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Random singlet phase of cold atoms coupled to a photonic crystal waveguide
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Systems consisting of cold atoms trapped near photonic crystal waveguides have recently emerged as an
exciting platform for quantum atom-light interfaces. Such a system enables realization of tunable long-range
interactions between internal states of atoms (spins), mediated by guided photons. Currently, experimental
platforms are still limited by low filling fractions, where the atom number is much smaller than the number
of sites at which atoms can potentially be trapped. Here, we show that this regime in fact enables interesting
many-body quantum phenomena, which are typically associated with short-range disordered systems. As an
example, we show how the system can realize the so-called “random singlet phase” (RSP), in which all atoms
pair into entangled singlets, but the pairing occurs over a distribution of ranges as opposed to nearest neighbors.
We use a renormalization group method to obtain the distribution of spin entanglement in the RSP, and show
how this state can be approximately reached via adiabatic evolution from the ground state of a noninteracting
Hamiltonian. We also discuss how experimentally this RSP can be observed. We anticipate that this work will
accelerate the route toward the exploration of strongly correlated matter in atom-nanophotonics interfaces, by
avoiding the requirement of perfectly filled lattices.
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I. INTRODUCTION

In recent years, there has been considerable effort in in-
terfacing atoms with nanophotonic structures [1,2], including
nanofibers [3–9] and photonic crystal waveguides (PCWs)
[10–14]. The predominant aim initially was to utilize the
strong light-matter interactions for applications within quan-
tum information processing [15–19]. More recently, however,
it has been realized that these atom-nanophotonics interfaces
also open up new paradigms to explore quantum many-body
physics [2,20–25].

In particular, when an atomic transition frequency lies
in a bandgap of a PCW, a photon emitted from an
atom becomes an evanescent wave and forms a bound
state around the atom. These bound states, with a tunable
evanescent length [20,21,26–29], can facilitate interesting
interactions like long-range spin models [22,30], strong spin-
motion coupling [23], or long-range interactions between
photons [31,32].

These proposals typically require perfect filling of the lat-
tice sites where atoms can potentially be trapped, which is
a challenge in current experiments [12,13]. Here, we show
that the combination of long-range interactions and low filling
enables the realization of novel many-body physics, allowing
the system to mimic a spin chain with short-range, random
interaction strength [33,34]. In particular, under certain con-
ditions, the ground state of the system becomes a “random
singlet phase” (RSP), where all atoms entangle into singlet
pairs, but the pairing occurs over a distribution of ranges
instead of between nearest neighbors. We analyze the main
properties of this phase, and discuss how it can be prepared
and observed in a realistic PCW system.

II. THE HAMILTONIAN OF THE SYSTEM

A photonic crystal (PhC) is a periodic dielectric structure
that controls the propagation of light. Due to the periodicity,
the dispersion relation ωk versus Bloch wave vector k of
guided modes is describable by bands [Fig. 1(b)]. We assume
that the atomic optical transition (involving ground state |g〉
and excited state |e〉) is situated within a bandgap, a frequency
window in which no propagating modes exist. This prevents
an excited atom from decaying into |g〉 by emitting a guided
photon; however, the state |e〉 can become dressed by a photon
bound state localized a distance L around the atom [Fig. 1(a)].
Given a second atom in its ground state within a distance ∼L
of the first, the pair can exchange their excitations via the
bound photon, resulting in an effective spin interaction. In
principle, this spin interaction can occur with a high fidelity
in spite of atomic spontaneous emission and photon losses,
provided that the PhC structure has a large cooperativity
(see Appendix A). However, in practice, it would be difficult
to directly observe and manipulate the dynamics, given the
rapid spontaneous emission rate (and even larger coherent
spin interaction rate) associated with the excited state, and
furthermore, it would be difficult to tune the interaction rate
with time. To fix these issues, it is convenient to introduce
an additional metastable state |s〉, which is coupled to |e〉 via
an external laser field with Rabi frequency �(t ) [Fig. 1(a)].
Under certain conditions [20] (also see derivation in
Appendix A), the state |e〉 and its photon bound state are only
virtually excited, allowing the dynamics to be projected into
the {|g〉, |s〉} manifold with the effective Hamiltonian,
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FIG. 1. (a) Schematic illustration of setup, consisting of a sparse
and random filling of cold atoms [shaded (green) balls] tightly
trapped in a lattice potential [(blue) periodic curve] near a 1D PCW.
The atoms have a �-level scheme, with the ground (g) to excited (e)
state transition frequency being ωeg, and the excited and a metastable
state (s) coupled by a Raman laser with Rabi frequency � and
detuning δL . If ωeg lies in the bandgap of the PhC, a photon bound
state can form around the atom, illustrated as the (red) decaying
envelope. (b) Typical band structure of a 1D PhC with bandgaps,
with guided mode frequency ωk as a function of Bloch wave vector
k. The zoom-in rectangle shows the atomic transition frequency ωeg

situated in a bandgap and close to a band edge.

where Ĥi j = (Ji j (t )/2)(σ̂ i
xσ̂
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y ) denotes the spin-flip
interaction between atoms i and j (i, j = 1, ..., N and N
is the total number of atoms), with {|g〉, |s〉} being treated
as pseudospins {| ↑〉, | ↓〉}, and {σ̂x, σ̂y} the Pauli matrices.
Ji j (t ) = J0(t ) exp(−|xi − x j |/L) where J0(t ) ∝ �(t ) is a tun-
able interaction strength proportional to the external field, and
xi, x j are the positions of atom i and j. When the atoms
are trapped in discrete positions (integer multiples of the
lattice constant), but fill only a small fraction of all possi-
ble sites, the distances |xi − x j | and the interaction strengths
Ji j become random (over a set of possible discrete values).
The dependence of J0 and L on system parameters (such
as laser detunings, band edge curvature, etc.) are described
further in [20] and Appendix A, but are not of paramount
importance here.

III. A RENORMALIZATION GROUP APPROACH

The salient properties of the ground state can be obtained
using the renormalization group (RG) procedure [33,34].
Given a pair of atoms (i and i + 1) separated by the shortest
distance [denoted as lm < l , where l is any other coupling
distance in the system; first row in Fig. 2(a)], and thus
experiencing the strongest interaction, we first diagonalize
the system around Ĥi,i+1 and treat the rest of Eq. (1) as a
perturbation. For positive J0, the ground state of Ĥi,i+1 is
a singlet: |S〉 = (1/

√
2)(| ↑〉i| ↓〉i+1 − | ↓〉i| ↑〉i+1). A spin-

flip interaction of one of these atoms (i) with another atom
j �= i, i + 1 would bring the pair out of the singlet state, at
a high energy cost. However, through a second-order pro-
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FIG. 2. (a) Illustration of renormalization process and interac-
tions mediated by singlet pairs for the case of four atoms. In the
top line, atoms 2 and 3 experience the strongest interaction (thick
black line) due to their proximity, so (in the second line) they form a
singlet pair [indicated by the (red) line above the atoms] and can be
“frozen out” of the 1D chain (indicated by transparent red). Below,
we indicate half of the singlet state, with atom 2 initially in state
| ↑〉 and atom 3 in state | ↓〉. (First line) If atoms 1 and 4 are in states
| ↓〉 and | ↑〉, respectively, atoms 1 and 2 can virtually exchange their
spins [dashed (red) circle] at a high energy cost. Atoms 2 and 3 can
return to the singlet state (third line) if 3 and 4 virtually exchange
their spins as well [second line, dashed (red) circle]. The entire pro-
cess overall results in an effective interaction between atoms 1 and 4
mediated by the singlet pair of atoms 2 and 3. The effective distance
l between atoms 1 and 4 is therefore “renormalized” and shrunk
by an amount of deff (given in the text). This procedure generates
pair nesting configurations where singlet pairs sit inside longer ones.
(b) A representative ground state of the RSP for 10 atoms.

cess, atom i + 1 can interact with atom j′ �= j, i, i + 1, which
brings the pair back to the singlet and results in an effective
spin-flip interaction between atoms j and j′. Remarkably,
the new total effective Hamiltonian HN−2

int for the remain-
ing N − 2 atoms takes exactly the same form as Eq. (1),
but where the distance between atoms on opposite sides
of the already paired atoms (i and i + 1) is shortened or
renormalized (Fig. 2): J̃ j j′ → J0 exp[−(|x j − x j′ | − deff )/L],
where deff/L = 2 lm/L + ln(1 − 2e−lm/L + 2e−2 lm/L ), and the
new “effective distance” between atoms j and j′ becomes l ≡
|x j − x j′ | − deff [second row in Fig. 2(a)] (see Appendix B).
One can then repeat this argument, progressively eliminat-
ing the next strongest interacting pair with correspondingly
larger lm. The final result is a many-body ground state
composed of only singlet pairings, but not necessarily be-
tween nearest neighbors [Fig. 2(b)]: the so-called “random
singlet phase” [34].

To quantify the salient properties of the RSP, one can con-
sider the probability density P(l, lm), where P(l, lm) dl char-
acterizes the probability of finding nearest, unpaired atoms
with an effective interaction strength between J0 exp(−l/L)
and J0 exp(−(l + dl )/L), after all pairs interacting with an
effective distance of lm or less have been frozen into singlets.
Instead of working with P(l, lm) directly, it is more convenient
to perform a change of variables to Q(λ, lm) = lmP(l, lm) with
λ = l/lm − 1. It can be shown that the elimination process
results in the following evolution or RG flow equation for
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FIG. 3. (Left) Fraction of atoms N (lm )/N left unpaired, after
pairs of atoms with an effective interaction distance up to lm have
been renormalized into singlets. The solid (red) and dash-dotted
(green) curves denote the results predicted by the RG flow equations
and by numerical MPS simulations, respectively. For comparison, the
dashed (black) curve denotes the unpaired atoms without RG, i.e.,
without allowing nested pairs to occur. (Right) Among the paired
atoms, we plot the fractions of nested pairs at lm. The solid and
dashed lines are for RG and MPS simulated results, respectively. The
black, dark gray (red), and light gray (green) correspond to nesting
orders nlm = 0, 1, 2, respectively. Plotting parameters are L = 5a and
30% filling.

Q(λ, lm) (Appendix C):

−Q(λ, lm) + lm
∂Q

∂lm
− (1 + λ)

∂Q

∂λ

= Q(0, lm)
∫ λ+g(lm )

0
dλ1Q(λ1, lm)Q(λ + g(lm) − λ1, lm),

(2)

where lmg(lm) = ln[1 − 2e−lm (1 − e−lm )] (both l and lm have
been rescaled by L). We solve Eq. (2) numerically, and in
Fig. 3 (left) show the result for the fraction of unpaired atoms
as a function of lm obtained from Q(λ, lm) (Appendix C).
As expected, as the cutoff length lm increases, all atoms be-
come paired. For small N in a given spatial configuration, we
can also find the ground state numerically by matrix product
state (MPS) algorithms [35]. Given the MPS ground state,
we calculate the projection into the singlet state 〈S|ρ̂i j |S〉 of
the two-atom reduced density matrix ρ̂i j of atoms i, j, and
identify pairing if the projection is the largest compared to any
other combinations (i, j′ �= j or i′ �= i, j). Once all pairings
are identified for a given configuration [e.g., in Fig. 2(b)],
we assume that such a state was formed according to the RG
rules and use the expression of J̃ j j′ to assign an effective lm
to each pair. In Fig. 3 (left) we plot the MPS result for 105

random distributions for N = 30. It agrees well with the RG
flow equation. The discrepancy for small lm is attributable
mostly to the fact that in the physical system and in the MPS
simulations, there is a discreteness of atomic positions, which
must, however, be approximated by a smooth distribution to
solve Eq. (2) (Appendix C).

To appreciate the importance of interactions mediated by
singlet pairs that have been integrated out, we consider the
pair nesting structure: the likelihood of finding a singlet pair
with nl other pairs nested inside [e.g., in Fig. 2(a) nl = 1
for pair 1-4, as pair 2-3 is nested inside]. We introduce the

joint distribution: P(nl , l, lm)dl , which gives the probability of
finding a coupling of length l and containing nl nested pairs
inside, when the shortest coupling length in the system is lm.
An RG flow equation can be obtained in a similar fashion as
for Eq. (2) (Appendix C). We solve the equation numerically
and obtain the fractions of nested pairs as a function of lm, and
plot them in Fig. 3 (right) together with the result from MPS
simulations. When lm is small most of the pairs are un-nested
(nlm = 0), indicating the pairing of consecutive atoms, but
as lm increases the fractions of nested pairs (nlm = 1 and 2)
increase and overtake the un-nested pairs. The MPS result
qualitatively agrees with that of RG. The noticeable shift can
be attributed both to the discreteness of atomic positions, and
to the relatively small size of the system (30 atoms) used in the
simulations, as this is unfavorable to forming long-distance
nested pairs.

To qualitatively understand the significant effect of pair
renormalization, we also compare the RG result with simply
identifying shortest distances between any two neighboring
atoms and pairing them up, without any distance renormal-
ization or pair nesting. This pair length distribution can be
obtained from P(0, lm, lm). In Fig. 3 (left) we plot the number
of unpaired atoms in this “no RG” case. One observes that
∼15% of atoms remain unpaired as lm → ∞ [Fig. 3 (right)].

IV. PREPARATION OF THE GROUND STATE IN RSP

Thus far, we have described the ground-state properties of
Eq. (1). However, as this is an effective Hamiltonian produced
by external laser driving, the ground state cannot be reached
by thermalization. Thus, we consider adiabatic evolution from
the ground state of a noninteracting Hamiltonian Ĥ0 which can
be easily prepared. Specifically, we consider a time evolution
process under Ĥ (t ) = cos(ω t )Ĥ0 + sin(ω t )ĤN

int; the initial
state at t = 0 starts with the ground state of Ĥ0 and the final
state one wants to reach at t = π/2ω is the ground state of
ĤN

int. The slew rate ω characterizes how fast the time evolution
happens. One needs to choose Ĥ0 in a way that Ĥ (t ) avoids ex-
tra (nearly) conserved quantities which prevent the initial state
from evolving into the interacting ground state. We find that a
good candidate consists of an effective magnetic field whose
orientation rotates in the x-y plane by a fixed angle from site to
site: Ĥ0 = ε0

∑
i σ̂

i
⊥(φi ), with σ̂ i

⊥(φi) = cos φi σ̂
i
x + sin φi σ̂

i
y

and φi = (xi/a) φ0, where φ0 is a constant between 0 and
2π . The corresponding initial state of atom i is then given by
(1/

√
2)(| ↑〉 − eiφi | ↓〉).

In practice, the optimal ω will be dictated by a balance
of evolving slowly enough to preserve adiabaticity, and fast
enough to avoid realistic errors not captured by ĤN

int, which in
this case consist of the spontaneous emission of atoms and
loss of the PhC. The errors associated with nonadiabacity
cause the final state to end up in an excited state of ĤN

int.
Although the scaling of these errors vs ω is generally com-
plicated for a many-body system [36], here we can develop a
simple picture based on the observation that the ground state
consists of singlet pairs. The Landau-Zener theorem [37–39]
implies a singlet will form if the renormalized interaction
strength between two atoms exceeds the slew rate (J̃i j � ω).

In order to have a large proportion of long pairs, we choose
a relatively low filling fraction and numerically simulate the
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FIG. 4. Slew rate at pair breaking vs binding energy for 1000 ran-
dom distributions of 12 atoms on 100 trapping sites. For comparison,
the result for two atoms is also shown. The relevant parameters are
ε0 = J0, L = 5 a, and φ0 = π/6. The black line is a guide to the eye,
showing a ω ∝ J̃i j scaling.

time evolution of 12 atoms randomly distributed among 100
lattice sites under Ĥ (t ). For each distribution of 12 atoms
among 100 lattice sites, we simulate the time evolution by
starting from the ground state of Ĥ0 as the initial state ψ (t =
0), and evolving it to the final state ψ (t = π/2ω) under the
time-dependent Ĥ (t ) at a chosen slew rate ω. At the end of
the time evolution, we compare the final state with the true
ground state of HN

int, obtained by direct diagonalization, and
see if singlet pairs are broken. We identify the singlet pairs
by looking at the singlet fraction in two-atom reduced density
matrices. For each distribution, we always begin with a small
ω such that the final state will have a high overlap with the
true ground state of HN

int (e.g., 99%), where all atoms form into
singlet pairs. We then repeat the time evolution at increasingly
larger ω, consequently seeing more singlet pairs broken (de-
fined as the singlet fraction dropping below 50%), until there
are no singlet pairs left in the final state. In this process, when-
ever a new singlet pair starts to break, we record the value of
ω with the effective interaction strength J̃i j of the pair. We
repeat this procedure for 1000 random distributions, and plot
the result in Fig. 4. The values of J̃i j are ascribed to pairs in a
procedure identical to that used in the MPS numerics in Fig. 3.
As a guide to the eye, we also plot the scaling ω ∝ J̃i j , as
would be expected from the simple Landau-Zener argument.

The full numerics appears consistent with this argument,
albeit with a large spread and some oscillatory behavior. The
oscillation is an effect that arises even in the problem of N = 2
atoms, as the specific distance of separation gives rise to a
different effective field direction and Ĥ0. To confirm this, in
Fig. 4 we also plot the result for N = 2 atoms. The additional
large variation seen for N = 12 atoms arises from the combi-
nation of many-body effects and sampling over many random
configurations. This inevitably results in certain configura-
tions (e.g., three atoms occupying consecutive sites) where
RG cannot quantitatively capture the full physics.

With the scaling relation of ω-J̃i j , we next take into account
the errors in realistic experiments due to photon loss of the
PCW and atomic spontaneous emission, and find the optimal
slew rate that will preserve the most singlet pairs at the end
of the time evolution. In Appendix A, we present the master
equation for the atoms, including the undesired dissipative
effects. If the PCW parameters are optimized, one finds an
incoherent spin-flip rate of ∼J0/

√
C. Here, C is the single-

atom cooperativity in the PCW, which only depends on the
mode volume of the bound state mediating the interaction, and
the photon dissipation rate. Since the total evolution time is
T = π/2ω, the probability that a singlet is lost incoherently
is then Pinc(ω) = J0 T/

√
C. Without accounting for this inco-

herent loss, the errors would be purely due to nonadiabacity,
and the fraction of unpaired atoms at the end of the time
evolution due to finite slew rate Funpaired(ω) can be found by
using the scaling between ω and J̃i j and the relation between
the effective coupling length lm and the fraction of unpaired
atoms [e.g., as plotted in Fig. 3 (left)]. Then taking into ac-
count incoherent losses, the fraction of paired atoms at the
end of the time evolution can be obtained as Fpaired(ω) =
(1 − Funpaired(ω))(1 − Pinc(ω)). Taking a PCW cooperativity
of C = 104 [20] in Pinc, and optimizing over ω for maximum
Fpaired(ω), we estimate that Fpaired(ω) ≈ 70% for 12% filling
fraction. In Appendix D, we also give an analysis of the pair
nesting structure at the end of the time evolution when the
slew rate is optimized at 12% filling.

V. EXPERIMENTAL DETECTION OF RSP

We envision at least two experimental scenarios in which
the RSP could be realized. The first involves atoms that are
deterministically trapped at well-controlled positions, with
single-atom measurement capabilities. Such a situation could
be realized by integrating a tweezer array [40–44] with PCWs
[45,46], or with superconducting qubits coupled to microwave
PCWs [47]. In that case, the spin correlations associated with
the RSP could be directly mapped out. In the second case,
neutral cold atoms could be coupled to PCWs in a setup
similar to Ref. [13], where the atomic positions are unknown
from shot-to-shot, and only global measurements are possi-
ble. Then there is no clear way to measure the microscopic
properties of entanglement (e.g., nesting), however, one can
measure global spin properties instead. A distinguishing char-
acteristic of the ideal RSP is that, being composed globally of
singlets, the state has no collective spin angular momentum.
Thus measurements of Ŝα = (h̄/2)

∑
i σ̂

i
α, α = x, y, z would

ideally exhibit zero mean and variance 〈Ŝα〉 = 〈�Ŝα〉 = 0. An
interesting feature of our proposed PCW implementation is
that these collective spin properties can be mapped onto and
measured in the correlation functions of the outgoing guided
light, in a manner similar to the detection of spin squeezing in
ensembles [48–50].

VI. CONCLUSIONS

We have shown that the combination of long-range in-
teractions and low filling fraction in atom-PhC interfaces
can give rise to novel many-body phases typically associated
with short-range, disordered systems, specifically a random
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singlet phase. Although the RSP is common to both nearest-
neighbor disordered spin systems and atom-PCW interfaces,
the longer range interaction and tunability of the latter could
more broadly lead to rich physics that is not present in the for-
mer case. For example, by tuning the interaction range toward
L → ∞, the ground state would eventually become the highly
degenerate subspace where the global spin �S = 0, and it
could be interesting to explore such a transition. Furthermore,
while the nearest-neighbor model is noninteracting (mappable
to free fermions by the Jordan-Wigner transformation), our
model with extended range is intrinsically interacting. This
could allow for the emergence of interesting dynamical ef-
fects, such as many-body localization [51,52].
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APPENDIX A: FULL DYNAMICS OF THE SYSTEM
WITH DISSIPATION

In this Appendix, we present the full master equation of the
atoms coupled to a PCW, and discuss in detail the different
dissipation mechanisms.

1. Dissipation without Raman coupling between states
|e〉 and |s〉

We first consider the case of many two-level atoms with
states |g〉 and |e〉 trapped near a PCW. In the interaction
picture, the interaction between the atom and PCW modes is

HI = h̄
∑

j

∫
dkgkσ

j
egâkuk (z j )e

i(δkt+kz j ) + H.c., (A1)

where gk is the coupling strength [20], âk and uk are the
annihilation operator and Bloch function of the PCW modes,
respectively, z j denotes the position of the jth atom, and
δk = ωa − ωk where ωa is the atomic transition frequency.

In the presence of loss, we can describe the evolution of
the system by the master equation ρ̇ = LI (t )ρ + Lγ (t )ρ +
Lκ (t )ρ. Here LI (t )ρ = −i/h̄[HI , ρ] describes the coherent
evolution, while the loss mechanisms resulting from sponta-
neous emission from the atomic excited state (rate γ ) and loss
of photons in the PCW (rate κ) are described by

Lγ ρ = −γ

2

∑
j

({σ j
ee, ρ} − 2σ j

ge ρ σ j
eg

)
, (A2)

and

Lκρ = −κ

2

∫
dk

({â†
k âk, ρ} − 2âk ρ â†

k

)
. (A3)

We now consider the case where the atomic transition fre-
quency is near a photonic band edge (frequency ωb and
wave vector k0), but within the bandgap. We approximate
the dispersion relation of the band to be quadratic: ωk ≈ ωb

[1 − α(k − k0)2/k2
0], where α characterizes the band curva-

ture, and we define � = ωa − ωb > 0 as the atomic detuning
from the band edge. In the limit of � → ∞, the atom and
the photons become decoupled. On the other hand, one can
perform an expansion in 1/�, to derive an effective master
equation for the atoms alone, due to virtual excitations of
the photons. Such an expansion is valid in the limit that
� � κ, gc, where gc is a coherent coupling strength between
the atom and the emergent photon bound state (defined shortly
below). Formally, this expansion and elimination of the pho-
ton modes can be carried out using the Nakajima-Zwanzig
approach in the Born-Markov approximation [53], after which
one obtains the following master equation for the reduced
density matrix operator, ρs = Trk (ρ),

ρ̇s = − i

h̄
[H eff

I , ρs] + Lγ ρs + Leff
κ ρs. (A4)

To leading order the interaction is described by the effective
Hamiltonian,

H eff
I = g2

c

2�

∑
j,l

uk0 (z j )u
∗
k0

(zl ) exp[−|z j − zl |/L]σ j
egσ

l
ge,

(A5)

in which L =
√

α ωb/� k2
0 , and gc = gk

√
2π/L. The photon

loss in the PCW enters at order ∼1/�2 (corresponding to the
amount of photon population generated by an excited atom),
and is described by

Leff
κ ρs = − g2

cκ

8�2

∑
j,l

uk0 (z j )u
∗
k0

(zl )
({σ j

egσ
l
ge, ρs} − 2σ j

ge ρs σ l
eg

)
.

(A6)

The effect of losses can be revealed by studying the ex-
change of an excitation between two atoms separated by
|z1 − z2| � L. From Eq. (A5), the time for exchange is given
by τ ∼ π�/g2

c, while the total loss is given by τ (γ cos2 θ +
κ sin2 θ ), where θ is the mixing angle of excitations between
being photonic and atomic, and dependent on �. Optimizing
�, we find an exchange error of π/

√
C, where C = g2

c/γ κ is
the single-atom cooperativity.

2. Dissipation with Raman coupling between states |e〉 and |s〉
We now examine the case with more complicated in-

ternal level structures as depicted in Fig. 1 in the main
text. We assume the transition not coupled to the PCW
|s〉-|e〉 is weakly excited by an orthogonally polarized laser
with detuning δL and Rabi frequency �. We take δL �
γ in which case the atoms are weakly driven and the
Raman scattered fields are predominantly centered around
the two-photon resonance frequency. In this regime, sim-
ilar as above, we can obtain effective dynamics for the
long-lived atomic ground states |s〉 and |g〉. Again using
the Nakajima-Zwanzig technique, we obtain H eff

I and Leff
κ ρ

similar to those in Eqs. (A5) and (A6), except that |e〉 is
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replaced by |s〉, and the strength of the interaction and the loss
are renormalized by

g2
c

2�
−→ g2

c

2�L

|�|2
δ2

L

and
g2

cκ

8�2
−→ g2

cκ

8�2
L

|�|2
δ2

L

, (A7)

respectively. Here �L = δL + ωa − ωb, and we make the re-
placement � → �L in the expression for L. The loss of
coherence in the ground-state manifold resulting from sponta-
neous emission into free space is described by

Leff
γ ρ = −γ

2

|�|2
δ2

L

∑
j

({σ j
ss, ρ} − σ j

ssρσ j
ss − σ j

gsρσ j
sg

)
, (A8)

where the linewidth of the transition is also renormalized by
|�|2/δ2

L. Therefore the interaction and losses are all reduced
by the same factor. As a result, a spin exchange interaction
involving the states |g〉 and |s〉 also has an error of π/

√
C.

APPENDIX B: DERIVATION OF THE RENORMALIZED
HAMILTONIAN

Here, starting from the system Hamiltonian of Eq. (1) in
the main text, we derive the effective Hamiltonian that results
from integrating out the strongest interacting pair of atoms,
which then gives the effective interaction J̃ j j′ in the main text.

Let’s denote the indices of the spins with the strongest
coupling as 1 and 2, and j �= 1, 2 denote all other spins. The
full Hilbert space spanned by all the spins can be divided
into a low-energy subspace spanned by |S12〉 ⊗ {|σ j〉, j �=
1, 2}, where |S12〉 is the singlet state of spins 1 and 2, and
σ j =↑ or ↓, and a high-energy subspace spanned by |T 0,±1

12 〉 ⊗
{|σ j〉, j �= 1, 2}, where |T 0,±1

12 〉 is the triplet manifold with the
magnetic quantum number of each state denoted explicitly.
Accordingly, the full Hamiltonian of the system can be split
up into the form,

ĤN
int = Ĥ12 +

∑
i = 1, 2
j �= 1, 2

Ĥi j +
∑

j< j′ �=1,2

Ĥj j′ , (B1)

where Ĥi j = (Ji j/2)(σ̂ i
xσ̂

j
x + σ̂ i

yσ̂
j

y ). The second term on the
right-hand side of Eq. (B1) describes the interactions between
atoms 1 and 2 with all the other atoms, while the third term de-
scribes the interactions between all the atoms excluding 1 and
2. For notational convenience, we will define these second and
third terms as V̂od = ∑

i=1,2 j �=1,2 Ĥi j and V̂d = ∑
j< j′ �=1,2 Ĥj j′ .

Our goal is to integrate out atoms 1 and 2, but accounting for
the lowest-order nontrivial process. In particular, we consider
a quantum fluctuation where one atom j �= 1, 2 interacts with
the pair 1,2 via V̂od and momentarily brings this pair out of the
low-energy singlet state |S12〉, while another atom j′ �= 1, 2
also interacts with the pair via V̂od and brings it back to the sin-
glet state, and thus yielding an effective interaction between
atoms j, j′. This is formally encoded in the “Schrieffer-Wolff”
transformation [54], given by

ĤN
int ≈ −J12 + 1

2 P̂0
[
Ŝ, V̂od

]
P̂0 + V̂d, (B2)

where P̂0 = |S12〉〈S12| ⊗ Î projects the pair 1,2 into its low-
energy subspace (Î is the identity operator acting on the
remaining atoms), and Ŝ = ∑

p,q
〈p|V̂od|q〉
Ep−Eq

|p〉〈q| with p and q

(a)

l lm x l = l

(b)

x lm y l

FIG. 5. Illustration of various terms in Eq. (C1). The atoms in-
volved in the RG are denoted by circles. The strongest interacting
pair, separated by effective distance lm (red online), is integrated
out, leading to new effective distances between the remaining
pair of atoms.

denoting states where the pair 1,2 belong to different sub-
spaces. For example, if |p〉 is a state in the subspace |S12〉 ⊗ H
(with H denoting the Hilbert space of remaining spins be-
sides 1,2), with Ep = 〈S12|Ĥ12|S12〉, then |q〉 is a state in
the subspace |T 0,±1

12 〉 ⊗ H, with Eq = 〈T 0,±1
12 |Ĥ12|T 0,±1

12 〉, or
vice versa. The term ∼P̂0[Ŝ, V̂od]P̂0 precisely encodes the
effect of quantum fluctuations described above. After some
algebra, we reach

ĤN
int = −J12 −

∑
j �=1,2

(J2 j − J1 j )2

2J12
+ V̂ ′

d, (B3)

with V̂ ′
d takes the same form as V̂d, but where the bare

coupling strength Jj j′ is replaced by the renormalized value

J̃ j j′ = Jj j′ − (J2 j−J1 j )(J2 j′−J1 j′ )
J12

. Plugging in the expression Ji j =
J0 exp(−|xi − x j |/L), one can show that when atom j and j′
sit on the same side of atoms 1 and 2, J̃ j j′ ≈ Jj j′ , whereas
when they sit on opposite sides of atoms 1 and 2, J̃ j j′ =
J0 exp(−|x j−x j′ |−deff

L ), with the expression of deff given in the
main text. Thus, after the two spins with the strongest coupling
in the system form into a singlet pair, the form of interactions
between remaining spins sitting on opposite sides of spins 1
and 2 stays the same, except their distances are renormalized
and shrunk by an amount of deff. We note in contrast to
the nearest-neighbor interactions discussed by [33,34], where
only the two atoms nearest the pair see a renormalized inter-
action, here the interaction of all atoms on opposite sides of
the singlet pair becomes stronger due to the mediating effect
of the pair.

APPENDIX C: RENORMALIZATION GROUP
FLOW EQUATIONS

1. Derivation of the flow equation for the coupling length
distribution

Here, we describe further the derivation of the renormal-
ization group Eq. (2) of the main text, and discuss its solution.
During the RG process, after all pairs of interacting atoms
separated by an effective distance of lm have been integrated
out, the remaining distances l follow a probability distribu-
tion P(l, lm)dl (normalized so that

∫ ∞
lm

dl P(l, lm) = 1). We
next consider how P(l, lm) evolves when pairs of atoms with
effective distances within an infinitesimal range [lm, lm + �]
are renormalized and effectively removed. There are two pro-
cesses by which the effective distance l can change (thus
modifying the probability distribution). In the first, a pair of
atoms [connected by l in Fig. 5(a), blue and black online)
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has an effective distance l of interaction, but one of these
atoms (right, black) also forms a pair with another atom of
effective distance lm, which is to be renormalized. Once the
pair associated with lm is renormalized (removed), the remain-
ing atom (left, blue) sees an interaction strength with a new
effective distance l ′ �= l with the atom on the other side of the
renormalized pair (right one connected by x or l ′, green). This
reduces the probability of finding the effective distance l in
the chain. Thus the probability change caused by this process
needs to be subtracted from P(l, lm), which gives the second
term in the larger square bracket on the right-hand side (RHS)
of Eq. (C1) below. In the second process, two adjacent pairs of
atoms with effective distances x [connected by x in Fig. 5(b),
blue and black) and y [connected by y in Fig. 5(b), black and
green] are connected by an effective distance lm. Once the pair

of (black) atoms connected by lm are renormalized (removed),
the remaining atoms (blue and green) form a new pair with
an effective distance that happens to be l . This increases the
probability of finding a pair with effective distance l in the
chain. Thus the probability change caused by this process
needs to be added to P(l, lm), which gives the third term in the
larger square bracket on the RHS of Eq. (C1). Finally, one is
reminded that P(l, lm) is a probability distribution and needs
to fulfill the normalization condition. Note that every time a
pair with effective distance lm is eliminated from the chain,
the total number of pairs remaining in the chain is decreased
by 2, therefore the new probability distribution needs to be
renormalized by dividing the fraction of all the remaining
pairs in the chain, which corresponds to the inverse factor on
the RHS of Eq. (C1).

P(l, lm + �) = [1 − 2�P(lm, lm)]−1

[
P(l, lm) − 2�P(lm, lm)P(l, lm)

∫ ∞

lm

dxP(x, lm)

+�P(lm, lm)
∫ ∞

lm

dx dy P(x, lm)P(y, lm) δ(x + y + lm − deff − l )

]
.

(C1)

By performing the change of variables λ = l/lm − 1 and
Q(λ, lm) = lmP(l, lm), after some algebra, one reaches Eq. (2)
in the main text.

2. Initial condition for the flow equation

We assume that atoms are randomly distributed among the
trapping sites near the PCW, with probability P = N/Nsite,
under the conditions N, Nsite → ∞, where N and Nsite are the
total number of atoms and lattice sites, respectively. Then,
starting from any occupied site in the spin chain, the proba-
bility of finding the next atom at the nth next site away is

P (l = na, lm = a) = P(1 − P)n−1. (C2)

This is equivalent to the probability of finding two atoms
positioned l = na apart, when the smallest distance between
two atoms in the whole system is lm = a, with a being the
lattice constant. We note the normalization condition that
Eq. (C2) fulfills:

+∞∑
n=1

P(1 − P)n−1 = 1. (C3)

To line up the solution of the flow equation at the beginning
as much as possible with this discrete distribution, we may
approximate it by a continuous distribution:

P → P(1 − P)l/lm−1 dl

lm
≡ P(l, lm) dl, (C4)

where l is a continuous variable and P(l, lm) is a probability
density. Enforcing normalization condition

∫ +∞
lm

P(l, lm) dl =
1 we obtain the initial condition for the flow equation Eq. (2)
in the main text:

Q(λ, lm = a) = − ln(1 − P)(1 − P)λ. (C5)

3. Fraction of unpaired atoms

With the solution of P(l, lm) we can estimate the fraction
of unpaired atoms when the shortest effective distance in the
system is lm. To do this, we first define the number of unpaired
atoms in the system at this stage as N (lm), and note N (lm =
a) = N . Then the number of couplings left in the system at
this stage is N (lm) − 1 ≈ N (lm). The number of couplings that
are to be removed from the system in the next step is then

dN (lm) = −2P(lm, lm) dlm N (lm). (C6)

Changing lm to a dummy variable l ′
m and integrating from a to

lm, and noting that N (lm = a) = N , one obtains

N (lm) = N exp

(
−2

∫ lm

a
P(l ′

m, l ′
m) dl ′

m

)
. (C7)

4. Derivation of the joint flow equation

Similar as for P(l, lm), a flow equation for the nested prob-
ability distribution P(nl , l, lm) can be constructed as

P(nl , l, lm + �)

⎛
⎝1 − 2�

+∞∑
nlm =0

P(nl , lm, lm)

⎞
⎠

= P(nl , l, lm) − 2�P(nl , l, lm)
+∞∑

nlm =0

P(nl , lm, lm)

+� ·
+∞∑

nlm ,nx,ny=0

δnx+nlm +ny+1,nl P(nlm , lm, lm)

×
∫ +∞

lm

dx dy P(nx, x, lm)P(ny, y, lm )

× δ[x + y + lm − deff(lm) − l], (C8)
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FIG. 6. Fractions of un-nested (n = 0) and nested (n = 1, 2)
pairs at pair length lm for 12% filling fraction.

where the terms have similar meanings as those in
Eq. (C1). We note nl can take any non-negative in-

teger values nl = 0, 1, 2, ... and initially when lm = a,
nl = 0 for all l .

Again, introducing the substitutions λ = l/lm − 1
and P(nl , l, lm)dl = Q(nλ, λ, lm)dλ, after some algebra,
one obtains

lm
∂Q

∂lm
− (1 + λ)

∂Q

∂λ

= Q +
nλ−1∑
n0=0

Q(n0, 0, lm)
nλ−1−n0∑

nx=0

∫ λ+g(lm )

0
dλxQ(nx, λx, lm)

Q(nλ − 1 − n0 − nx, λ + g(lm) − λx, lm). (C9)

APPENDIX D: FRACTIONS OF NESTED PAIRS AT THE
END OF TIME EVOLUTION

At the optimal slew rate mentioned in the main text,
the weakest interaction strength of a pair preserved is J̃i j ≈
0.12J0, which corresponds to the longest pair length of lmax ≈
2.1 (in units of L). In Fig. 6, we plot the fractions of un-nested
and nested pairs vs pair lengths for 12% filling fraction. One
can see that in the range lm � 2.1, the fraction of nested pairs
(n > 0) has become significant. Greater fractions of nested
pairs can be obtained by having longer pairs preserved, at
the expense of lower overall fidelity by going slower in the
adiabatic evolution.
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