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Quantum simulators employing cold atoms are among the most promising approaches to tackle quantum
many-body problems. Nanophotonic structures are widely employed to engineer the band structure of light
and are thus investigated as a means to tune the interactions between atoms placed in their vicinity. A key
shortcoming of this approach is that excitations can decay into free photons, limiting the coherence of such
quantum simulators. Here, we overcome this challenge by proposing to use a simple cubic three-dimensional
array of atoms to produce an omnidirectional band gap for light and show that it enables coherent, dissipation-free
interactions between embedded impurities. We show explicitly that the band gaps persist for moderate lattice
sizes and finite filling fraction, which makes this effect readily observable in experiment. Our paper paves the
way toward analog spin quantum simulators with long-range interactions using ultracold atomic lattices, and is
an instance of the emerging field of atomic quantum metamaterials.
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I. INTRODUCTION

The possibility of engineering and manipulating interac-
tions between atoms is an essential requirement for realizing
analog quantum simulators [1]. Recent theoretical and ex-
perimental approaches use photonic crystal waveguides to
manipulate the electromagnetic environment of individual
atoms [2–7]. In particular, photonic crystal waveguides can
host band gaps, such that quantum emitters with transition
frequencies in the band gap cannot decay into the waveguide
and instead form exponentially localized atom-photon bound
states [8,9]. This mechanism can be used to mediate interac-
tions of tuneable range [10]. With control over the emitter
spacing and the nature of their coupling to electromagnetic
modes, a wide class of quantum spin models can be engi-
neered [2,3], which constitutes a highly promising avenue for
cold-atom simulators.

To achieve high coupling strengths, atoms have to be
trapped at subwavelength distances from the nanophotonic
structures, which has proven very challenging. This has
motivated a number of proposals and experimental ad-
vances [2,7,11]. Very recently, it has been shown that one-
and two-dimensional atomic arrays can emulate nanopho-
tonic structures and can be employed to control linewidth
and dipole-dipole interactions of additional impurity atoms
[12,13]. Without fabrication disorder and surface Casimir
forces, atomic arrays promise to simplify trapping of impu-
rities close by and may yield more homogeneous systems.
Indeed, it is known that dense, ordered arrays may have rich
band structures [14–16] and optical properties [17–22]. Yet
they come with the disadvantage that in optical dipole traps
it is challenging to achieve highly subwavelength trapping,

which is required since otherwise the typical atom-atom in-
teraction strength is comparable to their free-space decay rate
[12,13].

The competition between unitary evolution and dissipa-
tion arises as all the approaches above feature one- and
two-dimensional photonic nanostructures, which leave a third
dimension into which photons can decay. This casts serious
doubt on the prospect of high-fidelity quantum simulation
with nanophotonic structures. Restricting solid-state nanopho-
tonic structures to two dimensions is natural due to fabrication
constraints (although note Ref. [23]) and because implanting
quantum emitters comes with other challenges such as non-
radiative decays, inhomogeneous broadening, and disorder in
their positions [24].

In this paper, we thus propose to use three-dimensional
atomic arrays to engineer omnidirectional band gaps and fur-
thermore to mediate interactions between impurity atoms. In
the past, the occurrence of band gaps in atomic arrays has been
discussed in several works [25–29]. However, the diamond
lattice so far is the only known atomic array that can host
an omnidirectional band gap [30]. Here, we show that band
gaps for one and both polarizations of light can be opened
in simple cubic lattices by applying a suitable magnetic field
and ac Stark shifts, compatible with current state-of-the-art
experiments. We provide analytical insight into the nature
and size of the band gap, which we verify with numerical
simulation for both finite and infinite lattices.

We argue analytically and demonstrate numerically that
our setups indeed can be used to mediate tunable long-range
interactions between embedded impurity atoms. In the limit of
infinite system size we prove that impurity atoms have infinite
lifetime if their transition frequency lies in the band gap.
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Analyzing finite-size effects, we show that the impurity decay
rate decreases exponentially with system size and conclude
that our proposal still works for lattice sizes of 20 × 20 × 20
atoms, which is readily realized in experiment [31,32]. By
exponentially enhancing the coherence of light-based quan-
tum simulators, our paper removes an otherwise fundamental
limitation for this class of quantum simulators.

The rest of this paper is organized as follows. In Sec. II
we introduce the theoretical framework for atom-light inter-
actions. Within this model we investigate how one or both
polarizations of light can be gapped in Sec. III. In Sec. IV we
show that these setups can be used to modify dipole-dipole
interactions and the linewidth of impurity atoms. We discuss
potential implementations in Sec. V and the application of
our scheme to quantum simulation in Sec. VI. We conclude
in Sec. VII.

II. MODEL

We consider three-dimensional simple cubic arrays of two-
level atoms as well as arrays of four-level atoms, which
have one ground state and three excited states with excita-
tion energies ω0. In the dipole approximation the light-matter
Hamiltonian describing the interactions of the atoms with the
radiation field is given by [33,34]

Hlm =
∑

Ri

∑
α

ω0b̂†
i,α b̂i,α +

∑
k

∑
ε⊥k

ckâ†
k,εâk,ε

−
∑

Ri

∑
α

D̂iα · Ê(Ri ). (1)

Here the sum over α runs over all excited states (see Fig. 1)
and Ri are the sites of the three-dimensional lattice. We rep-
resent the array atoms by bosonic annihilation operators b̂i,α ,
which is valid if the density of excitations is low. Assuming
that the strength of the dipoles is the same for all excited
states, the dipole operator of the atom at position Ri is given
by D̂iα = d0(dα b̂†

i,α + d∗
α b̂i,α ), where dα and d0 are the direc-

tion and the strength of the dipole moment associated with the
transition from the ground state to the excited state α. The
photons are described by the photon annihilation operators
âk,ε and the electric-field operator is

Ê(r) =
∑

k

∑
ε⊥k

(√
ck

2ε0V
εâk,εe

ikr + H.c.

)
. (2)

Eliminating the photons adiabatically via the Born-Markov
approximation, the atom dynamics can be described by a
non-Hermitian effective Hamiltonian of the form [33,34]

Harray =
∑

Ri

∑
α

(
ωA − i

�0

2

)
b̂†

i,α b̂i,α

+ 3πc�0

ω0

∑
Ri �=R j

∑
α,β

d∗
α · G(Ri − R j ) · dβ b̂†

i,α b̂ j,β ,

(3)

where �0 = (d2
0 ω3

0 )/(3πε0c3) is the emission rate and ωA

deviates from ω0 by Lamb-shift-type terms. In free space the
Green’s tensor G(r) is given by the dyadic Green’s function
[35]. Note that the effective Hamiltonian in Eq. (3) describes

FIG. 1. (a) Sketch of the proposed setup. A three-dimensional
array of atoms plays the role of a nanophotonic structure that mod-
ifies the band structure of light. Impurity atoms placed within the
array interact via tunable array modes. If the array has an om-
nidirectional band gap, decay of the impurities is suppressed and
they undergo purely Hermitian dynamics. For the array we consider
two-level atoms [green (solid) transition] as well as four-level atoms
[green (solid) and blue (dashed) transitions]. (b) The resulting band
structure for σ+-polarized two-level array atoms, exhibiting a band
gap. The frequency of the impurity atoms ωI can be tuned into the
band gap using Raman transitions. (c) Path in the Brillouin zone
corresponding to the plot in (b).

the dynamics of the single-excitation sector completely if
there is no driving field, such that quantum jumps can be
neglected [16]. For an infinite periodic lattice it is convenient
to use Bloch’s theorem to simplify the Hamiltonian. For two-
level atoms with dipole moment d one directly obtains the
dispersion relation

ω(k) − iγ (k)/2 = ωA − i�0/2 + 3πc�0

ω0
d∗ · G̃(k) · d, (4)

while for four-level atoms the problem of finding the eigen-
values of Harray reduces to diagonalizing a 3 × 3 matrix of the
form

M = (ωA − i�0/2)1 + 3πc�0

ω0
G̃(k), (5)

where the atom-atom interactions are given by the dis-
crete Fourier transform of the Green’s tensor G̃(k) =∑

R �=0 exp(−ikR)G(R).
Note that despite appearances M is Hermitian and there-

fore only has real eigenvalues [see Eq. (A2)], such that all
eigenstates of an infinite three-dimensional atomic array have
infinite lifetime [25]. In the above expression, i�0/2 is can-
celed by the non-Hermitian part in G̃(k).
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(a) (b)

(c) (d) (e)

FIG. 2. Band structure of light interacting with two- (a, b) and
four-level atoms (c–e). �, M′, and R′ are defined in Fig. 1. (b) The
black curves show the dispersion when the G �= 0 bands are ne-
glected and the rotating-wave approximation is applied. The red
(gray) points show the photonic dispersion given by Eq. (4). The
dashed lines are the bands in the absence of coupling. One effect of
the coupling to higher photon bands is that the atomic frequency ω0

is shifted to ωA, which is why the scale for red points is shifted with
respect to the black. In the case of two-level atoms, the interactions
with higher photon bands only enter as small perturbations. (d) In
the presence of three dipoles the band structure is not gapped due to
symmetry. The two bands colored in green (gray) touch at R’ and
can be gapped by introducing a suitable perturbation as discussed in
the main text (e). Note that the two highest black bands in (d) are
degenerate.

III. PHOTONIC BAND GAPS

In this section we determine under which circumstances
the model outlined above predicts photonic band gaps. We
first show that a simple cubic lattice of two-level atoms opens
a gap for light the polarization of which coincides with the
polarization of the atomic transition. We then show that om-
nidirectional band gaps for both polarizations of light can be
opened with four-level atoms and a suitable combination of
magnetic fields and ac Stark shifts.

A. Band gap for circularly polarized light

We consider a simple cubic array of two-level atoms with
circular polarization, which gaps out light of the same polar-
ization, provided the array spacing a fulfils the subwavelength
condition a < λ/2, where λ is the wavelength of light.

Due to the periodicity of the array, the atoms couple to
infinitely many photon bands ωG(k) = c|k − G|, where G are
reciprocal-lattice vectors. In this simple case, we can restrict
our attention to the lowest photon bands (G = 0) as the gap
opens generically due to hybridization of the atom band with
those modes. The coupling to higher bands only yields a
small shift, which is illustrated in Fig. 2(b). Thus, in the
rotating-wave approximation and neglecting higher bands, the

Hamiltonian in Eq. 1 can be approximated by

Hlm ≈
∑

k∈1st Bz

⎛
⎝ b†

k
a†

kε1

a†
kε2

⎞
⎠

�⎛
⎝ ω0 g1

√
k g2

√
k

g1

√
k ck 0

g2

√
k 0 ck

⎞
⎠

⎛
⎝ bk

akε1

akε2

⎞
⎠,

(6)

where the coupling is defined as gi = d0
√

c/(2ε0VL )d · εi,

for i ∈ {1, 2}, where VL = a3 is the volume of the unit cell
and bk = 1/

√
N3

∑
j exp (−ikR j )b j . We can always choose a

basis such that at least one polarization of light is orthogonal
to the atomic polarization and thus decoupled. Without loss
of generality we thus choose g2 = 0, such that finding the
eigenvalues of Eq. (6) reduces to diagonalizing a 2 × 2 matrix.
For g1 = 0 the eigenvalues of this matrix cross at k0 = ω0/c.
By coupling the levels g1 �= 0 the crossing is avoided, such
that a gap of width ∝g2

1 opens up near ω0. The gap closes for
k ‖ d. This can be prevented if two components of d differ
by a complex phase, as in circular polarization. The nature of
this omnidirectional band gap is subtle since the polarization
of the gapped mode depends on the wave vector k. However, a
σ+-polarized impurity atom placed in an array of σ+-polarized
atoms “experiences” an omnidirectional band gap.

Note that there is a subtlety hidden in the arguments above.
The problem is that we have neglected standing waves of the
electromagnetic field with nodes at the lattice sites, commonly
referred to as the free-photon modes [26]. Such modes would
couple to impurities hosted within the lattice and thus should
be avoided. As they need to have a node at each lattice
site, these modes have a minimum wave vector that depends
on lattice geometry. In the simple cubic lattice the cutoff is
kc = π/a, which means that the lowest energy at which these
modes appear is ωc = cπ/a. To shift these modes away from
resonance, we require the subwavelength condition a < λ0/2.

B. Omnidirectional band gap for both polarizations

To open an omnidirectional band gap for both polarizations
of light, we need to move to four-level atoms. While this alone
is not sufficient to produce a band gap, we find that through
judicious choice of magnetic field, as well as ac and DC Stark
shifts, an omnidirectional gap for both polarizations can be
produced. In particular, we consider a situation sketched in
Fig. 1 (without impurity atoms), with the following ingredi-
ents:

(i) four-level atoms corresponding to a J = 0 to 1 transi-
tion, e.g., in 84Sr;

(ii) a homogeneous magnetic field applied in the z direc-
tion;

(iii) two off-resonant lasers with wave vec-
tors k = (kx, ky,±π/(2a)) and polarizations ε ∝
(eiφ/

√
2, ieiφ/

√
2,∓1) to produce Stark shifts of the σ+

and π transition of every second layer of atoms [36]; and (iv)
two global laser fields (of different strength) to produce Stark
shifts of the π and σ− transition. In the rest of this section, we
detail why these requirements arise and how they contribute
to the band gap.

We note that we need to consider three dipole transitions,
because for just two transitions one can always find a k such
that d∗

2 · ε2 ∝ d∗
2 · (d∗ × k) = k · (d∗

2 × d∗) = 0, independent
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of the dipole moment d2. Hence we need all three orthogonal
polarizations. Surprisingly, even with all three polarizations,
no gap opens, as shown in Fig. 2. Indeed, the two lowest
photon modes (G = 0) both couple to an atomic polarization
and are thus gapped. However, there is an additional band
(green band in Fig. 2), which closes the gap, since at some
points at the edge of the Brillouin zone this band and at least
one of the other bands have to be degenerate due to symmetry
[25,26,29,30]. In the simple cubic lattice these degeneracy
points are the edges of the cube describing the Brillouin zone,
which are defined by |kx| = |ky| = π/a, |kx| = |kz| = π/a,
and |ky| = |kz| = π/a.

We find that a gap can be opened by introducing a sub-
lattice structure along z. In the halved Brillouin zone, new
degeneracies arise at |kz| = π/(2a) due to sublattice sym-
metry. A suitable ac Stark shift can lift the degeneracy by
breaking sublattice symmetry. The ideal form of this shift
can be found by considering the atom-atom interaction G̃ ′

at
|kz| = π/(2a), which reads [37]

G̃ ′ = 1̂ ⊗
⎛
⎝G̃xx G̃xy 0
G̃xy G̃yy 0
0 0 G̃zz

⎞
⎠ + τ̂y ⊗

⎛
⎝ 0 0 G̃xz

0 0 G̃yz

G̃xz G̃yz 0

⎞
⎠,

(7)
where the sublattice structure is expressed through the Pauli
matrices {1̂, τ̂x, τ̂y, τ̂z}, with |A〉 = (1, 0) and |B〉 = (0, 1).
The 3 × 3 matrices describe the dipole-dipole interactions,
where G̃ll ′ are the components of the atom-atom interaction
of the Bravais lattice [see Eq. (A2) in Appendix A].

This matrix is block diagonal with two identical 3 × 3
matrices as diagonal blocks, which implies the twofold de-
generacy of each band at |kz| = π/(2a).

We note that to break all remaining symmetries it is not
sufficient to add a perturbation of the form H ′ = τz ⊗ 13,
because this leaves the symmetry between x and y intact. In
order to lift this symmetry as well, one can apply a magnetic
field along z. It is then sufficient to apply the ac Stark shifts
only to |σ+〉 and |π〉, such that the perturbation reads

H ′ =μ0B[1 ⊗ (|σ+〉 〈σ+| − |σ−〉 〈σ−|)]
+ δ[τ̂z ⊗ (|σ+〉 〈σ+| − |π〉 〈π |)]. (8)

Finally, we use a second ac Stark shift δπ to lower the energy
of the π -polarized modes, such that the gap covers the same
area of energies across the whole Brillouin zone and therefore
an omnidirectional band gap occurs.

To sum up, the resulting lattice is defined by lattice vec-
tors ax = (a, 0, 0), ay = (0, a, 0), and az = (0, 0, 2a), where
the unit cell contains two atoms A and B at positions rA =
(0, 0, 0) and rB = (0, 0, a) with different internal structures:

ω
A/B
+ = ω0 + μBB ± δ,

ω
A/B
− = ω0 − μBB, (9)

ωA/B
π = ω0 − δπ ∓ δ.

In Fig. 3 we show that the band structure of this lattice is
indeed gapped by evaluating the density of states:

ρ(ω) =
∑

n

∫
1st Bz

d3k

(2π )3
δ[ω − ωn(k)], (10)

FIG. 3. Density of states with an omnidirectional band gap for
one (a) and both (b) polarizations for a = 0.24λ0. In panel (a) we
consider an array of σ+-polarized atoms. In the infinite case (blue) a
gap arises (dashed lines). The inset is a magnification of the gapped
region. In the finite case (orange) some states in the gap appear. If
furthermore some defects are taken into account (green), additional
states appear in the gap. We assume here a defect density Ndef/Ntot =
0.1 [22], where Ntot = N × N × N = 203 is the number of lattice
sides. The energies of the infinite system were calculated with a
mesh of 106 points for kx, ky, kz � 0. In panel (a) the histograms
contain 164 bins and for panel (b) the number of bins is 237. Other
relevant parameters for (b) are aho = 0.09a, δB = μBB = 0.96�0,
δ = 3.85�0, and δπ = 3.99�0.

where n is the band index, ωn(k) is the nth band, and the
integral is taken over the first Brillouin zone.

Note that the ingredients introduced in the beginning of this
section in principle produce a level scheme as in Eq. 9. How-
ever, all frequencies are additionally shifted by −δ, which is
related to the fact that the lasers presented in (iii) can only
produce shifts of −2δ and zero at lattice sites A and B, but not
shifts of −δ and +δ.

C. Finite-size effects and defects

In this part we briefly discuss the differences between finite
and infinite lattices and the effect of defects. Similar results
have been obtained in a corresponding detailed study for the
diamond lattice [38].

To study the effect of boundaries on the band gap, we
diagonalize the full effective Hamiltonian given by Eq. (3) for
a lattice of 20 × 20 × 20 atoms, and plot the resulting density
of states in Fig. 3 for both the simple cubic lattice of two-level
atoms and the bipartite lattice of four-level atoms. Overall,
the density of states of the finite lattice is similar to that of
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the infinite lattice. However, a significant difference is that
some states appear in the gap, which we attribute to localized
edge modes. In finite-size lattices, the eigenstates also ac-
quire a finite lifetime, as photons may radiate into free-space
modes. While the bulk modes have decay rates �bulk � �0

that decrease with lattice size, the edge modes are superradiant
�edge � �0 (see Appendix B). For a one-dimensional chain
of atoms this effect is discussed in Ref. [20]. As we illustrate
below, this means that the infinite model provides an accurate
description for impurities located deep inside the array.

We analyze the effect of defects by randomly removing
atoms. The resulting densities of states are shown in Fig. 3.
Lattice defects also give rise to bound states, which contribute
to the density of states in the band gap, which means that
their density should be sufficiently low as to not impact the
simulation.

IV. EFFECTIVE IMPURITY INTERACTIONS

In this section we analyze the interactions mediated by
band gaps in three-dimensional atomic arrays using the exam-
ple when both impurity and array atoms are σ+ polarized. We
first consider impurities placed in infinite arrays. Afterwards
we generalize our results to finite arrays.

If the excitation energy of the impurities ωI is close to the
excitation energy ω0 of the array atoms, the Hamiltonian for
impurities interacting with an atomic array is

Htot = Himp + Harray + Hint, (11)

where the impurities are described by

Himp =
∑

ri

(
ωI − i

�I

2

)
σ i

ee

+ 3πc�I

ω0

∑
ri �=r j

d∗ · G(ri − r j ) · dσ i
egσ

j
ge, (12)

the array Hamiltonian is given in Eq. (3), and the interactions
between impurity atoms and array atoms are

Hint = 3πc
√

�I�0

ω0

∑
riR j

d∗ · G(ri − R j ) · d
(
σ i

egb̂ j + b̂†
jσ

i
ge

)
.

(13)

Here, σ i are the spin operators of the impurity atom at position
ri. In the following we assume that every impurity atom has
the same position in the respective unit cell of the array, such
that all impurity atoms couple equally to the array modes.

A. Infinite array

The band structure of the array is given by Eq. (4). The
impurity atoms are detuned from the edge of the upper band at
ωc by � = ωc − ωI . If the coupling between impurity atoms
and array atoms is weak (�I � �0), the interactions between
the impurity atoms and the array can be treated under Born-
Markov approximation. In this case, the full effective coupling
between the impurity atoms is given by [12,33]

Ji j − i
�i j

2
=G0(ri − rj)

+
∫

d3k
(2π )3

|gki|2
ωI − ω(k) + i0+ eikri j , (14)

with

gki = 3πc
√

�I�0

ω0

[∑
R

e−ikR d∗ · G(ri − R) · d

]
. (15)

The first term in Eq. (14) describes the effective interactions
between impurity atoms due to the exchange of free photons,
while the second term takes into account modifications due to
interactions between photons and array atoms. Note that the
second term describes processes where a photon emitted by
the impurity excites a dressed array atom, before it is emitted
again and then reabsorbed by an impurity atom.

The effective decay rate of an impurity atom placed in the
array is given by

�eff = �I − 2Im

[∫
d3k

(2π )3

|gki|2
ωI − ω(k) + i0+

]
. (16)

In Appendix C we show that for transition frequencies in the
band gap the imaginary part of the integral in Eq. (16) cancels
the free-space decay rate �I such that impurity atoms placed
in the gap do not decay.

For impurities that are weakly detuned from the upper band
edge at ωc (�I � � � �0) the effective interaction can be
approximated by [10]

Ji j ≈ a3g2

4π
√

AzA

e−ri j/ξ

ri j
, (17)

where we assume the impurities to couple to a quadratic
dispersion with curvature A via a constant coupling g. The
correlation length is ξ = √

A/� and we define the effective
distance as r2

i j = (xi − x j )2 + (yi − y j )2 + A/Az(zi − z j )2,
where the anisotropy of the interaction arises as the curvature
in kz differs from the curvature in the kx-ky plane. More details
on the derivation of Eq. (17) are given in Appendix D.

Choosing small detunings � one can reach the limit ri j �
ξ , where the coupling Ji j is long range. In Fig. 4 we compare
the approximated coupling [Eq. (17)] with the exact coupling
obtained by performing the integration in Eq. (14) numerically
and find good agreement.

B. Finite array

In this section we analyze how the effective interaction
between impurities and the effective impurity decay change
if the mediating array is finite. We consider cubic arrays with
N × N × N atoms. For different detunings and lattice sizes
the effective coupling Ji j and the effective decay �eff are
shown in Fig. 4.

1. Effective coupling

The effective coupling obtained in finite arrays differs from
the infinite case in the limit of � → 0. This can be modeled
through a N-dependent cutoff occurring in the correlation
length:

ξfin =
√

A

� + Ac2
1/(Na)2

. (18)

The cutoff arises because in a finite system there is only a
discrete set of allowed polariton moments. In particular, po-
laritons cannot have momentum k = 0, such that the smallest
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FIG. 4. Effective coupling (a) and decay (b) of the impurities
for different detunings. The infinite case (dots) is determined by
numeric integration of Eq. (14). In the case of the finite lattice
(crosses) the ratio of impurity and array linewidth is �I/�0 = 10−3

and the arrays consist of N × N × (N − 1) atoms. The impurity
atoms are separated by a as shown in Fig. 1. For the analytic
approximation (gray line) we choose the following parameters to
fit the numerical values (for the finite lattices the values are aver-
aged over different system sizes): curvature aA−1/2 ≈ 1.28�

−1/2
0 and

coupling a3g2/(4π
√

AzA) ≈ −0.089�I [infinite case, see Eq. (17)],
average curvature aĀ−1/2 ≈ 1.35�

−1/2
0 and average offset c̄1 ≈ 2.7

[effective coupling in finite arrays, see Eqs. (17) and (18)], and
aĀ−1/2 ≈ 0.98�

−1/2
0 and c̄2 ≈ 1.38 [effective decay in finite arrays,

see Eq. (19)]. In general there are three free parameters for the finite
cases. However, for the effective coupling in finite arrays we take the
coupling g from the infinite case and for the effective decay we take
the offset c1 from the effective coupling in finite arrays.

possible energy value in the upper band is ωmin = ωc + Ak2
min,

where kmin ∝ 1/(Na).

2. Effective decay

In contrast to the infinite case, we find nonvanishing ef-
fective decay rates for impurities placed in a finite array.
These are caused by the fact that polaritons emitted by the
impurities can decay into free space. We numerically find that
the effective decay rate of an impurity placed in the middle of

the atomic array scales like (Fig. 4)

�eff = c2�Iξ
−1
fin a

e−Na/ξfin

N
, (19)

where c2 ∝ g2/(�0�I ) is a dimensionless parameter and g
denotes the (approximately constant) coupling of the impurity
to the polariton modes. This expression for the decay rate
can be understood as the rate at which virtual polaritons that
dress the impurity decay into the surrounding vacuum. The
time scale of the effective decay is then determined by the
spatial distribution ψ (r) = exp(−r/ξfin)/r of the polaritons
and their average velocity v̄ ∝ 〈|p̂|〉 ∝ ξ−1

fin . The velocity of
the polaritons decreases with the detuning, since for small de-
tunings the impurity mainly couples to polariton modes with
low momenta. Importantly, Eq. (19) predicts an exponential
suppression of the decay rate with system size, which allows
for large quality factors Q = Jeff/�eff even with moderate
system sizes, such as the one studied here, which is readily
achieved in experiment [31,32,39].

3. Atomic motion

Atomic motion can severely impact the coherence in
ensemble-based quantum memories [40]. In arrays inelas-
tic photon scattering can be suppressed by moving to the
Lamb-Dicke regime, such that we neglect this effect. In order
to achieve addressability and tunability, we assume that the
impurity atoms are controlled with a Raman transition (see
Sec. V). Since Raman transitions are slow, the motion of the
atoms happens on a much faster time scale than the interac-
tions of the atoms. In this case, the atomic motion can be
eliminated adiabatically [25]. One then finds additional terms
in the decay rate, proportional to η2�I , where η � 1 is the
Lamb-Dicke parameter. Thus, provided η is sufficiently small,
one can still reach high quality factors.

V. EXPERIMENTAL IMPLEMENTATION

In order to realize the above proposals, there are three main
steps to be taken, which we discuss in detail below. The first
is to realize an atomic array with a band gap, which, as shown
above, requires an optical lattice with near unity filling but
only mild subwavelength properties. The second step is to
add impurity atoms that sit in the middle of the faces of the
square lattice in x-y direction, as shown in Fig. 1. Finally, in a
third step, one needs some amount of control over the impurity
atoms in order to excite them and read them out.

A. Three-dimensional Mott insulator

Free-space optical lattices are a standard tool in ultracold
atomic experiments [41]. Mott insulators in three-dimensional
optical lattices with near unity filling have been realized with
both bosonic 87Rb [31] and fermionic 40K [42,43]. Since then,
Mott insulators have been produced with a variety of species
(e.g., 133Cs [44] and 6Li [45]) and are widely used for analog
quantum simulation with ultracold gases [46–48].

To realize our proposal for an omnidirectional band gap
of one polarization, the cycling transitions of 87Rb and 133Cs
are ideal candidates as these species can readily be loaded into
optical lattices with near unity filling. A photonic band gap for
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FIG. 5. Configuration for loading impurities. For clarity we
show a two-dimensional version of the setup. The complete three-
dimensional case is obtained by applying a standing wave along
the z direction. For trapping only the array atoms (black dots) one
would use a lattice as shown in panel (a). The trapping potential is
visualized with colors going from red (gray) to black. Red represents
the nodes of the electromagnetic field, where the atoms are trapped
in the case of blue-detuned trapping lasers. (b) To provide a trapping
potential for the impurity atoms [red (gray) dots] as well, a second
lattice (in the following called the green lattice) is needed. This lattice
has nodes at the positions of the array atoms and furthermore at the
desired impurity positions.

both polarizations requires instead a J = 0 to 1 transition as
is for example found in bosonic strontium. Among its bosonic
isotopes, 84Sr is a suitable choice to prepare a Mott insulator
state, as it can be brought into a Bose-Einstein condensate
and has a suitable scattering length of around 123a0 [49,50].
To gap both polarizations of light, one furthermore has to
apply a magnetic field in the z direction as well as a second
laser field to produce an ac Stark shift of every other layer. If
ways are found to prepare Mott insulators with 86Sr or 88Sr
(for example by mixing them [51]), they are also suitable
candidates.

B. Loading impurities

To trap the impurities, we require a second lattice, which
has nodes at the positions of the array atoms and at the in-
tended positions of the impurity atoms as well. As illustrated
in Fig. 5, such a lattice can be generated using standing waves
with 1/

√
2 the original wavelength, rotated by 45◦ relative to

the standing waves of the first lattice [52]. In the following we
call the lattice shown in Fig. 5(a) the red lattice, and we call
the lattice which is added in panel (b) the green lattice.

If the impurity atoms and the array atoms belong to the
same species, one has to load them into a superposition of the
two lattices discussed above. The combined strength of the red
and green lattice has to be chosen such that a Mott insulator
is prepared on the red sites, and their difference, which sets
the lattice depth at the impurity positions, should only allow a
small density of impurities to be loaded probabilistically [53].

In case of strontium, we have to prepare a Mott insulator of
84Sr in the red lattice, while we have a small density of 87Sr as
impurities in the additional green lattice sites. One option to
achieve this is to start by producing a degenerate gas mixture
of bosonic 84Sr and fermionic 87Sr [50]. One can then trap
84Sr with a small admixture of 87Sr in the red lattice. While
the contact interactions between 84Sr-84Sr and 87Sr-87Sr are

repulsive, with scattering lengths 123a0 and 96a0, respec-
tively, the 84Sr-87Sr interaction is attractive (−57a0). Thus,
one can arrange that, energetically, single occupancy as well
as double occupancy with one 84Sr and one 87Sr are allowed,
whereas double or higher occupancy with the same species
(or in fact any other mixture) is disallowed. We note here that
mixtures have been loaded into the same optical lattice before
[51,54–56]. Using state-dependent lattices, one can afterwards
transfer the impurity atoms to one of the adjacent green lattice
sites. Alternatively, one can excite the 87Sr atoms to the 3P0

state, where they can be addressed specifically using a tuneout
lattice [57].

In fact, using tuneout lattices, one can do better. With the
87Sr atoms excited to the 3P0 state, one can employ tweezers
to deterministically control the position of the impurity atoms
or sort them after loading, similar to how arrays of Rydberg
atoms have been assembled [58]. This is a particularly ex-
citing avenue, as it would give access to fully controllable
lattices of impurities within the host medium.

C. Impurity control

To control the coupling strength as well as the transition
frequency of the impurity atoms, we suggest to use a
� scheme [2,59,60]. An ideal two-level Raman scheme
should involve the cycling transition in Rb (|g1〉 =
|5S1/2, F = 2, mF = 2〉 → |e〉 = |5P1/2, F = 3, mF = 3〉).
As discussed in Ref. [61], this can be achieved using a
two-photon transition from a second hyperfine ground
state (|g2〉 = |5S1/2, F = 1, mF = 1〉). Examples for
the intermediate state of this two-photon transition are
|5S1/2, F = 2, mF = 2〉 or a 6P3/2 state. The former requires
a microwave laser to couple the two hyperfine ground
states and one to drive the cycling transition, whereas
the latter option requires a laser to drive the |g2〉-6P3/2

transition and one to drive the |e〉-6P3/2 transition. In the
case of 87Sr one can use a 61P1 state to couple the cycling
transition (|g1〉 = |5 1S0, F = 9/2, mF = 9/2〉→|e〉 = |5 1P1,

F = 11/2, mF = 11/2〉) to a second hyperfine ground state
(e.g., |g2〉 = |5 1S0, F = 9/2, mF = 7/2〉).

Either way, one must ensure that the Raman lasers do not
affect the array atoms. For the optical laser, a possibility is to
use the lasers generating the optical lattice of the array atoms,
which have nodes at the positions of the array atoms, but not
the impurity atoms, at the expense of limiting the allowed
lattice spacings a. This is not possible for the microwave
tone, which instead has to be far detuned, such that its effect
on the array atoms is negligible. More details are given in
Appendix E.

Finally we note that, as shown in Fig. 6, our proposal is not
restricted to weak coupling, such that the implementation of
a � scheme is not mandatory. In the strong-coupling regime,
the transition frequency could be tuned using ac Stark shifts
generated by the array lasers.

To excite impurities, we suggest to use two-photon tran-
sitions. First, we consider the case where the array atoms
and the impurity atoms belong to the same species, us-
ing the example of 87Rb. We assume that all atoms are
initially prepared in the same ground state (e.g., |g1〉 =
|5S1/2, F = 2, mF = 2〉). Using a 6P3/2 state one can then en-
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FIG. 6. Rabi flopping of two impurities in a distance of ri j = a
placed in an array with lattice constant a = 0.4λ0. The impurity en-
ergy is detuned from the edge of the upper band by � = 0.2�0. The
array consists of 11 × 11 × 10 atoms. The ratio of impurity linewidth
and array linewidth is �I/�0 = 1 (straight lines) and �I/�0 = 10−3

(dashed lines). In the strong-coupling regime the amplitude of the os-
cillation is smaller, as the overlap of the bound states with the initial
impurity excitation is reduced. The Rabi frequency of the oscillation
is � ≈ 0.045�I in the weak-coupling regime and � ≈ 0.023�I for
strong coupling. The effective decay rates are �eff ≈ 3 × 10−8�I and
�eff ≈ 8 × 10−9�I , respectively.

gineer transitions from |g1〉 to |g2〉 = |5S1/2, F = 1, mF = 1〉.
Here, the lasers driving the transition from |g1〉 to 6P3/2 have
to be aligned such that the resulting electric field has nodes at
all array positions, such that only impurity atoms are excited.
This is possible for lattice constants a > 210 nm. To reach
smaller lattice constants one should choose an intermediate
state with a higher transition frequency. An electric field with
nodes at all array positions can also be used to ensure that the
frequencies of the |g1〉-6P3/2 transitions of the impurity atoms
and array atoms differ. One can then shape the excitation laser,
which no longer affects array atoms, to capture single sites
such that selected impurity atoms can be excited.

If the array atoms and the impurity atoms belong to
different species (84Sr and 87Sr) their transition frequen-
cies differ naturally, such that single-site addressing is
more straightforward. Considering strontium we assume
that all impurity atoms are prepared in the state |g1〉 =
|5 1S0, F = 9/2, mF = 9/2〉. One can then transfer individual
impurity atoms into |g2〉 = |5 1S0, F = 9/2, mF = 7/2〉 for
example via a 6 1P1 state.

The simplest way to read out the impurities is to drop the
array atoms and then image the remaining impurity atoms. A
less invasive technique would first transfer the excited impuri-
ties to a different level with a cycling transition, such that they
can be imaged without losing the array atoms.

VI. SIMULATION OF SPIN SYSTEMS WITH
LONG-RANGE INTERACTIONS

Our proposal can be used to engineer effective spin Hamil-
tonians of the form H = ∑

i j Ji jσ
+
i σ−

j , where the effective
interactions Ji j are given in Eq. (17). Using � and four-level
systems the XXZ model or the transverse Ising model for spin

1/2 can also be realized [2,3]. For short correlation lengths
ξ < a, this includes nearest-neighbor interacting spin models.

As we argue in this section, this platform is also capable
of simulating long-range interacting spin models if the system
parameters are tuned properly. The important length scales are
the correlation length ξ , defined in Eq. (18); the size of the
array, which is taken to be a cube of side length Na; and the
size of the embedded impurity system, which is (say) a square
of size L × L.

Long-range interactions can be achieved when the correla-
tion length ξ is much larger than the system ξ � L, as in this
regime the effect of the exponential envelope becomes negli-
gible. For example, if we take a reasonably sized system with
L = 8a and a correlation length ξ = 15a, then the correction
to the 1/r interaction is at most exp(−√

2 8/15) ≈ 1/2 for the
pair of impurities furthest away from each other.

To suppress excitation loss due to decay into free-space
photons, the correlation length must at the same time be
much smaller than the array size ξ � Na, or specifically the
smallest distance between an impurity atom and the edge of
the array. If we assume the 8 × 8 grid of impurities to be em-
bedded in an array of size N = 50, which could be achieved
with slight improvements over the state of the art [62], the
smallest distance to the edge is 20.5a, leading to a ratio of the
fastest decay rate to the fastest interaction rate of 571, which
implies that the simulation could probe many Rabi cycles.

Finally, in a usable simulation, the interaction time scale
τint ∝ 1/�I should not become exceedingly long, as there is
an upper limit to how long atoms can stay trapped and their
hyperfine states coherent, which we could optimistically set at
1s. Physically, to simulate long-range interactions, we require
that the propagation time of polaritons from one impurity
atom to the next is negligible (τint � L/v̄pol) and at the same
time the detuning has to be small, which in turn reduces the
group velocity (v̄pol ∝ L−1) of the polaritons as more slow
polariton modes near the band edge are admixed. Combining
these two requirements leads to a scaling τint = O(L2). This
corresponds to the assumption �I � �, where � = Aξ−2 =
O(L−2) in the limit of long-range interactions. In our example
above, we find J = 0.083�I , for atoms in a distance r = a
with a correlation length ξ = 15a.

VII. CONCLUSION

We have proposed to use three-dimensional atomic ar-
rays with band gaps as nanophotonic metamaterials. We have
shown that, inserting impurity atoms the transition frequen-
cies of which lie in the band gap, these setups can be used to
engineer effective interactions with exponentially suppressed
decay rates. This allows the implementation of effective spin
Hamiltonians. While we concentrated on the simulation of
spin-1/2 systems using two-level atoms, we expect that tuning
interactions between three- and four-level impurity atoms may
allow one to implement higher spin models. Our proposal uses
only one specific feature of the three-dimensional band struc-
ture of this metamaterial, namely, the quadratic dispersion
near the band edge. It is known that many novel, non-
Markovian effects occur in the presence of three-dimensional
structured reservoirs [63], which is another exciting direction
to take this platform. While in this paper we focused on simple
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cubic atomic arrays for engineering band gaps, we expect that
our approach can be extended to different geometries, which
should be explored in future research.

Our proposal allows the implementation of unitary dipole-
dipole interactions for systems in one-, two-, and even
three-dimensional systems and is compatible with current
ultracold atomic quantum simulators. Tunable spin-spin in-
teractions enable the exploration of exciting new physics,
including novel quantum spin phases [64–69], competition
between short- and long-range interactions [70], or frustration
[71]. Furthermore, the possibility to implement Coulomb-like
interactions between localized states allows the study of elec-
tron glasses, which are known to possess phenomena such as
slow relaxation and aging [72].

In the future one might envision integrating light-mediated
interactions with standard Bose- or Fermi-Hubbard quantum
simulators to access a rich family of Hamiltonians. Atomic
metamaterials with band gaps such as the one studied here
may also be used to shield or capture radiation in a very spe-
cific frequency range and thus may find uses beyond quantum
simulation.
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APPENDIX A: GREEN’S FUNCTION

Here, we present details about the Green’s function used
in Eq. (3) and its Fourier transform. In free space the Green’s
tensor is given by the dyadic Green’s function, evaluated at
the atomic transition frequency ω0 [33,34]:

Gll ′ (r) = − eik0r

4πk2
0r3

[(
k2

0r2 + ik0r − 1
)
δll ′

+ (
3 − 3ik0r − k2

0r2
) rl rl ′

r2

]
+ δll ′δ

(3)(r)

3k2
0

, (A1)

where k0 = ω0/c is the resonant wave vector and l, l ′ = x, y, z
label the spatial directions. To calculate the atom-atom inter-
actions in Eq. (5), we use the approximation

∑
R �=0

Gll ′ (R)eikR ≈ ek2
0 a2

ho/2

[
1

VL

∑
G

g′
ll ′ (k + G) − G ′

ll ′ (0)

]
.

(A2)

Here, the quantum fluctuations aho of the atomic positions
were introduced to avoid divergencies [16,25,30] and VL is
the volume of the unit cell. The Fourier transform of the
regularized Green’s function is given by

g′
ll ′ (k) = 1

k2
0

k2
0δll ′ − klkl ′

k2
0 − k2

e−k2a2
ho/2 (A3)

and the regularized Green’s function at r = 0 is G ′
ll ′ (0) =

δll ′G ′(0), with

G ′(0) = k0

6π

[
Erfi(k0a0/

√
2) − i

e(k0a0 )2/2
− −1/2 + (k0a0)2

√
π/2(k0a0)3

]
,

(A4)

where Erfi(x) = 2π−1/2
∫ x

0 dy exp(y2) is the imaginary error
function.

APPENDIX B: DECAY RATE OF ARRAY MODES IN
FINITE SYSTEMS

Here, we discuss the finite lifetimes of the array modes of
finite systems. To illustrate that the strongly decaying modes
are mainly localized at the edge of the array, we calculate the
average decay rate for each atomic position. Assuming that
the eigenmodes of the finite array are |ξ 〉 with decay rates
�ξ , the average decay rate �̄i of the atom at position Ri is
given by

�̄i =
∑

ξ

�ξ | 〈Ri|ξ〉 |2. (B1)

In Fig. 7 we show the average decay rate. One finds the
strongest average decay at the corners of the array. In the
middle of the array the average decay is the smallest. While
the atoms in the middle are surrounded by atoms that protect
them from decaying, the atoms at the edges can radiate into
free space. For different system sizes we compare the average
decay rate of the atoms at the corner with that of the atoms in
the middle in Fig. 7. While the average decay rate of atoms in
the bulk decreases with increasing N , the average decay rate
of the atoms at the edge increases. Similar effects have been
observed in Ref. [20].

APPENDIX C: EFFECTIVE IMPURITY DECAY IN
INFINITE SYSTEMS

Here, we show that impurity atoms which are placed in
infinite arrays do not decay if their transition frequency lies in
the band gap. Up to second order, the decay rate is described
by Eq. (16). Using the Poisson summation formula we write
the coupling gki and the dispersion ω(k) as

gki = 3πc
√

�I�0

ω0

√
N3VL

∑
G

d∗ · g′(k − G) · de−iG·ri (C1)

and

ω(k) = 3πc�0

ω0VL

∑
G

d∗ · g′(k − G) · d, (C2)

where the Fourier transform of the Green’s function g′(k) is
given by Eq. (A3). As the integrand in Eq. 16 is real, only the
poles of the integrand are relevant for the decay rate. If the
energy of the impurity atoms is placed in the band gap, there
is only one pole at k = k0. Near k0, the G = 0 term in gki and
ω(k) diverges. At this point, for k ∈ Iε = [k0 − ε, k0 + ε] the
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FIG. 7. Average decay rate for different atomic positions (a) and different system sizes (b). (a) One finds that the average decay rate at the
edges is larger than �0 while the average decay in the bulk is suppressed. (b) The average decay of an atom sitting in the corner increases with
N , while the average decay of an atom in the middle decreases.

integral in Eq. 16 can be approximated by

V
∫

k∈Iε

d3k

(2π )3

|gki|2
ωI − ω(k) + i0+

≈ 3π�I

2k3
0

∫
k∈Iε

d3k

(2π )3

|d∗ · g′(k) · d|2
−d∗ · g′(k) · d

= − 3π�I

2k3
0

∫
k∈Iε

d3k

(2π )3
d∗ · g′(k) · d. (C3)

Using the Sokhotski-Plemelj theorem one obtains∫
k∈Iε

d3k

(2π )3
d∗ · g′(k) · d

= 1

(2π )2

8

3

∫ k0+ε

k0−ε

k4

k2
0 − k2 + i0+

= − iπ
1

(2π )2

4

3
k3

0, (C4)

such that in total �eff = 0.

APPENDIX D: EFFECTIVE IMPURITY INTERACTIONS

To obtain an analytic understanding of the effective cou-
pling between impurity atoms, we use the effective mass
approximation. The approximated dispersion takes the form
ω(k) = A(k2

x + k2
y ) + Azk2

z , where we have included the fact
that the curvature along kz differs from the curvature along kx

and ky (see Fig. 1). Furthermore we assume that the coupling
gk is constant such that the effective interaction takes the form

Ji j = a3g2
∫

d3k

(2π )3

1

� + A
(
k2

x + k2
y + Az/Ak2

z

)eikri j . (D1)

Substituting
√

Az/Akz with kz and
√

A/Azz with z one finds

Ji j = a3g2

√
A

Az

∫
d3k

(2π )3

1

� + Ak2
eikri j

= a3g2

2π2

√
A

Az

∫ kc

0
dk

k

� + Ak2

sin(kri j )

ri j

= a3g2

4π2
√

AzA

∫ q′
c

0
dq′ q′

1 + q′2
eiq′ri j/ξ − e−iq′ri j/ξ

iri j

≈ a3g2

4π
√

AzA

e−ri j/ξ

ri j
, (D2)

where we introduced q = ξk with the correlation length ξ =√
A/� and furthermore assumed ξ → ∞, which is a valid

assumption for small detunings �.

APPENDIX E: � SCHEMES WITH 87Rb AND 87Sr

As mentioned before, a � scheme can be used to tune the
transition frequency and the coupling strength of the impurity
atoms. In particular, a � scheme as shown in Fig. 8 gives rise
to an effective coupling of the form [2]

Hint = −
∑

k

gk
�L

2�
(a†

k |g1〉 〈g2| + H.c.). (E1)

Here, we discuss how this can be implemented with 87Rb
and 87Sr. The cycling transition of 87Rb with |g1〉 =
|5S1/2, F = 2, mF = 2〉 and |e〉 = |5P1/2, F = 3, mF = 3〉
can be mapped to a � scheme using a level configuration as
presented in Fig. 8, where the second hyperfine ground state
could be chosen as |g2〉 = |S1/2, F = 1, mF = 1〉 [61]. To
achieve that the resonantly emitted photons have frequencies
lying in the band gap the second laser has to satisfy

�1 + ωL,2 ≈ ωarray
e − ωarray

g , (E2)

which implies that the second laser is near resonant to the
cycling transition of the array atoms. To avoid any couplings
between this laser and the array it is thus reasonable to use one
of the lasers generating the optical lattice of the array atoms.
In this case, the detuning �1 is determined by the detuning of
the trapping laser. Since �1 has to be of the order of GHz, the
detuning of the trapping laser is small and the lattice spacing
a is close to λ0/2.

To obtain setups with smaller lattice spacings one could
engineer effective couplings between |g2〉 and |e〉 using |ei〉 =
|6P1/2, F = 3, mF = 2〉 as an intermediate state (see also
Fig. 8). The lasers driving the |g2〉-|ei〉 transition can be
aligned such that the resulting electric field has nodes at all
array positions.

Another possibility is to use 84Sr for the array and
87Sr for the impurity atoms. 87Sr has a nuclear spin of
I = 9/2, which gives rise to hyperfine structure splitting. One
possible choice for implementing a lambda scheme is |g1〉 =
|51S0, F = 9/2, mF = 9/2〉, |g2〉=|51S0, F=9/2, mF =7/2〉,
|e〉=|51P1, F=11/2, mF =11/2〉, and |ei〉=|61P1, F =
11/2, mF = 9/2〉. Since the transition frequencies of
84Sr and 87Sr differ, the Raman lasers are far detuned
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FIG. 8. (a) A lambda scheme to tune the transition frequency and coupling strength of impurity atoms. (b) A two-photon lambda scheme
allows one to use the cycling transition [61]. It is equivalent to a � scheme with �L = �1�2/�1 (if �2 � �1). One can also couple |g2〉 and
|e〉 via an additional state |ei〉 (blue scheme).

from the transitions of the array atoms, such that the
couplings between these lasers and the array atoms are
negligible.

Some of the lasers discussed above also couple to the array
atoms. Here, we discuss their effect using the example of
the microwave laser, which is used to couple two hyperfine
ground states in 87Rb. Up to first order, the perturbed ground
state |g1〉 takes the form

|g1〉 = |g1〉 − �1/�1 |g2〉 . (E3)

The probability that an atom initially in |g1〉 is excited to
|g2〉 after switching on �1 is thus pg2 = (�1/�1)2. Declar-
ing the atoms in |g2〉 as additional defects, this effect can
be neglected if the defect density due to the microwave
laser pg2 = Ns/Ntot is much smaller than the defect density
due to finite filling. For example, if Ndef/Ntot � 0.1 [22], we
require (�1/�1)2 � 0.1. The laser driving the cycling tran-
sition has to be much stronger than the microwave tone to
achieve sufficiently strong effective Raman transition rates
�L = �1�2/�1.
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