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Multihump thermo-reorientational solitary waves in nematic liquid crystals:
Modulation theory solutions
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The propagation of light-induced thermo-reorientational solitary waves in nematic liquid crystals is studied
using numerical solutions of the full governing equations and variational approximations. These thermo-
reorientational solitary waves form as the nonlocal refractive index response to extraordinarily polarized light
beams is both self-focusing via the induced rotation of the constituent molecules and self-defocusing owing to
the temperature increase through optical absorption. These competing nonlinearities can lead to the formation of
one- and two-dimensional multihumped solitary and ring-shaped waves at high enough optical powers with
a volcano profile on the plane transverse to propagation. The variational solutions for these self-localized
structured beams are in remarkably good agreement with full numerical solutions of the governing equations.
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I. INTRODUCTION

Nematic liquid crystals (NLCs) have been considered an
ideal platform for investigating the propagation of nonlin-
ear bulk waves [1,2] since the experimental demonstration
of optical solitary waves or spatial solitons, termed nemati-
cons in such a medium [3]. Indeed, intense light beams in
NLCs display many of the classical properties of nonlinear
dispersive waves and solitary wave bearing nonlinear disper-
sive wave equations, being modeled by a coupled system
consisting of a nonlinear Schrödinger (NLS)-type equation
for the propagating wave packet and an elliptic equation for
the medium response [1,4,5]. Moreover, NLCs are a nonlo-
cal optical medium, which means that their elastic response
extends far beyond the transverse size of the optical forcing
[1,5,6]. If sufficiently strong, the nonlocality can prevent the
catastrophic collapse of (2 + 1)-dimensional solitary waves
governed by NLS-type equations above a power threshold
[7,8], including for nonlinear light beams in NLCs [1,5,9]. At
a mathematical level, the resulting stability derives from the
elliptic character of the partial differential equation modeling
the NLC response so that its solution at any given location
depends on the light field over the whole domain, rather than
just at that point, as for a local medium [10].

The nonlinear reorientational response of NLCs to ex-
traordinarily polarized light beams stems from the electric-
field-inducing dipoles in the constituent elongated molecules:
Their dipolar reaction causes them to rotate until the elastic
forces balance the electromagnetic torque, thereby chang-
ing the refractive index of the corresponding eigenwaves
[1–3]. If the refractive index increases, then the medium
is self-focusing and can support bright solitary waves with
an intensity rise above the background. If the index de-
creases, then the medium is self-defocusing and dark solitary

waves can form, which are dips in the intensity back-
ground [7]. When the dipoles are uniformly aligned on
a plane transverse (orthogonal) to the beam wave vector,
their nonlinear reorientation can cause polarization evolution
of the incoming wave packet and a resulting geomet-
ric phase front [11], yielding “spin-optical” bright solitary
waves [12–14].

Configurations for which the medium is subject to light-
induced refractive index changes, in particular, raise the
possibility that in the presence of competing optical non-
linearities with focusing and defocusing nonlocal responses,
multipeaked solitary waves can exist as defocusing pulls the
beam away from the solitary wave axis, whereas focusing
pulls it back in. An equilibrium between these components
is expected to support multihumped or “supermode” solitary
waves [15–20].

The full (2 + 1)-dimensional equations governing super-
mode solitary waves form a coupled system consisting of the
optical equation, an NLS-type equation, and elliptic equations
for the nematic and thermal responses [5]. As such, the de-
termination of thermo-reorientational nematicon solutions of
this coupled system is difficult, noting that even in the ab-
sence of thermal effects, there are no known general solutions
of the nematic equations besides isolated solutions for fixed
parameter values [10]. For this reason previous studies of
thermo-reorientational nematicons have relied on simplified
models of the full equations, often encompassing nonphysical
medium responses. The most popular of the latter for thermo-
reorientational optical solitons in nonlocal cubic media with
competing nonlinearities is the general equation,
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−∞
R(x − x′)|u(x′, z)|2dx′ = 0, (1)
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where the kernel R encompasses the material nonlocality. If
we set

R(x) = χ1R1(x) − χ2R2(x), (2)

with χ1, χ2 ∈ Re+, then the model describes competing re-
sponses of opposite signs [16–18,21]. The most often adopted
kernel is the Gaussian Ri(x) = e−βix2

in (1 + 1) dimensions
as it simplifies the calculations, particularly, for variational
approximations [15]. However, there is no known physical
medium which possesses this Gaussian response. With these
caveats, Eq. (1) with competing nonlinearities supports multi-
humped solitary waves [16–18,20] as their formal existence
is not directly related to the specific response of a mate-
rial system. Noteworthy, it was underlined that two-humped
supermode solitary waves are fundamental solitary waves,
inasmuch as their phase is constant across the whole trans-
verse profile [19]. It was also predicted that, in the case
of interacting bell-shaped solitary waves, either coherent or
incoherent, competing nonlocal nonlinearities would result
in attraction or repulsion with small and large separations
between the beams, depending on the prevailing component
in the nonlinear potential [15].

The general results for (1 + 1) dimensional, (1 + 1)D-,
multi-humped solitary waves in media with competing nonlin-
earities have been specialized in several studies to the physics
of NLCs [19,20] where the main contributions to changes in
the refractive index are the rotation of the molecular dipoles
induced by the propagating light beam and the thermo-optic
effect via weak linear (one photon) absorption [20,22–24].
The latter dependence on temperature can be tailored by suit-
able dye doping, allowing photon energy be absorbed from the
beam and converted to heat [22,25–28]. In these investigations
of NLC, analytical studies were based on Gaussian approx-
imations to the actual nematic reorientational and thermal
responses [20] with numerical solutions required to determine
supermode nematicons of the full system of equations [19].
However, the NLC reorientational response is of the form
e−β|x| in (1 + 1) dimensions and K0(βr) in (2 + 1) dimen-
sions with K0 the modified Bessel function of the second
kind of order 0, and the thermal response is of the forms
(L − |x|)/ζ and ln r/ζ in (1 + 1) and (2 + 1) dimensions, re-
spectively. Hence, the (competing) reorientational and thermal
responses of nematic liquid crystals are not of the same type
as commonly assumed when employing the model Eq. (1).

On a related topic, NLCs have been shown to stabilize opti-
cal vortex propagation owing to either nonlinear reorientation
or the thermo-optical effect [29,30]. At variance with bell-
shaped solitary waves, in fact, the stable propagation of optical
vortices with a phase singularity and a dark core on axis in
nonlocal nonlinear dielectrics is rather difficult to achieve [5].

In this paper we investigate multihumped (1 + 1)D- as well
as (2 + 1)D-solitary waves in thermo-reorientational nematic
liquid crystals, using a combination of numerical solutions of
the full governing equations and modulation theory [4,31].
At variance with earlier analyses [19,20,25], we base our
results on the full physical nonlocal nonlinear medium re-
sponses to optical forcing and temperature. In particular, the
analytical thermo-reorientational nematicon solutions derived
from modulation theory are found from the full equations,

not the simplified models (1). Furthermore, by extending
the analysis to two transverse dimensions, we reveal stable
(2 + 1)D-solitary wave solutions with a volcano shape, not
addressed in previous works on such waves. As noted, even if
thermal effects and nonlinear competition are neglected, the
system governing light beams in NLCs possesses no general
solitary wave, or other solutions, except for specific fixed
parameter values [10]. In such instances, variational and nu-
merical solutions have been found to perfectly match with
one another and provide excellent agreement with measure-
ments if the trial functions on which variational methods are
based are chosen suitably [5,31–33]. Our previous work on
the temperature control of nematicon trajectories, based on
modulation theory, showed remarkable agreement [34] with
the experimental results of Refs. [23,24,28], giving further
verification of its applicability, with particular reference to
the present work. Numerical thermo-reorientational nemati-
cons are found using the imaginary time iteration method
(ITEM) [35,36]. This approach for solitary wave solutions
of NLS-type equations only converges to linearly stable solu-
tions, a great benefit unavailable from other methods, such as
the Newton conjugate gradient method [37]. Therefore, both
(1 + 1)D- and (2 + 1)D-thermo-reoientational nematicon so-
lutions presented here are stable; the latter attribute enhances
the expectation for their experimental demonstration.

II. THERMO-REORIENTATIONAL EQUATIONS IN NLCs

Let us consider the propagation of a coherent linearly po-
larized light beam through a thick transparent planar cell filled
with liquid crystals in the nematic (fully oriented) metastate
with the molecular director aligned to the down-cell direction
Z and the coordinates (X,Y ) orthogonal to this. A beam of
central wave-number k0 is launched with wave-vector �k0 in
the Z direction, polarized so that its electric-field E in air
oscillates along Y and couples to extraordinary waves on
the principal plane (Y, Z ) of the uniaxial medium with the
optic axis corresponding to the director [1,3]. For mathemat-
ical convenience, we assume that a pretilting low-frequency
electric-field El f is applied in the Y direction to preset the
elongated molecules of the NLCs at a finite angle θ0 to
Z and so overcome the Freédericksz’ threshold [3,38]. The
NLC director is reoriented on the plane (Y, Z ) by an addi-
tion angle θ in the presence of intense light so that its total
angle becomes ψ = θ0 + θ with respect to Z , with |θ | � θ0.
The refractive index eigenvalues for electric-fields E parallel
and perpendicular to the optic axis are n‖ and n⊥, respec-
tively, so that the dielectric anisotropy is εa = n2

‖ − n2
⊥ > 0.

These refractive indices are taken to depend on temperature
T , see Refs. [23,24,28] for these measured dependencies
for the common NLC mixture E7. In the paraxial slowly
varying envelope approximation the dimensional equations
governing beam propagation in such a NLC sample are then
[1,17,19,20,25,27,34],

2ik0ne
∂E

∂Z
+ ∇2E + k2

0[n2
⊥ cos2 ψ + n2

‖ sin2 ψ − n2
⊥ cos2 θ0

−n2
‖ sin2 θ0]E = 0 (3)
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for the electric-field E of the beam,

K∇2ψ + 1
2	εRF E2

l f sin 2ψ + 1
4ε0εa|E |2 sin 2ψ = 0 (4)

for the reorientational response and

S∇2T = −α�|E |2, � = 1
2ε0cne (5)

for the thermal response. The Laplacian ∇2 is in the transverse
variables (X,Y ). The parameter 	εRF is the low-frequency
anisotropy of the medium. The temperature equation (5) does
not depend on the longitudinal coordinate Z due to the large
contrast between the longitudinal and the transverse dimen-
sions of typical cells [1] so that the heat flow is predominantly
on the transverse plane. In Eq. (5) S is the thermal conductiv-
ity, and α is the thermal absorption coefficient of the NLCs,
weakly doped so that Eq. (3) can be cast in a nondissipative
fashion. Finally, the refractive index ne for extraordinarily
polarized waves is given by

n2
e = n2

⊥n2
‖

n2
‖ cos2 ψ + n2

⊥ sin2 ψ
. (6)

Note that a term i	Ey describing the Poynting vector walk-off
has not been included in the electric-field Eq. (3). When the
walk-off 	 is a constant or has a negligible dependency on E
and/or T , this term can be eliminated by a phase transforma-
tion of the electric field [39]. In addition, more importantly,
for the present paper, the solitary wave (nematicon) profile in
NLCs does not depend on the walk-off.

To simplify the subsequent analysis, the governing
Eqs. (3)–(5) will be set in nondimensional coordinates (x, y, z)
and nondimensional electric u and temperature τ fields using
the transformations,

Z = Lzz, X = W x, Y = Wy, E = Abu,

T = T0 + AT τ. (7)

If we assume that the input beam is Gaussian, with power Pb,
width Wb, and amplitude Ab, then we have that [34]

A2
b = 2Pb

π�W 2
b

. (8)

We set T0 to be the NLC temperature in the absence of the
beam and a typical temperature rise to be AT due to light. The
subscripts t will refer to the quantities evaluated at the initial
temperature T0. Suitable length scales are, therefore, [34]

Lz = 4ne

(εa)t k0 sin 2θ0
, W = 2

k0
√

(εa)t sin 2θ0
. (9)

The nondimensional equations governing the propagation of
the optical wave packet through the NLCs become [1,5,6,34]

i
∂u

∂z
+ 1

2
∇2u + 2 f (τ )θu = 0, (10)

ν∇2θ − 2qθ = −2 f (τ )|u|2, (11)

μ∇2τ = −|u|2. (12)

The medium nondimensional elasticity is

ν = 8K

ε0(εa)t A2
bW

2 sin 2θ0
, (13)

its nondimensional thermal diffusivity is

μ = SAT

α�W 2A2
b

, (14)

and the nondimensional (externally applied) pretilting electric
field is

q = 2	εRF E2
l f sin 2θ0

ε0εaA2
bθ0

. (15)

The function f (τ ) in Eqs. (10) and (11) encompasses their
coefficient variations due to the temperature dependencies of
n‖ and n⊥ as in previous work [19,20,25].

The full system of thermo-optic nematic Eqs. (10)–(12)
does not possess a Lagrangian formulation for arbitrary f (τ ).
However, if the temperature τ is a known function of (x, y, z),
then these equations have the Lagrangian formulation [34],

L = i(u∗uz − uu∗
z ) − |∇u|2 + 4 f (τ )θ |u|2 − ν|∇θ |2 − 2qθ2.

(16)

The dependence of the NLC refractive indices on tem-
perature is an order of magnitude less than on the director
orientation [20,22,23,38]. Experimental measurements indi-
cate that for the standard NLC mixture E7, the refractive
index eigenvalues n‖ and n⊥ have a nearly linear variation with
temperature up to around 40 ◦C after which the variation picks
up additional quadratic and cubic temperature dependence up
to 55 ◦C [23,34]. Between 20 ◦C and 40 ◦C, n‖ decreases by
around 0.6% and n⊥ increases by about 1.3%, so the tem-
perature dependence is weak as stated. It is assumed hereby
that the refractive indices vary linearly with temperature from
the background value T0 and that f (τ ) can be expanded in a
Taylor series to second order as f (τ ) = 1 − γ τ , where γ is
related to f ′(0) as T = T0 gives τ = 0. The minus sign is due
to the defocusing optothermal response [19,20,23,25,34] with
the thermo-optic and reorientational optical nonlinearities in
competition.

Next, the existence of two-humped thermo-reorientational
nematicons governed by the system (10)–(12) will be studied
with the aid of numerical solutions and modulation theory
[4,5]. This analysis will be performed for solitary waves
which are either one or two dimensional on the transverse
plane, that is, (1 + 1)D- and (2 + 1)D-thermo-reorientational
nematicons. These structured nematicons derived from mod-
ulation theory will be compared with steady solutions of the
full NLC Eqs. (10)–(12) obtained from the accelerated ITEM
[35,36]. As stated above, the latter only converges to (linearly)
stable solitary wave solutions of NLS-type equations. Hence,
the presented numerical thermo-reorientational nematicons
are guaranteed to be stable, which gives confidence for their
forthcoming experimental observation.

III. (1 + 1)-DIMENSIONAL SOLUTIONS

Let us first consider the case of (1 + 1)-dimensional
thermo-reorientational nematicons so that the beam is a func-
tion of (y, z). As noted above, the NLC Eqs. (10) and (11)
in the case of temperature-independent parameters have no
known general exact solitary wave solutions, let alone more
involved traveling wave solutions, except isolated cases for
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fixed parameter values [10]. As a consequence, variational
methods are useful if the trial functions used are chosen ap-
propriately to give good approximations to the actual solution
as they then provide outcomes in excellent agreement with full
numerical solutions and experimental results [5,31,32]. These
approaches are an extension of solitary wave perturbation the-
ory [40] to include approximations to unknown solitary wave
solutions. Gaussian trial functions have been found appropri-
ate for studying nematicons [5], particularly, as the coherent
light beams used in most experiments have a Gaussian inten-
sity profile. Here, we will use Gaussian profiles for the beam
electric field and the resulting director distribution,

u = a
[
e−(y−ξ )2/w2 + e−(y+ξ )2/w2]

eiσ , (17)

θ = α
[
e−(y−ξ )2/β2 + e−(y+ξ )2/β2]

. (18)

In the present paper we are interested in steady-state ne-
maticons so that the electric-field amplitude a, width w, the
director amplitude α, and width β are assumed constant. The
electric-field phase σ is a function of z, which will be found
to be linear, as for the NLS equation solitons [4].

As stated above, the Lagrangian (16) is only valid for
the temperature-dependent NLC system if the temperature-
dependence τ is a known function of (y, z). The trial function
(17) for the electric field can be used to solve the temperature
Eq. (12), which is

μ
∂2τ

∂y2
= −|u|2 = −a2

[
e−(y−ξ )2/w2 + e−(y+ξ )2/w2]2

, (19)

in (1 + 1) dimensions. Although this equation can be solved
in terms of integrals of error functions, this solution is of
little use in averaging the Lagrangian (16), which is the basis
of modulation theory [4] as the latter needs be integrated
in y from −∞ to ∞ [4]. Since our aim is to find multi-
hump thermo-reorientational nematicons, the humps can be
assumed well separated with ξ relatively large ξ > w. This
assumption will be verified from numerical and variational
solutions. We take the NLC sample to have a nondimensional
width 2L and a temperature fixed at the background value
at the cell boundaries, i.e., τ = 0 at x = ±L. The thermal
diffusivity μ given by (14) is O(100) for typical experimen-
tal parameters [34]; therefore, the temperature is expected

to be nearly the constant τ0 between the nematicon peaks
due to the enhanced heat flow. Away from the exponentially
decaying beam profile, the temperature is a solution of the
homogeneous form of (26) so that the temperature is linear.
On satisfying the boundary condition, we then approximate
the temperature by

τ =
{

τ0(L−|y|)
L−ξ

, ξ < |y| � L,

τ0, 0 � |y| � ξ .
(20)

This approximation will be checked by comparisons with
numerical solutions.

To determine τ0, let us integrate the temperature equation
(19) from y = 0 to y = L, yielding

μ
∂τ

∂y

∣∣∣∣∣
y=L

= −
√

π√
2

a2w
[
1 + e−2ξ 2/w2]

, (21)

on using the symmetry of the temperature profile about y = 0.
This gives the slope of the temperature solution away from the
beam so that

τ0 =
√

π√
2μ

a2w(L − ξ )
[
1 + e−2ξ 2/w2]

, (22)

on applying the boundary condition at y = L and the continu-
ity of the temperature (20) at y = ±ξ .

Having derived the temperature in terms of the power
a2w of the light beam, the trial functions (17) and (18) can
be used to calculate the averaged Lagrangian from which
the variational approximation to the thermo-reorientational
solitary wave can be determined. These trial functions are
substituted into the Lagrangian (16), which is then averaged
by integrating in y over the cell [4]. As L  ξ , as discussed
above, the averaging is performed from −∞ to ∞ to easily
compute the integrals. The calculation of this averaged La-
grangian is straightforward, although tedious, except for the
average of f (τ )θ |u|2, in particular, that of γ τθ |u|2. Since the
trial functions decay exponentially away from the symmetric
peaks at y = ±ξ to average τθ |u|2 we take τ to be τ0 over the
beam, which is exact for |y| � ξ , but just an approximation
for |y| > ξ . In this manner, the averaged Lagrangian can be
determined as

1√
π
L = −2

√
2a2wσ ′[1 + e−2ξ 2/w2] −

√
2

a2

w

[
1 +

(
1 − 4ξ 2

w2

)
e−2ξ 2/w2

]
−

√
2ν

α2

β

[
1 +

(
1 − 4ξ 2

β2

)
e−2ξ 2/β2

]

− 2
√

2qα2β
[
1 + e−2ξ 2/β2] + 8αa2βw√

2β2 + w2

[
1 + e−8ξ 2/(2β2+w2 ) + 2e−[4(β2+w2 )ξ 2]/[w2(2β2+w2])

]

+ 8γ τ0αa2βw√
2β2 + w2

[
2 + e−[4(β2+w2 )ξ 2]/[w2(2β2+w2 )]]. (23)

The modulation equations to obtain the variational ap-
proximation to the thermo-reorientational nematicon solution
are now found by taking variations of the averaged La-
grangian (23) with respect to the nematicon parameters
a, w, α, β, σ , and ξ . These modulation equations, de-

tailed in Appendix A, form a system of algebraic equations
determining the parameters of the thermo-reorientational ne-
maticon. These equations are based on the interaction of
the two Gaussian beams in (17) and (18), so they are
rather involved as in previous work on interacting nematicons
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[39,41]. Nevertheless, as in these earlier studies, these varia-
tional solutions provide insight into the basic structure of the
thermo-reorientational nematicons and the competition be-
tween the focusing reorientational and the defocusing thermal
nonlinearities. Care needs to be adopted in solving the varia-
tional equations as there are multiple roots, most of which are
nonphysical or not relevant for the multihumped solutions we
seek. Examples of improper roots are solutions with negative
amplitude and those with the nematicon attached or too close
to the cell edge, rather than centered at y = 0. The latter would
be surface waves and are not of interest here, see Refs. [42,43]
for a discussion of surface thermo-optical solitary waves. For
these reasons, Newton’s method was not found suitable for
solving the algebraic equations as it did not allow enough
control over the root to which it converged. An extension
of Newton’s method, Broyden’s method [44,45], was found
appropriate to obtain relevant roots of the modulation equa-
tions due to its flexibility. Even with the latter, however, the
initial guess had to be close to the root for convergence to a
valid solution. Such proper guesses were informed by the full
numerical solution stemming from the imaginary time evolu-
tion method. Indeed, the ITEM method would also converge
to the same nonphysical solutions (surface waves, etc.) if the
initial guess were not close enough to the required solution.
In practice, to obtain good initial guesses for both Broyden’s
method and ITEM, they had to be interplayed to provide
good initial guesses for each method, that is both methods
were needed to obtain the required thermo-reorientational ne-
maticons. Broyden’s method was also employed to solve the
modulation equations for the (2 + 1)D-thermo-reorientational
nematicons dealt within the next section with the same caveats
regarding appropriate choices for the initial guesses for it and
the ITEM. The final point is that the amplitude of the thermo-
reorientational solitary wave can be set to a given a∗ with
the imaginary time evolution method. To compare solutions
of the modulation equations with these numerical ones, the
amplitude a of the trial function (17) needs to be adjusted so
that the total amplitude of |u| is a∗.

Figure 1 compares (1 + 1)D-steady thermo-reorientational
solitary wave solutions of the full NLC Eqs. (10)–(12) and
those of the modulation Eqs. (A1)–(A5) derived from the (1 +
1)D-averaged Lagrangian (23). Displayed are the electric-
field |u|, the director angle θ and the temperature τ for
the beam amplitudes a = 0.5, 0.4, 0.15, respectively. Overall
there is excellent agreement between the numerical and the
modulation solutions with a flat phase distribution confirming
their solitary wave character. Figures 1(a)–1(d) show self-
localized light beams with a “volcano,” multihump shape,
whereas the director distribution has a single hump. This
is due to the large nonlocality parameter ν = 200, resulting
in a highly nonlocal response which smooths out the two-
humped material response. As the optical intensity reduces,
the thermal response given by (12) also decreases, weaken-
ing the defocusing versus the focusing reorientation. As the
amplitude reduces, the width and the depth of the volcano
in the thermo-reorientational beam decrease. At a critical
amplitude, critical beam intensity, the beam becomes single
humped due to the defocusing (thermal) response not being
sufficiently strong. The numerical imaginary time-evolution
method yields the critical amplitude a = 0.21 for the onset

FIG. 1. Comparison between the (1 + 1)D-thermo-
reorientational solitary wave given by solutions of the nematic
equations (10)–(12) and solutions of the (1 + 1)D-modulation
equations (A1)–(A5). Solution of nematic equations: red (full) line;
modulation solution: green (dashed) line. (a) Amplitude a = 0.5
with a detailed view in (b), (c) amplitude a = 0.4 with a detailed
view in (d), (e) a = 0.15 with a detailed view in (f). Here, ν = 200,
μ = 300, q = 2, and γ = 0.5.

of a single humped beam, whereas modulation theory pro-
vides the critical amplitude a = 0.24 for the parameters given
in the caption of Fig. 1. Figures 1(a)–1(d) present solutions
above these critical values, whereas Figs. 1(e) and 1(f) show
a solution below this critical intensity. It is also noted that
the assumed temperature solution form (20) is in very good
agreement with its numerical profile, which validates the ap-
proximations used to derive it.

It can be seen from Fig. 1 that as the beam amplitude a and
its intensity decrease, the agreement between numerical and
modulation solutions for the temperature τ deteriorates. This
is because the approximate solution (20) given by Eq. (12)
is based on a large separation between the beam maxima.
However, this separation goes down with the optical intensity,
invalidating this assumption. Given this, it is remarkable how
accurate the modulation solution is for a = 0.15 in Figs. 1(e)
and 1(f). It should be noted that the modulation solution gives
the separation ξ = 5.5 and width w = 14 in this case so that
the two beams of the trial functions (17) and (18) are not
centered at the origin. The profile appears single peaked as
the separation is significantly less than the width.

As stated above, the modulation equations of Appendix A
are involved due to the trial functions relying on two inter-
acting beams, but they can provide insight into the existence
of multihumped nematicons. The key equation in this regard
is (A4), the variational equation due to variations δξ , which
arises for two interacting beams with nonzero separation ξ .
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The nematicon phase is σ ′ > 0. For this modulation equation
to have a valid solution, the temperature effect γ τ0 (due to
the defocusing response) needs to overcome the other terms
with the opposite sign. Moreover, the separation ξ needs to
be large enough for the same reason. These observations and
deductions give a basis for the detailed results visible in Fig. 1.

IV. (2 + 1)-DIMENSIONAL SOLUTIONS

The investigation of (1 + 1)D-multi-humped thermo-
reorientational nematicons of Sec. III will now be extended to
(2 + 1)D. These thermo-reorientational nematicons are radi-
ally symmetric with a volcano shape due to the central dip. As
for the (1 + 1)D case, the modulation solutions will be found
based on the actual reorientational and thermal responses of
the NLC, not simplified and/or unphysical models. The nu-
merical thermo-reorientational nematicons in (2 + 1)D will
be determined using the ITEM in order to guarantee their
linear stability.

As the calculation of the averaged Lagrangian in (2 + 1)D
is similar to (1 + 1) dimensions, only an outline will be
presented. The solitary wave beam is assumed radially sym-
metric, so the Gaussian trial functions for the electric field and
director distribution are

u = a
[
e−(r−ξ )2/w2 + e−(r+ξ )2/w2]

eiσ , (24)

θ = α
[
e−(r−ξ )2/β2 + e−(r+ξ )2/β2]

, (25)

with r2 = x2 + y2 in plane polar coordinates. In this radially
symmetric case the nematicon is ring shaped (two-humped in
one-dimensional cross-sections) with a volcano-shaped form.
Typical NLC cells are planar but are relatively thick, so the
assumption of radial symmetry is a good approximation as in
experiments the sizes of both light beam and waveguide are
much less than the cell width or thickness, so the influence of
the planar boundaries is minor. We then consider a sample cell
with a radius R and R  ξ , an assumption tested in previous
work with the outer value R taken as half the cell thickness
versus y, which gave excellent agreement with experimental
results [34].

The radially symmetric temperature Eq. (12) has the ho-
mogeneous solutions ln r and a constant. As for (1 + 1)D
since the diffusivity μ is large, we assume that the temperature
within the circular peak of the nematicon is constant and de-
cays as the homogeneous solution away from the axis, giving

τ =
{
τ0, 0 � r � ξ,

τ1 ln R
r , ξ < r < R,

(26)

on using the boundary condition τ = 0 at r = R. Integrating
the temperature Eq. (12) with u given by the trial function (24)
from r = 0 to r = R yields

μr
∂τ

∂r

∣∣∣∣∣
r=R

= −a2w

[√
π√
2

ξ erf

(√
2ξ

w

)
+ we−2ξ 2/w2

]

∼ −a2w

[√
π√
2

ξ + 1

2
we−2ξ 2/w2

]
, (27)

on using the asymptotic expansion of the error function for
large argument to two terms [46]. Matching this derivative at

r = R with the solution form (26) provides

τ1 = a2w

μ

[√
π√
2

ξ erf

(√
2ξ

w

)
+ we−2ξ 2w2

]

∼ a2w

μ

[√
π√
2

ξ + 1

2
we−2ξ 2/w2

]
, (28)

again using the asymptotic expansion of the error function
[46]. Continuity at r = ξ finally yields

τ0 = a2w

μ

[√
π√
2

ξ erf

(√
2ξ

w

)
+ we−2ξ 2/w2

]
ln

R

ξ

∼ a2w

μ

[√
π√
2

ξ + 1

2
we−2ξ 2/w2

]
ln

R

ξ
. (29)

As well as the exact expression, the asymptotic form of τ0 for
large ξ, ξ � R has been given.

Having determined the two-dimensional temperature dis-
tribution, the averaged Lagrangian can be calculated from the
Lagrangian (16) based on the trial functions (24) and (25) with
similar assumptions as for the (1 + 1)D-averaged Lagrangian
(23). Integrating the Lagrangian (16) in polar coordinates
from r = 0 to r = R, which is approximated as r = ∞ due
to the cell being much wider than the light beam and in the
polar angle from 0 to 2π , results in the averaged Lagrangian,

1

4π
L = −σ ′a2w

[
we−ψ2

w +
√

π√
2

ξ erf (ψw )

]

− 1

2
a2

[
2e−ψ2

w − 2
ξ 2

w2
e−ψ2

w +
√

π√
2

ξ

w
erf (ψw )

]

− 1

2
να2

[
2e−ψ2

β − 2
ξ 2

β2
e−ψ2

β +
√

π√
2

ξ

β
erf (ψβ )

]

− qα2β

[
βe−ψ2

β +
√

π√
2

ξ erf (ψβ )

]

+ 2 f (τ0)αa2β2w2

2β2 + w2

[
4e−ψ2

1 + √
πψ1 erf (ψ1)

+√
πψ2e−[8ξ 2/(2β2+w2 )] erf (ψ2)

+ 2
√

πψ3e−[4(β2+w2 )ξ 2/w2(2β2+w2 )] erf (ψ3)
]
. (30)

Here, the arguments of the error functions are

ψw =
√

2ξ

w
, ψβ =

√
2ξ

β
, ψ1 =

√
2β2 + w2ξ

βw
,

ψ2 = (2β2 − w2)ξ

βw
√

2β2 + w2
, ψ3 = wξ

β
√

2β2 + w2
.

(31)

The variational equations obtained from this averaged La-
grangian are presented in Appendix B.

Figure 2 displays an example of a ring-shaped thermo-
reorientational solitary wave solution of the (2 + 1)-
dimensional NLC Eqs. (10)–(12) with a volcano shape for
the electric-field amplitude a = 0.5, obtained using the ITEM.
The electric field, temperature, and director show the overall
forms assumed in the derivation of the modulation equations,
particularly, temperature τ as given by (26). The beam has
a bell shape as in Fig. 2(a) with a crater on axis as in
Fig. 2(b) with a constant phase across it. Since the nonlocality
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FIG. 2. Numerical solutions of the (2 + 1)D-NLC Eqs. (10)–
(12) for an electric-field amplitude a = 0.5. Three-dimensional
rendering of (a) and (b) the electric-field magnitude |u|, corre-
sponding to (c) temperature distribution τ and (d) director angle
distribution θ . Here, ν = 200, μ = 300, q = 2, and γ = 0.5.

parameter ν is large, ν = 200, the director appears single
peaked as in (1 + 1)D, see Fig. 2(d) and does not mirror the
volcano-shaped beam. Finally, the long logarithmic decay of
the temperature from its peak as compared with the beam and
the director is seen in Fig. 2(c) as in the solution (26) for

FIG. 3. Comparison between the (2 + 1)D-thermo-
reorientational solitary wave given by solutions of NLC
Eqs. (10)–(12) and those of the (2 + 1)D-modulation
Eqs. (B1)–(B5). Solution of nematic equations: red (full) line;
and modulation solution: green (dashed) line. (a) Amplitude a = 0.5
with detailed view in (b), (c) amplitude a = 0.3 with detailed
view in (d), and (e) a = 0.08 with a detailed view in (f). Here,
ν = 200, μ = 300, q = 2, and γ = 3.0.

the temperature. This markedly different decay of the director
distribution and the temperature is important for the accurate
description of thermo-reorientational nematicons. As stated
in the Introduction, the functional forms of the competing
focusing and defocusing contributions in the model Eq. (1),
and its (2 + 1)D extension are often assumed to be the same
for analytical convenience. This is not adequate for real media,
in particular, for nematic liquid crystals.

Figure 3 compares (2 + 1)D radially symmetric solutions
of the NLC Eqs. (10)–(12) obtained from ITEM and those
from the modulation Eqs. (B1)–(B5) as for the (1 + 1)D com-
parisons of Fig. 1. The results resemble those in (1 + 1)D.
The (1 + 1)D- and (2 + 1)D-averaged Lagrangians (23) and
(30), respectively, and the modulation equations of Appen-
dices A and B are broadly similar, so this is not unexpected.
In analogy with (1 + 1)D as the beam intensity decreases, the
thermo-reorientational solitary wave evolves from a ring to
a one-hump wave packet. This occurs at an amplitude 0.14
according to the full numerical solution and at 0.105 for the
modulation equations based on the parameter values given
in the caption to Fig. 3. The various comparisons in Fig. 3
show this transition as the beam intensity or amplitude de-
creases. Clearly, the match between numerical and modulation
solutions for the electric-field |u| and temperature τ of the
ring-shaped nematicons of Figs. 3(a)–3(d) is excellent with
the modulation solution crater slightly deeper than that from
numerical solutions. Nevertheless, the agreement between the
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solutions for the single peak nematicon of Figs. 3(e) and
3(f) is worse than that for the equivalent (1 + 1)D case of
Figs. 1(e) and 1(f) due to the violation of the assumption of
wave-packet peaks well separated from the origin. In addition,
the modulation theory gives ξ ∼ 2.2, which is much less than
the ξ ∼ 5.5 for the (1 + 1)D case of Figs. 1(e) and 1(f) so
that again the modulation solution does not satisfy the basic
assumption used to derive the modulation Eqs. (B1)–(B5). As
in the (1 + 1)D case of Sec. III, the key modulation equation
for the existence of a volcano-shaped thermo-reorientational
nematicon is (B5), the variational equation obtained from
variations δξ of the averaged Lagrangian (30). To obtain a
volcano solution with ξ �= 0, in fact, ξ sufficiently bounded
above 0, the thermal contribution must be strong enough, in
particular, ∂ f (τ0)/∂ξ needs be sufficiently large and posi-
tive to ensure a balance between the terms of positive and
negative signs in this equation. This qualitative result rein-
forces the detailed conclusions from Fig. 3 on the need for
a sufficiently strong defocusing for supermode solitary waves
to exist.

The agreement for the director θ is not as satisfactory, but
more markedly so than for the (1 + 1)D case of Sec. III.
Besides the role of the large nonlocality ν as in (1 + 1)
dimensions, there is the extra effect of the deeper crater in
the modulation solution. The optical forcing of the director
is lower near r = 0 and so is the reorientational response.
In addition, the less accurate director distribution in (1 + 1)
and (2 + 1) dimensions is connected with the trial functions
(18) and (25) having two individual responses due to the two
beams in the trial functions (17) and (24). The radial spreading
in two transverse directions enhances this deeper crater, mak-
ing an improved trial function for the director a requirement in
(2 + 1) dimensions. This research effort is indeed underway
as part of a systematic study of structured two-dimensional
self-confined light beams.

V. CONCLUSIONS

The formation of multihumped nematicons in (1 + 1)D-
and ring-peaked volcano-shaped nematicons in (2 + 1)D has
been investigated in thermo-reorientational nematic liquid
crystals by seeking steady solitary waves as numerical solu-
tions of the governing equations, as well as solutions from
modulation theory based on suitable trial functions in a vari-
ational formulation of the governing model. At variance with
previous work, the physical reorientational and optothermal
responses of NLC to extraordinary waves were employed
in this paper, rather than simplified models which do not
model real media. The adopted equations consist of an NLS-
type equation for the light beam and elliptic equations for
both the molecular orientation and thermal responses. The
variational solutions based on the modulation equations for
the thermo-reorientational nematicons resulted in excellent
agreement with the numerical solutions. In addition, we have
presented results for (2 + 1)D volcano-shaped nematicons.
This is a remarkable result because of the lack of exact solitary
wave solutions for the NLC equations [47] either with or
without the competing defocusing contribution of relevance
here and because the full physical medium responses were
successfully incorporated. More work along this path is forth-
coming towards investigating two-dimensional self-localized
beam solutions with additional azimuthal features and their
stability in symmetric as well as nonsymmetric configura-
tions. The theoretical tools developed hereby are expected
to play an important role in analyzing other self-localized
structured beams stemming from opposite or competing non-
linear responses in NLC as well as, e.g., metal nanoparticle
suspensions [48], photorefractive crystals [49], ferroelec-
tric or photovoltaic crystals with counteracting photocurrents
[50,51], noncentrosymmetric crystals with a quadratic re-
sponse [52], atomic vapors [53], and metamaterials [54] to
mention only a few.

APPENDIX A: (1 + 1)D-MODULATION EQUATIONS

The modulation (variational) equations obtained from the (1 + 1)D-averaged Lagrangian (23) determining the thermo-
reorientational nematicons are

{
ν

β

[
1 +

(
1 − 4

ξ 2

β2

)
e−2ξ 2/β2

]
+ 2qβ

[
1 + e−2ξ 2/β2]}

α = 4a2βw√
2
√

2β2 + w2

{
1 + e

− 8ξ2

2β2+w2 + 2e
− 4(β2+w2 )ξ2

w2 (2β2+w2 )

+ γ τ0
[
2 + e

− 4(β2+w2 )ξ2

w2 (2β2+w2 )
]}

, (A1)

2
√

2w
[
1 + e−2ξ 2/w2]

σ ′ = −
√

2

w

[
1 +

(
1 − 4

ξ 2

w2

)
e−2ξ 2/w2

]
+ 8αβw√

2β2 + w2

[
1 + e

− 8ξ2

2β2+w2 + 2e
− 4(β2+w2 )ξ2

w2 (2β2+w2 )
]

+ 8γ τ0αβw√
2β2 + w2

[
2 + e

− 4(β2+w2 )ξ2

w2 (2β2+w2 )
] + 4γαaβw√

2β2 + w2

∂τ0

∂a

[
2 + e

− 4(β2+w2 )ξ2

w2 (2β2+w2 )
]
, (A2)

0 = −2
√

2σ ′
[

1 +
(

1 + 4ξ 2

w2

)
e−2ξ 2/w2

]
+

√
2

w2

[
1 +

(
1 − 16

ξ 2

w2
+ 16

ξ 4

w4

)
e−2ξ 2/w2

]

+ 16αβ3

(2β2 + w2)3/2

[
1 + e

− 8ξ2

2β2+w2 + 2e
− 4(β2+w2 )ξ2

w2 (2β2+w2 )
] + 128αβw2ξ 2

(2β2 + w2)5/2

[
e
− 8ξ2

2β2+w2 +
(

1 + 2
β2

w2
+ 2

β4

w4

)
e
− 4(β2+w2 )ξ2

w2 (2β2+w2

]
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+ 64γ τ0αβξ 2(w4 + 2β2w2 + 2β4)

w2(2β2 + w2)5/2
e
− 4(β2+w2 )ξ2

w2 (2β2+w2 ) + 8γαβw√
2β2 + w2

∂τ0

∂w

[
2 + e

− 4(β2+w2 )ξ2

w2 (2β2+w2 )
]
, (A3)

0 = 2
√

2
a2

w
σ ′ξe−2ξ 2/w2 +

√
2

a2ξ

w3

(
3 − 4

ξ 2

w2

)
e−2ξ 2/w2 +

√
2
να2ξ

β3

(
3 − 4

ξ 2

β2

)
e−2ξ 2/β2 + 2

√
2q

α2ξ

β
e−2ξ 2/β2

− 32αa2wβξ

(2β2 + w2)3/2

[
e
− 8ξ2

2β2+w2 + β2 + w2

w2
e
− 4(β2+w2 )ξ2

w2 (2β2+w2 )

]
− 16γ τ0αa2βξ (β2 + w2)

w(2β2 + w2)3/2
e
− 4(β2+w2 )ξ2

w2 (2β2+w2 )

+ 2γαa2βw√
2β2 + w2

∂τ0

∂ξ

[
2 + e

− 4(β2+w2 )ξ2

w2 (2β2+w2 )

]
, (A4)

0 =
√

2ν
α

β2

[
1 +

(
1 − 16

ξ 2

β2
+ 16

ξ 4

β4

)
e−2ξ 2/β2

]
− 2

√
2qα

[
1 +

(
1 + 4ξ 2

β2

)
e−2ξ 2/β2

]

+ 8a2w3

(2β2 + w2)3/2

[
1 + e

− 8ξ2

2β2+w2 + 2e
− 4(β2+w2 )ξ2

w2 (2β2+w2 )
] + 64a2β2wξ 2

(2β2 + w2)5/2

[
2e

− 8ξ2

2β2+w2 + e
− 4(β2+w2 )ξ2

w2 (2β2+w2 )
]

+ 8γ τ0a2w3

(2β2 + w2)5/2

[
2 + e

− 4(β2+w2 )ξ2

w2 (2β2+w2 )
] + 64γ τ0a2β2wξ 2

(2β2 + w2)5/2
e
− 4(β2+w2 )ξ2

w2 (2β2+w2 ) , (A5)

The modulation Eqs. (A1) and (A2) give solutions for the director response amplitude α and the phase σ ′, respectively, so that
only the three modulation Eqs. (A3)–(A5) are solved using Broyden’s method [44,45].

APPENDIX B: (2 + 1)D MODULATION EQUATIONS

The variational equations obtained from the (2 + 1)D-averaged Lagrangian (30) are highly involved. The attraction of
variational methods is the ability to obtain approximate solutions which are simple enough to analyze to determine the behavior
of propagating beams in various scenarios. For this reason, the limit of the averaged Lagrangian for the ring peak well separated
from the origin r = 0, which is the case for the nematicon solutions presented here, will be taken. This approximation is
consistent with the approximation (26) for the temperature. We, thus, expand the error functions in the averaged Lagrangian
(30) to two terms in their asymptotic expansions for large argument [46]. The modulation or variational equations obtained from
the averaged Lagrangian (30) in this limit are then

{
ν

[√
π√
2

ξ

β
+

(
3

2
− 2ξ 2

β2

)
e
− 2ξ2

β2

]
+ 2qβ

[√
π√
2

ξ + 1

2
βe

− 2ξ2

β2

]}
α

= 2
√

π f (τ0)a2βwξ

(2β2 + w2)3/2

[
2β2 + w2 + (2β2 − w2)e− 8ξ2

2β2+w2 + 2w2e
− 4(β2+w2 )ξ2

w2 (2β2+w2 )

]
, (B1)

2σ ′
[√

π√
2

ξw + 1

2
w2e− 2ξ2

w2

]
= −

[√
π√
2

ξ

w
+

(
3

2
− 2ξ 2

w2

)
e− 2ξ2

w2

]
+ 2

√
παβwξ√

2β2 + w2

[
2 f (τ0) + a

∂ f (τ0)

∂a

]

+ 2
√

παβwξ

(2β2 + w2)3/2

(
2 f (τ0) + a

∂ f (τ0)

∂a

)[
(2β2 − w2)e− 8ξ2

2β2+w2 + 2w2e
− 4(β2+w2 )ξ2

w2(2β2+w2 )

]
, (B2)

0 = −σ ′
[√

π√
2

ξ + w

(
1 + 2ξ 2

w2

)
e− 2ξ2

w2

]
− 1

2

[
−

√
π√
2

ξ

w2
+

(
3

2
+ 10ξ 2

w3
− 8ξ 4

w5

)
e− 2ξ2

w2

]

+ 4
√

π f (τ0)αβ3ξ

(2β2 + w2)3/2 + 2
√

παβwξ√
2β2 + w2

∂ f (τ0)

∂w
+ 4

√
π f (τ0)αβξ (β2 − w2)

(2β2 + w2)5/2

[
(2β2 − w2)e− 8ξ2

2β2+w2 + 2w2e
− 4(β2+w2 )ξ2

w2(2β2+w2 )

]

+ 2
√

παβwξ

(2β2 + w2)3/2

∂ f (τ0)

∂w

[
(2β2 − w2)e− 8ξ2

2β2+w2 + 2w2e
− 4(β2+w2 )ξ2

w2(2β2+w2 )

]

+ 4
√

π f (τ0)αβw2ξ

(2β2 + w2)3/2

[(
−1 + 8(2β2 − w2)ξ 2

(2β2 + w2)2

)
e
− 8ξ2

2β2+w2 + 2

(
1 − 4β2ξ 2

(2β2 + w2)2

)
e
− 4(β2+w2 )ξ2

w2(2β2+w2 )

]
, (B3)

0 = −1

2
να

[
−

√
π√
2

ξ

β2
+

(
3

2
+ 10ξ 2

β3
− 8ξ 4

β5

)
e
− 2ξ2

β2

]
− qα

[√
π√
2

ξ + β

(
1 + 2ξ 2

β2

)
e
− 2ξ2

β2

]
+ 2

√
π f (τ0)a2w3ξ

(2β2 + w2)3/2

+ 2
√

π f (τ0)a2wξ (w2 − 4β2)

(2β2 + w2)5/2

[
(2β2 − w2)e− 8ξ2

2β2+w2 + 2w2e
− 4(β2+w2 )ξ2

w2(2β2+w2 )

]
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+ 8
√

π f (τ0)a2β2wξ

(2β2 + w2)3/2

[
e
− 8ξ2

2β2+w2 + 8(2β2 − w2)ξ 2

(2β2 + w2)2 e
− 8ξ2

2β2+w2 + 4w2ξ 2

(2β2 + w2)2 e
− 4(β2+w2 )ξ2

w2(2β2+w2 )

]
, (B4)

0 = −σ ′a2

[√
π√
2

w − 2ξe− 2ξ2

w2

]
− 1

2
a2

[√
π√
2

1

w
−

(
3

2
+ 10ξ

w2
− 8ξ 3

w4

)
e− 2ξ2

w2

]
− 1

2
να2

[√
π√
2

1

β
−

(
3

2
+ 10ξ

β2
− 8ξ 3

β4

)
e
− 2ξ2

β2

]

− qα2

[√
π√
2

β − 2ξe
− 2ξ2

β2

]
+ 2

√
παa2βw√

2β2 + w2

[
f (τ0) + ξ

∂ f (τ0)

∂ξ

]
+ 2

√
παa2βw

(2β2 + w2)3/2

[
(2β2 − w2)e− 8ξ2

2β2+w2 + 2w2e
− 4(β2+w2 )ξ2

w2 (2β2+w2
) ]

×
[

f (τ0) + ξ
∂ f (τ0)

∂ξ

]
− 32

√
π f (τ0)αa2βwξ 2

(2β2 + w2)5/2

[
(2β2 − w2)e− 8ξ2

2β2+w2 + (β2 + w2)e− 4(β2+w2 )ξ2

w2 (2β2+w2 )
]
. (B5)

As for the (1 + 1)D-modulation equations, the variational Eq. (B1) determines the director amplitude α and the modulation
equation Eq. (B2) the nematicon phase σ ′ so that only the three modulation equations Eqs. (B3)–(B5) need to be solved using
Broyden’s method.

The use of modulation theory has been pushed to its useful limits given the involved nature of the (1 + 1)- and (2 + 1)-
dimensional modulation equations. To extend modulation theory to solitary waves with more than two humps, which means
three or more interacting component beams, requires better choices of trial functions with the requisite number of peaks. The
alternative is the use of numerical solutions only.
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