
Bogoliubov transformation (16) can be omitted.

The number of photons in PDC and CUpC modes are

Na(z) ≡ 〈0|â†(z)â(z)|0〉 = |V (z)|2 + |Q(z)|2, (25)

Nb(z) ≡ 〈0|b̂†(z)b̂(z)|0〉 = |L(z)|2 + |N (z)|2. (26)

The quadrature variances for PDC [�Xa(θa, z)]2 and CUpC
[�Xb(θb, z)]2 have the form

[�Xj (θ j, z)]2 = 1 + 2N j (z) + 2|Fj (z)| cos(2θ j + ϕ j ), (27)

where index j = a, b corresponds to the PDC and CUpC
modes, respectively. Here correlation functions Fa(z) ≡
〈â(z)â(z)〉 and Fb(z) ≡ 〈b̂(z)b̂(z)〉 are

Fa(z) = [
U (z)V (z) + W (z)Q(z)

]
ei2kaz, (28)

Fb(z) = [
K (z)L(z) + M(z)N (z)

]
ei2kbz (29)

and ϕ j = arg [Fj (z)]. As stems from (27), the minimal quadra-
ture variances (�X min

a )2 and (�X min
b )2 are obtained for the

angles θa = (π − ϕa)/2 and θb = (π − ϕb)/2, respectively.
In addition, the two-mode squeezing for the collective

PDC-CUpC operator can be presented as

Ĉ(δ) = â(z) + eiδ b̂(z)√
2

, (30)

where δ is the arbitrary phase. Its quadrature variance has the
form

[�XC (θ, δ, z)]2 = [�Xa(θ, z)]2 + [�Xb(θ + δ, z)]2

2

+ 2|Fab(z)ei2θ + Gab(z)| cos[δ + φ(z)],
(31)

where correlation functions Fab(z) ≡ 〈â(z)b̂(z)〉 and Gab(z) ≡
〈â†(z)b̂(z)〉 have the form

Fab(z) = [
U (z)L(z) + W (z)N (z)

]
ei(ka+kb)z, (32)

Gab(z) = [
V ∗(z)L(z) + Q∗(z)N (z)

]
e−i(ka−kb)z, (33)

φ(z) = arg
[
Fab(z)ei2θ + Gab(z)

]
. (34)

The minimal value of the variance [�X min
C (z)]2 =

[�XC (θmin, δmin, z)]2 does not have a simple analytical form
and should be solved numerically.

A. PDC without CUpC

Before the CUpC properties are considered, we examine
our approach for the PDC generation in the absence of CUpC.
In this case, we assume that the coupling constants ηs = ηi

→ 0, and the roots of the characteristic equation (21) have the
form

λ1,2 = ±γ , λ3,4 = ±i�̃/2, (35)

where γ =
√

|κ|2 − �̃2/4.
By substituting the roots (35) into the solution (B8) and

(B9) with the parameters ηs = ηi → 0, �s = �i → 0, one
obtains the nonzero Bogoliubov functions

U (z) =
[
cosh(γ z) − i�̃

2γ
sinh(γ z)

]
ei�̃z/2, (36)

V (z) = iκ

γ
sinh(γ z)ei�̃z/2, (37)

that correspond to the well-known solution for the PDC gen-
eration, e.g., Refs. [1,39,47].

On the output of the crystal with the length L the number
of photons for PDC mode has the form

Na(L) = |V (L)|2 = |κ|2L2

[
sinh(�)

�

]2

. (38)

The dimensionless parameter � = γ L is known as the para-
metric gain for PDC process [1,5]. In the case of � � 1
the high-gain regime is realized: mean number of photons
Na 
 1.

One can see that two roots λ1,2 are real if |κ| > |�̃|/2
[Eq. (35)] and according Eq. (38) the number of photons
increases exponentially, i.e., the parametric amplification oc-
curs. Otherwise, all the roots of characteristic equation are
imaginary and Bogoliubov functions (37) are oscillating.
Thus, our statement about determination of parametric am-
plification by the nature of the roots of characteristic equation
(Subsec. II B) is valid for PDC generation.

For the phase-matched PDC (�̃ = 0), the minimal variance
of the quadrature operator X̂a(θ, z) = â(z)eiθ + â†(z)e−iθ has
the form

(�X min
a )2 = 1 + 2Na − 2|UV | = e−2�. (39)

So far as the up-conversion process is absent, the CUpC mode
remains a vacuum.

B. Degenerate PDC with CUpC: Characteristic equation
and roots analysis

In this subsection, we apply our approach to the analysis of
the degenerate PDC with CUpC. The characteristic equation
(21) becomes biquadratic (Q = 0) with the coefficients

P = 2|ηs|2 + �2
s + �̃(�̃ − 2�s)

2
− |κ|2, (40)

R =
[
|ηs|2 − �̃(�̃ − 2�s)

4

]2

− |κ|2
4

(�̃ − 2�s)2 (41)
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TABLE I. Conditions for different cases of roots of characteristic
equation for the degenerate CUpC of PDC. R is real number, I is
imaginary number, and C is complex with nonzero real and imagi-
nary parts.

Area Condition Roots

I P > 0 and 0 < R < P2/4 λ1,2,3,4 ∈ I
II R < 0 λ1,2 ∈ R, λ3,4 ∈ I
III R > P2/4 λ1,2,3,4 ∈ C
IV P < 0 and 0 < R < P2/4 λ1,2,3,4 ∈ R
V R = P2/4 or R = 0 Multiple roots

and the roots are easily obtained:

λ1,2,3,4 = ±
√

−P ± √
P2 − 4R

2
. (42)

There are five possible cases of roots which define the
behavior of solution (Table I). The description of these cases
is accompanied by the diagrams �s − ηs in Figs. 2 and 3.
Figures 2(a) and 3(a) demonstrate the phase diagrams where
different colors represent different regimes of generation. In
addition, the number of photons and the minimal variance of
quadratures for high-gain regime are also presented in Figs. 2
and 3 (details are in the captions). For completeness, the
spatial dynamics of photon number and minimal quadrature
variance for the PDC and CUpC modes are plotted in Fig. 4.

The numerical analysis is provided for κ = 3 cm−1 and
the crystal length L = 2 cm both for the phase-matched PDC
(�̃ = 0, Fig. 2) and for the non-phase-matched PDC (�̃ =
10 cm−1, Fig. 3).

1. Area I

All the roots λ1,2,3,4 are imaginary and λ3,4 = λ∗
1,2. Gener-

ally, this is the single regime which corresponds to the absence
of the parametric amplification and leads to quasiperiodic
solution for Bogoliubov functions. According to Figs. 2(b),
2(c), 3(b), and 3(c), inequality Na,b < 1 is valid both for PDC
and CUpC modes.

2. Area II

In this case, two roots are real and thus the parametric
amplification occurs. From Figs. 2(b), 2(c), 3(b), and 3(c),
one can see that the number of CUpC photons is at least one
order of magnitude lower compared to the number of PDC
photons. Increasing the parameter �s for the phase-matched
PDC generation [Figs. 2(b) and 2(c)] leads to decrease of
the CUpC efficiency and in this regime the CUpC can be
considered as loss for the PDC radiation. In detail, this case
is considered below in Subsec. III C.

From Fig. 4(a), one can see that the number of photons
both for PDC and CUpC modes increases exponentially all
over the nonlinear crystal. However, the CUpC mode remains
unsqueezed, and the squeezing of the PDC mode is limited
and reaches the constant value during the propagation (for
details, see Subsec. III C).

For the non-phase-matched PDC generation area II still ex-
ists [Figs. 3(b) and 3(c)] and parametric amplification for both
modes with nonzero wave-vector mismatch can be achieved.

3. Area III

In this regime, all the roots are complex numbers with the
nonzero real and imaginary parts. The parametric amplifica-
tion inside the crystal is accompanied by the periodic energy

FIG. 2. Diagrams �s − ηs for degenerate CUpC of PDC, for the phase-matched PDC case (�̃ = 0, |κ| = 3 cm−1): (a) the phase diagram
(different colors correspond to different regimes of generation); [(b), (c)] number of photons Na (PDC mode) and Nb (CUpC mode),
respectively; [(d)–(f)] minimal quadrature variances (�X min

a )2 (PDC mode), (�X min
b )2 (CUpC mode), and (�X min

C )2 (collective PDC-CUpC),
respectively. Number of photons and minimal quadrature variances are calculated for the crystal length L = 2 cm.
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FIG. 3. Diagrams �s − ηs for degenerate CUpC of PDC, for the non-phase-matched PDC case (�̃ = 10 cm−1, |κ| = 3 cm−1): (a) the phase
diagram (different colors correspond to different regimes of generation); [(b), (c)] number of photons Na (PDC mode) and Nb (CUpC mode),
respectively; [(d)–(f)] minimal quadrature variances (�X min

a )2 (PDC mode), (�X min
b )2 (CUpC mode), and (�X min

C )2 (collective PDC-CUpC),
respectively. Number of photons and minimal quadrature variances are calculated for crystal length L = 2 cm.

transfer between PDC and CUpC modes [Figs. 4(c) and 4(d)]
and Na ≈ Nb in the whole area III [Figs. 2(b), 2(c) 3(b), and
3(c)].

If both processes are phase matched (�̃ = 0, �s = 0),
the PDC and CUpC modes are simultaneously squeezed
[Figs. 2(d) and 2(e)] (�X min

a )2 ≈ (�X min
b )2. However, a small

variation of �s leads to dramatic change of the single-mode
squeezing properties of generated light. Considering spatial
evolution of the minimal single-mode quadrature variances,
we see that it starts to increase at some point both for PDC and

FIG. 4. The dependence of number of photons and minimal
quadrature variances for PDC and CUpC modes on the nonlin-
ear crystal length for the phase-matched PDC case (�̃ = 0, |κ| =
3 cm−1): (a) area II (�s = 10 cm−1, ηs = 1 cm−1), (b) area IV (�s =
0 cm−1, ηs = 1 cm−1), (c) area III (�s = 0 cm−1, ηs = 4 cm−1), and
(d) area III (�s = 0.5 cm−1, ηs = 4 cm−1).

CUpC radiation, which is shown in Fig. 4(d). The qualitative
analysis of this effect shows that PDC and CUpC modes
possess separate quadrature squeezing when θa = θb + π/2.

Out of the phase-matched PDC (�̃ = 0), both the PDC
and CUpC modes are antisqueezed in area III [Figs. 3(d) and
3(e)]. However, the two-mode (PDC-CUpC) squeezing for the
collective operator Ĉ [Eq. (5)] is always achieved [Figs. 2(f)
and 3(f)].

4. Area IV

Here all the roots λ1,2,3,4 are real. As we see in Figs. 4(a)
and 4(b), this regime is similar to area II and the most effective
generation of CUpC can be obtained.

5. Area V: Multiple roots

If coupling constants and phase mismatches satisfy con-
ditions R = 0 or R = P2/4, the roots of the characteristic
equation are multiple, and, strictly speaking, the analytical
solution in the form presented in Appendix B is not valid.
Nevertheless, according to the initial equation (B1) the so-
lution does not have any singularities and discontinuities in
the case of multiple roots and the expressions (B8) and (B9)
can be used in limiting case, taking parameters as close to the
curves R = 0 or R = P2/4 as possible. The detailed analysis
of multiple roots is not considered in this paper.

6. Phase-matched PDC with CUpC (�s = 0, ˜� = 0)

A simple form of roots can be obtained for degenerate
phase-matched PDC with CUpC (�s = 0, �̃ = 0):

λ1,2,3,4 = ±|κ|
2

±
√

|κ|2/4 − |ηs|2. (43)
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If |κ|2/4 > |ηs|2, all the roots are real and this corresponds
to area IV. When |κ|2/4 < |ηs|2, the real part of roots λi is
equal to the ±|κ|/2 and is independed on parameter ηs. Hence,
in area III we observe some kind of oscillating plateau in
Figs. 2(b) and 2(c) for photon numbers and in Figs. 2(d)–2(f)
for one- and two-mode squeezing. So far as the real part of
characteristic equation roots are responsible for the parametric
amplification, in the high-gain regime Na ≈ Nb ≈ sinh2 (�̃),
where �̃ = |κ|L/2 is the half from phase-matched PDC gen-
eration with the absence of CUpC.

C. Particular case: Strongly phase-mismatched CUpC as losses
for degenerate PDC

In this subsection, we consider one of the important practi-
cal cases appearing with a single pump wave: phase-matched
PDC (�̃ = 0) with large CUpC wave-vector mismatch (�s 

|κ|, |ηs|). For this reason, we introduce small parameters εa =
|κ|/�s � 1 and εb = |ηs|/�s � 1 and obtain approximation
of general solution for this special case. The roots of charac-
teristic equation satisfy conditions for area II:

λ1,2 ≈ ±|κ|(1 − ε2
b ), λ3,4 ≈ ±i�s(1 + ε2

b ). (44)

Considering exact solution (B9), an approximate number
of photons is obtained, keeping the first nonvanishing term
with ε2

b :

Na ≈ (1 − ε2
b ) sinh2 �̃, (45)

Nb ≈ ε2
b sinh2 �̃, (46)

where �̃ = |κ|L(1 − ε2
b ). In this case, the CUpC is inefficient

compared to PDC and can be assumed as losses for PDC
mode.

As the squeezing properties are sensitive to the losses, we
obtain minimal variance of quadrature for the PDC mode:

(�X min
a )2 ≈ (1 − ε2

b )e−2�̃ + ε2
b . (47)

As mentioned above (see Subsec. II C), the coupling con-
stants |κ| and |ηs| linearly depend on the pump amplitude,
while the ratio r = |ηs|/|κ| is determined by the crystal pa-
rameters. Thus, the PDC squeezing (47) as a function of pump
power becomes more complicated compared to the PDC gen-
eration (39)

(�X min
a )2 ≈ (1 − δ2�2)e−2�(1−δ2�2 ) + δ2�2, (48)

where δ = r(�sL)−1 is small and � = |κ|L is a dimensionless
parameter that corresponds to parametric gain of PDC without
CUpC (38).

In Figs. 5(a) and 5(b), the number of photons for PDC and
CUpC modes and the minimal variance for the PDC mode
(�X min

a )2, respectively, are shown as functions of parameter
�. The calculation is provided with �sL = 15π and r = 1 for
two models: the exact one [Eqs. (17) and (18)] and the aver-
aged one obtained using Eq. (19). One can see that the number
of photons, calculated by both models, does not significantly
differ from each other and for PDC are of the same order as
without CUpC (38).

FIG. 5. (a) Number of photons for PDC and CUpC and (b) min-
imal quadrature variance for PDC mode as a function of parametric
gain �. The calculation is obtained with �sL = 15π and r =
|ηs|/|κ| = 1 for different models: exact, averaged, and PDC with the
absence of CUpC (ηs → 0). The approximate expression (47) is in
good agreement with the exact solution.

Otherwise, for the minimal quadrature variance, different
models lead to different results. In the absence of CUpC,
the minimal quadrature variance is decreasing with the pump
power (39). The presence of non-phase-matched CUpC leads
to the limitation of quadrature squeezing but the dependences
calculated with exact and averaged models are completely
different: The exact solution provides the local minimum,
while the averaged solution results in plateau.

The difference between these two solutions is provided
by different regimes of generation: The averaging procedure
transfers the solution from area II into area IV that leads
to different spatial dynamics of CUpC. In addition, the av-
eraged solution is extremely sensitive to the value of �sL:
The averaged coupling coefficient |ζ (�)| ∼ |sinc(�sL/2)|
[Eq. (19)] depends periodically on the argument and conse-
quently reaches local maximum when �sL = nπ (n is odd).
When �sL = mπ (m is even) the averaged coupling coeffi-
cient ζ (�) = 0 and the CUpC is absent, in opposite to the
exact solution that always gives the nonzero CUpC and does
not strongly depend on �sL.

A few words should be devoted to the necessity of taking
into consideration CUpC when squeezed states via PDC are
generated. One can notice that the maximal squeezing of
the PDC mode is obtained when Nb ≈ 1 and the condition
Nb < 1 can be treated as the criterion when the CUpC can
be neglected and optimal generation of single-mode squeezed
PDC states can be achieved.
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FIG. 6. Phase diagrams ηs − �s for three-mode interaction for
(a) phase-matched PDC �̃ = 0 and (b) non-phase-matched PDC
�̃ = 10 cm−1. Area I, oscillating solution for Bogoliubov functions;
area II, parametric amplification exists.

IV. RESULTS AND DISCUSSION: NONDEGENERATE
REGIME

In the previous section, the degenerate regime of PDC with
CUpC is analyzed. In this section, we consider more compli-
cated cases of nondegenerate regime of generation: three- and
four-mode interaction.

A. Three-mode interaction

Let us consider the nondegenerate PDC generation when
only one PDC mode (e.g., signal) is up-converted. This regime
has been previously studied within simultaneous phase match-
ing for PDC with CUpC [13,14,16]. It was shown that all three
waves are parametric amplified if |κ| > |ηs| and are oscillating
if |κ| < |ηs|. Below, with the use of our approach, we extend
this criterion on the non-phase-matched case.

So far as only signal PDC mode is up-converted, we set
ηi → 0 and �i → 0. In this case, one of the roots of the initial
quartic equation (21) is always imaginary λ4 = iφ/2 and the
equation is reduced to the cubic one[

λ2 − |κ|2 + φ2

4
+ g2

s

][
λ + iφ

2

]
− iφg2

s + i�s

2
|κ|2 = 0.

(49)

For the cubic polynomial, the discriminant has the form
D3 = −4P3

3 − 27Q2
3, where

P3 = g2
s − |κ|2 + φ2

3
, (50)

Q3 = �s

2
|κ|2 − 2φ

3

[
g2

s + |κ|2
2

− φ2

9

]
, (51)

and g2
s = |ηs|2 + �2

s /4, φ = �̃ − �s/2.
Thus, for the three-mode interaction, three regimes are

realized:
(1) D3 < 0, oscillating solution for Bogoliubov functions

(all the roots are imaginary).
(2) D3 > 0, parametric amplification (it should be noted

that according the Vieta’s formulas Re[λ1 + λ2 + λ3] = 0 and
at least one of the root is always real and positive).

(3) D3 = 0, multiple roots.
Figure 6(a) demonstrates the phase diagram ηs − �s for the

phase-matched PDC generation �̃ = 0 cm−1 for κ = 3 cm−1.
The phase diagram ηs − �s for the non-phase-matched PDC
(�̃ = 10 cm−1 and κ = 3 cm−1) is shown in Fig. 6(b). One

TABLE II. Conditions for different natures of roots of character-
istic equation for the nondegenerate four-mode CUpC of PDC. R is
real number, I is imaginary number, and C is complex with nonzero
real and imaginary parts.

Area Condition Roots

I D > 0 and P > 0 and R < P2/4 λ1,2,3,4 ∈ I
II D < 0 λ1,2 ∈ R, λ3,4 ∈ I
III (D > 0 and P > 0 and R > P2/4) λ1,2,3,4 ∈ C

or (D > 0, P � 0)
V D = 0 Multiple roots

can see that the parametric amplification exists even if both
the processes PDC and CUpC are non-phase-matched.

B. Four-mode interaction: General analysis

Generally, the CUpC is present for both the signal and
idler waves and all the parameters κ, ηs, ηi, �̃,�s,�i are
independent. According to Ref. [46], the nature of the roots of
characteristic equation (21) is determined by the discriminant

D = 256R3 − 128P2R2 + 144PQ2R

−27Q4 + 16P4R − 4P3Q2,
(52)

and in Table II the different regimes are shown. In analogous
way to the degenerate case (Subsec. III B) the parametric
amplification is realized in the areas II and III, while the
oscillating solution for the Bogoliubov functions exists in
area I.

C. Four-mode interaction: Cascaded phase matching

In this subsections, we confine the discussion to some
particular case of four-mode interaction, when the cascaded
phase matching can be achieved. For PDC with CUpC, the
cascaded wave-vector mismatches are introduced:

�s = �̃ − �s = 2kp − kai − kbs, (53)

�i = �̃ − �i = 2kp − kas − kbi, (54)

�si = �̃ − �s − �i = 3kp − kbs − kbi. (55)

It should be noted that cascaded phase matching can be
realized when all the processes are simultaneously non-phase-
matched: �̃ �= 0, �s �= 0, and �i �= 0.

Figure 7(a) shows the phase diagrams �s − �i calculated
for non-phase-matched PDC with �̃ = 30 cm−1 and cou-
pling parameters κ = ηs = ηi = 3 cm−1. In spite of the fact
that PDC is non-phase-matched, the parametric amplifica-
tion exists (areas II and III) and the high-gain regime can
be achieved. Strictly speaking, areas II and III are defined
by the conditions from Table II; however, their location in
the phase diagrams is close to the cascaded phase-matching
conditions [Eqs. (55)]: Area II corresponds to the cascaded
phase-matching conditions �s ≈ 0 and �i ≈ 0. In the phase
diagram on the concurrence of lines �s ≈ 0 and �i ≈ 0, area
III appears.

In Figs. 7(b)–7(d), the number of photons for different
modes is present for high-gain regime. One can notice that
in the case of �i ≈ 0 [red dashed line in Fig. 7(a)] the
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FIG. 7. Diagrams �i − �s for four-mode CUpC with non-phase-
matched PDC �̃ = 0. The coupling coefficients are κ = ηs = ηi =
3 cm−1. (a) The phase diagram (different colors correspond to dif-
ferent areas from Table II). The dashed lines correspond to different
cascaded phase matching. Panels (b), (c), (d), and (e) show the num-
bers of photons in PDC signal, PDC idler, CUpC signal, and CUpC
idler modes, respectively, calculated for crystal length L = 2 cm.

amplification exists for signal PDC mode and idler CUpC
mode Nas ≈ Nbi in Figs. 7(a) and 7(e). In the case of �s ≈
0 [blue dashed line in Fig. 7(a)], the situation is opposite:
Amplification exists for idler PDC mode and signal CUpC
mode [Figs. 7(c) and (d)]. In area III, near the intersection
of red and blue dashed lines in Fig. 7(a), the intensities of
all the modes are Nas ≈ Nbs ≈ Nai ≈ Nbi. For the cascaded
phase-matching �si = 0, one can notice that the number of
photons in CUpC modes is higher compared to the PDC ones.

Summing up, in this section the criteria for the parametric
amplification in three- and four-mode generation are obtained.
The parametric amplification takes place even if PDC and
CUpC are separately non-phase-matched and the cascaded
phase matching can be realized.

V. CONCLUSIONS

In summary, the exact solution in terms of Bogoliubov
transformation for PDC with CUpC with nonzero wave-

vector mismatches is presented. The simple relations, based
on roots analysis of characteristic equation, for oscillating
and parametric amplification regimes for CUpC of PDC are
obtained for degenerate and three- and four-mode generation.
We demonstrate that the high-gain regime of PDC with CUpC
is determined not only by phase-matching conditions for each
separate process, but also by the cascaded phase-matching
conditions.

For the degenerate PDC generation, we show that the
CUpC can be assumed as losses for the PDC radiation. The
presence of CUpC leads to the limitation of minimal quadra-
ture variance of PDC mode that can be crucial for practical
generation of squeezed light via PDC.

So far as the solution is obtained in Heisenberg picture
and has the form of Bogoliubov transformation, it is valid
for any initial state of light. Here we confine ourself to the
vacuum input state and present the analysis of a mean number
of photons and minimal quadrature variance of interacting
modes. However, from the general point of view, the studied
system corresponds to the class of Gaussian unitaries [48] and
all the methods for such systems can be applied for CUpC of
PDC.

The results obtained in this paper can be used for the
noise analysis in quantum frequency converters and for the
development of new types of entangled and squeezed visible
and UV light sources based on nonlinear crystals, periodi-
cally and aperiodically poled nonlinear crystals, and nonlinear
waveguides.
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APPENDIX A: BOGOLIUBOV TRANSFORMATION

In general, the Bogoliubov transformation can be written
in the form [48][

b̂
b̂†

]
=
[
A B
B∗ A∗

][
â
â†

]
+
[

d
d†

]
. (A1)

For the system studied in this paper,

b̂ = [α̂s(z), α̂i(z), β̂s(z), β̂i(z)]T ,

b̂† = [α̂†
s (z), α̂†

i (z), β̂†
s (z), β̂†

i (z)]T ,

â = [α̂s(0), α̂i(0), β̂s(0), β̂i(0)]T ,

â† = [α̂†
s (0), α̂†

i (0), β̂†
s (0), β̂†

i (0)]T ,

(A2)

and d = [0, 0, 0, 0]T , d† = [0, 0, 0, 0]T .
According to the Heisenberg equation (15), the system

is closed under operators α̂s(z), α̂
†
i (z), β̂s(z), β̂

†
i (z), and
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consequently the matrices A and B have the form

A =

⎡⎢⎣Us(z) 0 Ws(z) 0
0 Ui(z) 0 Wi(z)

Ks(z) 0 Ms(z) 0
0 Ki(z) 0 Mi(z)

⎤⎥⎦, (A3)

B =

⎡⎢⎣ 0 Vs(z) 0 Qs(z)
Vi(z) 0 Qi(z) 0

0 Ls(z) 0 Ns(z)
Li(z) 0 Ni(z) 0

⎤⎥⎦. (A4)

So far as Bogoliubov transformation is canonical [operators
α̂s(z), α̂i(z), β̂s(z), β̂i(z) are bosonic with the commutation
relations (2)], the following conditions should be satisfied for
any z:

AA† − BB† = I4, ABT = (ABT )T . (A5)

This conditions can be explicitly written for Bogoliubov func-
tions,

|Us|2 + |Ws|2−|Vs|2 − |Qs|2 = 1, (A6)

|Ks|2 + |Ms|2−|Ls|2 − |Ns|2 = 1, (A7)

U ∗
s Ks + W ∗

s Ms = V ∗
s Ls + Q∗

s Ns, (A8)

UsVi + WsQi = UiVs + WiQs, (A9)

KsLi + MsNi = KiLs + MiNs, (A10)

UsLi + WsNi = KiVs + MiQs. (A11)

These conditions are valid for replaced indexes i ↔ s.

APPENDIX B: ANALYTICAL SOLUTION
OF DIFFERENTIAL SYSTEMS

Let us consider the differential system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
dzY1 = iaei�1zY2 + ib∗ei�2zY3,

d
dzY2 = −ia∗e−i�1zY1 − ice−i�3zY4,

d
dzY3 = ibe−i�2zY1,

d
dzY4 = −ic∗ei�3zY2.

(B1)

By excluding Y3 and Y4 and introducing the new func-
tions Ȳ1 = Y1e−i�1z/2+i(�3−�2 )z/4, Ȳ2 = Y2ei�1z/2+i(�3−�2 )z/4,
one can obtain the autonomous system⎧⎪⎪⎨⎪⎪⎩

[(
d

dz
+ iφ

2

)2

+ g2
b

]
Ȳ1 = ia

[
d

dz
+ i

φ − �2

2

]
Ȳ2,[(

d

dz
− iφ

2

)2

+ g2
c

]
Ȳ2 = −ia∗

[
d

dz
− i

φ − �3

2

]
Ȳ1,

(B2)
where g2

b = |b|2 + �2
2/4, g2

c = |c|2 + �2
3/4, φ = �1 − (�2 +

�3)/2. Finally, we get a single differential equation of the
fourth degree for the Ȳ1:[

d4

dz4
+ P

d2

dz2
+ iQ

d

dz
+ R

]
Ȳ1 = 0, (B3)

where coefficients are given:

P = g2
b + g2

c + φ2

2
− |a|2, (B4)

Q = φ(g2
c − g2

b) − |a|2 �3 − �2

2
, (B5)

R =
[

g2
b − φ2

4

][
g2

c − φ2

4

]
− |a|2

4
(φ − �3)(φ − �2). (B6)

The characteristic equation for this equation has the form

λ4 + Pλ2 + iQλ + R = 0. (B7)

In the case of nonzero discriminant of Eq. (B7), it has
distinct roots and the function Y1 takes following form,

Y1(z) =
∑

k

C̃keαk z, (B8)

where αk ≡ λk + i(2�1 + �2 − �3)/4 and coefficients C̃k

are determined by the initial conditions.
The functions Y2(z), Y3(z), and Y4(z) can be obtained from

Y1(z) as

Y3(z) = ib
∫ z

0
dz′ e−i�2z′

Y1(z′),

Y2(z) = e−i�1z

ia

∂Y1(z)

∂z
− b∗ei(�2−�1 )z

a
Y3(z),

Y4(z) = −ic∗
∫ z

0
dz′ ei�3z′

Y2(z′). (B9)

1. Analytical solution for Bogoliubov functions
U (z), V (z), K(z), L(z)

It can be noticed that differential system (17) for the func-
tions U (z), V (z), K (z), L(z) has the form (B1) with the
initial conditions Y1(z) = 1, Y2(z) = 0, Y3(z) = 0, Y4(z) = 0.

According to (B8), the function has the form

Y1(z) =
∑

k

Ckeαk z, (B10)

where αk ≡ λk + i�1/2 − i(�3 − �2)/4.
By substitution the solution (B10) into the initial condi-

tions

Y1(0) = 1,
∂Y1

∂z
(0) = 0,

∂2Y1

∂z2
(0) = |a|2 − |b|2,

∂3Y1

∂z3
(0) = i(�1|a|2 − �2|b|2), (B11)

the coefficients Ck are determined by the equation⎛⎜⎜⎜⎝
1 1 1 1

α1 α2 α3 α4

α2
1 α2

2 α2
3 α2

4

α3
1 α3

2 α3
3 α3

4

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

C1

C2

C3

C4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1

0

|a|2 − |b|2
i(�1|a|2 − �2|b|2)

⎞⎟⎟⎟⎠.

(B12)
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The explicit form of the functions is

Y2(z) = eiδ3z

ia

4∑
k=1

Ck[αkeξ1z + |b|2F (z, ξ1)], (B13)

Y3(z) = ib
4∑

k=1

CkF (z, ξ1), (B14)

Y4(z) = −c∗

a

4∑
k=1

Ck

[(
αk + |b|2

ξ1

)
F (z, ξ2) − |b|2

ξ1
F (z, δ4)

]
,

(B15)

where F (z, γ ) ≡ (eγ z − 1)/γ , ξ1 = αk − i�2, ξ2 = αk −
i�1 + i�3, δ3 = �2 − �1, and δ4 = i�2 + i�3 − i�1.

The Bogoliubov functions are determined in the following
way: Us(z) = Y1(z), V ∗

i (z) = Y2(z), Ks(z) = Y3(z), L∗
i (z) =

Y4(z), with the coefficients a = κ , b = ηs, c = ηi, �1 = �,
�2 = �s, �3 = �i.

The Bogoliubov functions for the replaced lower indexes
are determined in the following way: Ui(z) = Y1(z), V ∗

s (z) =
Y2(z), Ki(z) = Y3(z), L∗

s (z) = Y4(z), with the coefficients a =
κ , b = ηi, c = ηs, �1 = �, �2 = �i, �3 = �s.

2. Analytical solution for Bogoliubov functions
W (z), Q(z), M(z), N(z)

In the same manner as in the previous subsection, the
functions W (z), Q(z), M(z), N (z) can be found from the
system (B1) with the initial conditions Y1(z) = 0, Y2(z) = 0,
Y3(z) = 1, Y4(z) = 0.

In this case, the (B8) the solution has the form

Y1(z) =
∑

k

Dkeαk z, (B16)

where αk ≡ γk + iδ. The coefficients Dk are determined by
the equation⎛⎜⎜⎜⎝

1 1 1 1

α1 α2 α3 α4

α2
1 α2

2 α2
3 α2

4

α3
1 α3

2 α3
3 α3

4

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

D1

D2

D3

D4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0

ib∗

−b∗�2

ib∗(|a|2 − |b|2 − �2
2)

⎞⎟⎟⎟⎠,

(B17)

which is obtained in the same way as in the previous subsec-
tion.

The explicit form of the functions is

Y2(z) = eiδ3z

ia

(
− ib∗ +

4∑
k=1

Dk[αkeξ1z + |b|2F (z, ξ1)]

)
,

(B18)

Y3(z) = 1 + ib
4∑

k=1

DkF (z, ξ1), (B19)

Y4(z) = −c∗

a

[ 4∑
k=1

Dk

(
αk + |b|2

ξ1

)
F (z, ξ2)

−
( 4∑

k=1

|b|2Dk

ξ1
+ ib∗

)
F (z, δ4)

]
.

(B20)

The Bogoliubov functions are determined in the following
way: Ws(z) = Y1(z), Q∗

i (z) = Y2(z), Ms(z) = Y3(z), N∗
i (z) =

Y4(z), with the coefficients a = κ , b = ηs, c = ηi, �1 = �,
�2 = �s, �3 = �i.

The Bogoliubov functions with the replaced lower indexes
are Wi(z) = Y1(z), Q∗

s (z) = Y2(z), Mi(z) = Y3(z), N∗
s (z) =

Y4(z), with the coefficients a = κ , b = ηi, c = ηs, �1 = �,
�2 = �i, �3 = �s.

3. Comments on characteristic equation

a. Interchange of idler and signal modes

It could seem that the systems (17) and (18) for replaced
indexes s ↔ i are determined by completely different charac-
teristic equations. However, by applying this replacement for
the characteristic equation (B7) (b ↔ c and �2 ↔ �3), the
second characteristic equation can be obtained:

λ̄4 + Pλ̄2 − iQλ̄ + R = 0. (B21)

The roots λ̄i and roots for (B7) λi are related as

λ̄i = λ∗
i . (B22)

Consequently, any of characteristic equations (B7) or (B21)
can be used for the parametric amplification analysis (see
Subsec. II B).

b. Characteristic equation analysis with complex coefficients

The consideration of quartic polynomial is conventionally
carried out for real coefficients [46]. In the characteristic equa-
tion (B7), the imaginary unit by the linear term λ is present.
After the replacement μ = iλ, the initial equation (B7) is
reduced to the form with the real coefficients μ4 − Pμ2 +
Qμ + R = 0. From this point, the roots analysis performed
in Ref. [46] can be exploited.

[1] D. Klyshko, Photons and Nonlinear Optics (CRC Press, Boca
Raton, FL, 1988).

[2] B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, Phys.
Rev. X 5, 041017 (2015).

[3] C. Fabre and N. Treps, Rev. Mod. Phys. 92, 035005 (2020).
[4] D. F. Walls, Nature (London) 306, 141 (1983).

[5] M. Chekhova, G. Leuchs, and M. Żukowski, Opt. Commun.
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