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Photonic realization of the κ-deformed Dirac equation
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We show an implementation of a κ-deformed Dirac equation in tight-binding arrays of photonic waveguides.
This is done with a special configuration of couplings extending to second-nearest neighbors. Geometric
manipulations can control these evanescent couplings. A careful study of wave packet propagation is presented,
including the effects of deformation parameters on Zitterbewegung or trembling motion. In this way, we
demonstrate how to emulate the effects of a flat noncommutative spacetime—i.e., κ-Minkowski spacetime—in
simple experimental setups.
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I. INTRODUCTION

The field of quantum simulations has been of pivotal
importance in the study of physical systems that are experi-
mentally out of reach. Notable examples in cold matter can
be found in [1,2] and [3–5] using trapped ions. In this pa-
per, we address the possibility of emulating the effects of
Lorentz algebraic deformations on the motion of relativistic
electrons [6,7]. In theory, such deformations are associated
with a noncommutative geometry of spacetime and a gen-
eralized uncertainty principle [8–11]. On physical grounds,
the hypothetical corrections stem from a fundamental length
scale, which is of a quantum mechanical nature. Let us de-
scribe the general features of our proposed emulations to put
our work into context. Within the complex quantum sim-
ulations class, there are simpler systems whose properties
can be studied with single body dynamics. These systems,
in turn, can be studied by mesoscopic emulations of quan-
tum mechanical wave equations in microwave [12–17] and
photonic experiments [18–25]. We have recently developed
a method for simulating position-dependent-mass formalism
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of the Dirac equation and Dirac equation in a curved space
using waveguide lattices [18]. Such table-top experiments
provide flexible configurations and easy tuning of parameters,
including recent constructions of effective relativistic systems
[26–29]. Examples of condensed matter realizations and their
emulations also abound [30–36]. The success of dynamical
analogies between quantum mechanical equations and elec-
tromagnetic waves in various important subjects—quantum
graphs, chaotic scattering and billiards, tight-binding arrays
and crystals, including graphene and phosphorene—has led
us to consider electromagnetic emulation of the high energy
limit of the Dirac equation, ruling the motion of ultrarelativis-
tic fermions. Indeed, Dirac Hamiltonians in 1 + 1 and 2 + 1
dimensions have been produced effectively in a variety of
tight-binding systems supported by honeycomb lattices, and
in more general settings, by any bipartite (spinorial) lattice
entailing Dirac cones in the dispersion relation.

These precedents become important when we look at
the so-called κ-deformed algebras at hand [6,7,37,38] and
even in the field of q deformations [39,40]. Their effects
on quantum field theory have been carefully studied [38,41–
47], including particle statistics [48]. In this regard, it has
been proved that quadratic corrections in the momentum of
a particle will modify the usual Dirac Hamiltonian defined
in empty space, even when it represents a physical situation
free of interactions [49–51]. As previously mentioned, this is
known to take place in the presence of a postulated minimal
length, presumably of the order of Gh̄/c3 ∼ 1.6 × 10−33 cm,
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i.e., the Planck scale. The corresponding corrections would
imply a modified energy-momentum relation and extraordi-
nary dispersion relations of matter waves propagating under
the effects of new physics. The κ Poincaré Hopf provides
us a framework to describe the Planck scale world, and the
deformation parameter κ plays the role of Planck mass. On
the other hand, noncommutative spacetime is associated with
the scale of the spacetime coordinates which is below the
Planck scale. κ-Minkowski spacetime has often been sug-
gested as an example of noncommutative spacetime which is
invariant under the quantum group of transformations. This
paper presents a method for emulating some aspects of the
Planck scale world with a macroscopic experiment using an
array of microwave resonators [52,53]. In connection with
fundamental aspects of physics, some words are in order.
Presumably, the existence of a fundamental length is the result
of a foamy space consistent with theories that deal with the
very nature of spacetime or its emergent properties starting
from string theory. However, it is still unknown whether such
structures actually underlie our physical world, and it is even
more uncertain whether we shall be able to observe the actual
consequences of their existence in high-energy experiments
or cosmological observations. Important efforts in the phe-
nomenology of deformations and minimal lengths can be
found in [54–56], including a plausible stringy origin [57]
and Planck scale phenomenology in [58,59]. For this reason,
here we recreate the conditions in which the aforementioned
effects can be observed. Our aim is to engineer the corre-
sponding dispersion relations with a tight-binding scheme
consistent with previous successful emulations of relativistic
wave equations. In what touches wave propagation, our em-
ulations shall be able to produce two important effects: (i)
a modified energy spectrum in accordance with predictions
from potentially new physics and (ii) a corrected evolution
of wave packets with modified group velocities in empty
space. The first result can be easily achieved by introducing
second-neighbor interactions—or hopping amplitudes—in a
crystal where Dirac points are initially ensured; this shall
be done by simple geometric manipulations of resonators in
various realizations, such as optical fibers and ceramic disks.
The second result will be tested by a close inspection of
a phenomenon known as Zitterbewegung [60], already pro-
duced artificially in Dirac lattices [1,2,4,61] and calculated in
previous treatments [62,63], where some of them cover the
full energy band carefully [64]. This reaches well beyond the
conical region of the emulated spectrum. With our treatment,
we shall be able to compare the oscillation frequency of a
wave packet’s width—as well as its decay in amplitude—
with the expected theoretical predictions, finding, significant
effects coming from a hypothetical minimal length, together
with corrected trajectories of electrons obtained as average
positions in the κ-deformed Heisenberg picture.

The structure of the paper is as follows. In Sec. II, we
revisit the emergence of the κ-deformed Dirac equation and
obtain the first corrections in the Dirac Hamiltonian due to
a fundamental length a. In Sec. III, we present a careful con-
struction of arrays made of coupled optical fibers disposed in a
strip resembling a triangular lattice, fulfilling thus a Dirac-like
dynamical equation with conical points. In Sec. IV, we study
the effects of the deformation on the trembling motion of wave

packets, including the corrections in the width coming from
the fundamental length a. A detailed full-band computation
of Zitterbewegung for tight-binding arrays with second neigh-
bors is offered within Sec. IV. We conclude in Sec. V.

II. THE κ-DEFORMED DIRAC EQUATION

Noncommutative (NC) geometry was envisaged by
Gelfand when he showed that a space is determined by the al-
gebra of the functions acting on it. The notion of space is then
tied to the nature of its algebra; therefore, a noncommutative
spacetime (NCST) follows from a noncommutative algebra.
This has been extensively studied in the framework of Hopf
algebras and the so-called quantum groups [38,41,42]. In our
case, the coordinate functions xμ satisfy the commutation
relations of the form

[xμ, xν] = i(�μν + �λ
μνxλ + · · · ) = i�μν (x), (1)

which is a relation that has been instrumental in the construc-
tion of a deformed quantum field theory [43]. Among all the
possible ways of representing NCST, we are particularly in-
terested in the κ-Minkowski spacetime employed in [43–46].
In other words, the κ-Minkowski spacetime is a Lie algebraic
deformation of the usual Minkowski (flat) spacetime where
the deformation parameter can be related to a length scale in
which quantum gravity might take place. The corresponding
κ-Poincaré-Hopf algebraic relations can be written in terms of
a deformation parameter κ = 1/|a|, as

[x̂μ, x̂ν] = i(aμx̂ν − aν x̂μ). (2)

Moreover, the existence of such a fundamental scale can
be encoded in Dirac operators acting on spinor fields. The
deformed Dirac equation obtained in the framework of the κ-
Poincaré-Hopf algebra and its equivalent in periodic arrays of
coupled waveguides will be studied in the following section.
Let us start with the algebra related to NC spaces satisfying
the following relations [49,50]:

[Mi0, x̂0] = −x̂i + iaMi0, (3)

[Mi0, x̂ j] = −δi j x̂0 + iaMi j . (4)

Here the structure Mμν contains the rotation and boost gen-
erators of the κ-Poincaré algebra and x̂μ denotes the NC
coordinates. This algebraic structure also entails the following
relations:

[x̂μ, x̂ν] = iCμνλx̂λ = i(aμx̂ν − aν x̂μ), (5)

where the structure constants are written in terms of a vector
Minkowski aμ and the flat metric ημν : Cμνλ = aμηνλ − aνημλ.
In some frame of reference, ai = 0, a0 = a, and x̂i = xiφ

where φ is so far free. In the κ-Poincaré algebra, the modified
derivative operators Dμ, the so-called Dirac derivatives, are
given by [38,42]

D0 = ∂0

(
sinh(A)

A

)
+ ia∇2e−A

2φ2
(6)

and

Di = ∂i

(
e−A

φ

)
, (7)
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with A = −ia∂0 and a = κ−1. This leads to the following
relations [48]:

[Mμν, Dλ] = ηνλDμ − ημλDν, (8)

[Dμ, Dν] = 0, (9)

where the metric’s signature convention is fixed as ημν =
diag(−1, 1, 1, 1). Thus, the deformed Dirac equation is now
postulated in terms of Dμ as

[iγ μDμ + m]ψ = 0, (10)

where γ μ are the usual gamma matrices. With the special
choice φ = e−A, we eliminate the deformation in the spa-
tial derivatives, leaving us only with a new (corrected) time
component D0. We note here that this choice, together with
the definition of A, turns φ into a nonlocal operator in time.
By substituting (6) and (7) in the above equation and after
a few straightforward manipulations, the following κ-Dirac
equation is deduced:[

iγ 0
( i

a
sinh(A) + ia

2
∇2

)
+ iγ i∂i + m

]
ψ = 0, (11)

which is written in natural units h̄ = c = 1. This equation is,
in fact, nonlocal due to the obvious relation φψ (t ) = ψ (t +
ia) for any wave function ψ . On physical grounds, we may
take only the first corrections in a with the aim of describing a
slightly perturbed Dirac operator (note, however, that this con-
cession is not made on mathematical grounds because infinite
order differential equations cannot be truncated without dire
consequences on the oscillatory behavior of their solutions)
leading to [

iγ 0
(
∂0 + ia

2
∇2

)
+ iγ i∂i + m

]
ψ = 0. (12)

It follows from the above equation that the corresponding
Hamiltonian is

H = α · p + a

2
∇2 + mβ, (13)

where p = −i∂i is the particle momentum. Here, the ex-
plicit representation of Dirac matrices in 1 + 1 dimensions
given by α1 = σ1 and β = −σ3 is possible and it is consis-
tent with our choice of metric signature. It is also obvious
that the undeformed Dirac equation is obtained in the limit
a → 0. However, we underscore the fact that experimentally,
the deformation parameter a is greatly limited by an up-
per bound of the order of a < 10−29 m [31]. Several effects
can be investigated using this new Hamiltonian. It might
well be that the presence of a modifies the spectrum of
a relativistic particle, but it is not easy to gain access to
such energy scales in accelerators. There are other effects
that could be amplified in other settings, e.g., wave-packet
evolution. We shall explore this possibility in the following
sections.

III. AN ARRAY OF PHOTONIC WAVEGUIDES

The tight-binding model of the κ-deformed Dirac equation
can be implemented on a macroscopic experiment using an
array of microwave resonators. The resonators can be built as
cylinders of the same size, but with two different dielectric

constants, for example, Exxilia Temex Ceramics E2000 and
E3000 with ε = 36 and 34, respectively. An induced mass
parameter α around 0.28 GHz is expected for cylinders of
8 mm diameter, and their length much larger than their di-
ameter. The nearest-neighbor coupling parameter between the
cylinders can be set between 0.4 and 1 GHz, depending on
the separation between cylinders. With those experimental
parameters, it is possible to estimate the Zitterbewegung (ZB)
characteristic frequencies ω′ and ω. The corresponding os-
cillation lengths that we named here, λ′ and λ, respectively,
will be of the order of λ′ ∼ cm and λ ∼ m. Those scales
make the effect observable on a macroscopic scale, thanks
to our tight-binding representation of the corresponding wave
operator. In order to excite the resonators, we propose to
use an array of antennas. Each antenna will be placed near
the end of each fiber or cylinder. The antennas should all
be parallel and oriented in such a way that they are capable
of exciting an electric field perpendicular to the optical axis
and to the horizontal axis. The array of antennas has to be
excited by the same microwave frequency but, at the same
time, allowing the control of the input power independently in
each antenna. One possible and inexpensive way to feed the
antennas is to use a direct digital synthesizer (DDS) that pro-
vides independent frequency, phase, and amplitude control on
each channel.

Another possible way to implement the κ-deformed Dirac
equation is through waveguide arrays. In the following, we
focus on the correspondence between the disordered waveg-
uide arrays as shown in Fig. 1 and the κ-deformed Dirac
equation. The propagation of an optical field of disordered
waveguide arrays by using the tight-binding approximation is
given by

i
dEn

dz
+ (−1)nαEn + Cn−2En−2 + CnEn+2 + C′

nEn+1

+C′
n−1En−1 = 0, (14)

where En ≡ E (n, z) is the electric field amplitude at the nth
waveguide and Cn±i (C′

n±i ) denotes the next-nearest-neighbor
coupling (nearest-neighbor coupling). Next, we let upper

FIG. 1. Schematic view of a binary array made of two types of
waveguides, A and B, arranged in a triangular lattice along a strip.
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waveguide array have odd numbers. Then,

i
dE2n

dz
+ αE2n + C2n−2E2n−2 + C2nE2n+2 + C′

2nE2n+1 + C′
2n−1E2n−1 = 0, (15)

and let the lower array label be even ones:

i
dE2n−1

dz
− αE2n−1 + C2n−3E2n−3 + C2n−1E2n+1 + C′

2n−1E2n + C′
2n−2E2n−2 = 0. (16)

Now by setting E2n = (−1)nψ1(n, z) ≡ (−1)nψ1(n) and E2n−1 = −i(−1)nψ2(n, z) ≡ −i(−1)nψ2(n), Eqs. (15) and (16) can be
written as

i
dψ1(n)

dz
+ αψ1(n) − C2n−2ψ1(n − 1) − C2nψ1(n + 1) + iC′

2nψ2(n + 1) − iC′
2n−1ψ2(n) = 0 (17)

and

i
dψ2(n)

dz
− αψ2(n) − C2n−3ψ2(n − 1) − C2n−1ψ2(n + 1) + iC′

2n−1ψ1(n) − iC′
2n−2ψ1(n − 1) = 0. (18)

It is straightforward to show that by considering C2n±i = η and C′
2n−i = ξ with i = 0, 1, . . ., these equations reduce to

i
d

dz

[
ψ1(n)
ψ2(n)

]
=

[−αψ1(n) + ηψ1(n − 1) + ηψ1(n + 1) − iξψ2(n + 1) + iξψ2(n)
+αψ2(n) + ηψ2(n − 1) + ηψ2(n + 1) − iξψ1(n) + iξψ1(n − 1)

]
= H

[
ψ1(n)
ψ2(n)

]
. (19)

After the formal change z → t , the Hamiltonian operator is
defined as follows:

H =
[−α + ηT −1 + ηT −iξT + iξ

−iξ + iξT −1 α + ηT −1 + ηT

]
, (20)

where T is the translation operator in one unit of n. In or-
der to reduce the system of equations to a 2 × 2 matrix,
we must note that in the case of Bloch wave transport in-
side the fibers, the wave function must be written in the
form [ψ1(n, z), ψ2(n, z)]† = [A(z)eikn, B(z)ikn]†, which satis-
fies Bloch’s theorem Teikn = eik(n+1). Now, the Hamiltonian
(20) is reduced to

H =
[−α + 2η cos(k) −iξeik + iξ

−iξ + iξe−ik α + 2η cos(k)

]

�
[−α + 2η − ηk2 ξk

ξk α + 2η − ηk2

]
. (21)

Therefore, the energy eigenvalues are given by

E = 2η cos(k) + s

√
4ξ 2 sin2

(
k

2

)
+ α2, (22)

where s = ±1. This equation has to hold even beyond the
Dirac (conical) points. The eigenfunctions are two-component
spinors of the form(

u1

u2

)
= 1√

2[E − 2η cos(k)]

( √
E − α − 2η cos(k)

e−ik/2
√

E + α − 2η cos(k)

)
.

(23)

By setting k → px,the Hamiltonian (21) reduces to the
simpler one,

H = −ηpx
2I2 + ξ pxσx − ασz + 2ηI2 = H0 + V, (24)

where V = 2η is a constant potential, and therefore irrelevant
in the dynamics. Finally, we note that after the formal change
a
2 → η, m → α, and 1 → ξ , the expression for the Hamilto-
nian in (13) can be mapped to H0 previously written in (24).

IV. EVOLUTION OF POSITION IN κ-DEFORMED
DIRAC THEORY

Now we would like to investigate one of the special fea-
tures of the Dirac equation: the trembling motion known as
Zitterbewegung. To clarify this effect in the κ-Dirac equation,
we must calculate the time evolution of the position operator
under the strict conditions η 
= 0, α 
= 0. In the absence of
rest mass (Weyl equation), we know that there is no visible
effect, for the evolution of x would be trivial. The calculation
of x(t ) for the more general case α 
= 0 for the Hamiltonian
(24) is, however, straightforward and we shall proceed in this
direction. In the Heisenberg picture, we have [31]

x(t ) = x(0) − 2ηpxt + ξ px(H ′)−1t

+ iξ

2
H ′−1[σx−ξ px(H ′)−1](e−2iH ′t − 1), (25)

where

H ′ = −ασz + ξσx px. (26)

To see the dependence on the deformation parameter more
clearly, we focus now on the width of the wave packets,
(�x)2 = 〈x〉2 − 〈x2〉. Due to Ehrenfest’s theorem, the time
average 〈x〉 suffers the same modifications as the classical
trajectory of a particle governed by a κ-deformed energy
momentum relation. On the other hand, the second term 〈x2〉ψ
provides an important modification to the wavelike behavior
of the particle. Its explicit form is given by

〈x2〉ψ = e
−π
10 α2ω′ + e

−π
10 (ξ 2ω′ + 12η2ω2′ − 4αηξω′)t2

− 4e
−π
10

√
πt

ϑ

[
−ηα2π2ξ sin(2ω′t ) (27)

+ ηπα
√

ω2′ − α2

ω2′ cos(2ω′t )

]
,

as shall be derived later on.
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FIG. 2. Time development of (a) 〈x2〉ψ and (b) standard devia-
tion, which are plotted in natural units for fixed values ξ = α = 4
and different values of η.

The time development of 〈x2〉ψ and standard deviation,
with x(0) = 1.5 and initial width 0.8, are shown in Fig. 2.
The interesting effect that has been obtained consists of a
deformation-dependent evolution of a particular component
in the width contributing to the usual ballistic expansion. As
shown in Fig. 2(a), the time development of 〈x2〉ψ grows with
t2 and is independent of the damping term with the envelope
1/

√
t , which appears in 〈x〉ψ (see the following section). In-

deed, the envelopes
√

t and t2 are affected by η in the second
and third terms of expression (27). This direct proportionality
in the third term amplifies the phenomenon in time, but in
the case of realistic values of η within experimental bounds,
it would be too challenging to detect the correction in ex-
periments with electrons. In general, we can appreciate, in
Fig. 2(b), that the packet width exhibits oscillations and the
wave packet spread in position increases with η. It is remark-
able that the t (−1/2) term appears in the standard deviation,
but it does not show in the figure as it is only relevant for
very short times and, for the range of η selected in view of
the proposed experiment, is overcome by the other terms. In
optical realizations, the parameter η is at our disposal, with
recommended values shown in the inset of Fig. 2(b), for a
better appreciation.

Zitterbewegung in the photonic lattice: Computations

We derive the time evolution of the position operator for
photonic waveguide arrays. It is important to do so without

FIG. 3. A comparison of the dispersion relations for waves gov-
erned by our tight-binding array (solid lines) and the κ-deformed
Dirac equation in natural units (dashed lines). Mass α = 0.5, cou-
pling ξ = 1. There is good agreement near the Dirac point at k = 0.
Deformation parameters: η = 0 (blue), 0.3 (red), and 0.5 (black).
The tight-binding relation displays new points of vanishing group
velocity in the upper band, marked by light-blue vertical lines. The
phase factors, however, cancel out in the computation of averages.

approximations in the tight-binding dispersion relations for an
honest comparison with deformed theories. Since the station-
ary phase approximation will be required in the derivation of
averages, it is important to analyze the energy landscape in
(Bloch) momentum space or Brillouin zone in the search for
vanishing group velocities. A comparison of energy curves for
some values of η is given in Fig. 3. The time average of the
position using expression (25) can be written as

〈xZB〉ψ =
〈{

iξ

2
H ′−1[σx−ξ px(H ′)−1](e−2iH ′t − 1)

}〉
ψ

. (28)

By using the wave-packet decomposition with Fourier coeffi-
cients ψk,s, the oscillating part of the expectation value of x is
handled according to

〈xZB〉ψ = −α2ξ
∑

s

∫ π

0
dk

k cos(2E ′t )

E ′3 |ψk,s|2

+
∑
s,s′

∫ π

0
dk

[−iα

E ′ sin(2E ′t )(u2
∗u1 − u1

∗u2)

+ α2

E ′2 cos(2E ′t )(u1
∗u2 + u2

∗u1)

]
(ψk,sψk,s′ ∗), (29)

where E ′ = s
√

4ξ 2 sin2( k
2 ) + α2. The above expression can

be simplified by using the stationary phase approximation at
k = 0, π , as

〈xZB〉ψ

�
√

π

tϑ
e

−π
10

[
α2ξπ sin(2ω′t )

ω′3 − α
√

ω′2 − α2

ω2′ cos(2ω′t )

]
,

(30)

where ω′ = s
√

4ξ 2 + α2 and ϑ = −ξ 4π2

ω′3 + ξ 2

ω′ . It is clear that
the trembling motion vanishes with an envelope curve of
1/

√
t [64]. We note that the amplitudes and frequencies of

the oscillation are independent of the deformation parameter
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η. This result is valid only for the Dirac approximation and,
in general, the corrections due to η have an impact on 〈xZB〉
for the tight-binding system with second neighbors. To see
the dependence of the deformation parameter η clearly on the
changing shape of the wave packets, we obtain 〈x2〉ψ as

〈x2〉ψ = e
−π
10 α2ω′ + e

−π
10 (ξ 2ω′ + 12η2ω2′ − 4αηξω′)t2

− 4e
−π
10

√
πt

ϑ

[
−ηα2π2ξ sin(2ω′t ) (31)

+ ηπα
√

ω2′ − α2

ω2′ cos(2ω′t )

]
.

These results support our previous discussion on wave-packet
expansion.

V. CONCLUSIONS

The calculation of an emulation of deformed Dirac
equations by means of photonic waveguide arrays with a
theoretical study of these equations have been combined.
The tight-binding approach to coupling engineering has led
to satisfactory results regarding spectrum and wave-function
simulations. We have shown how to get around subtle ob-
stacles regarding the correspondence of photonic trembling
and relativistic Zitterbewegung, as they differ by small but
visible amounts when full frequency-band computations are
employed. We were able to confirm the η corrections due
to algebraic deformations in the evolution of localized wave
packets. Interestingly, it was the

√
t envelope which ultimately

carried the deformation, leading to a persistent oscillatory
effect in the width and prolonged by an increase propor-
tional to η. All trembling components of the width remained

untouched, including rarely seen, i.e., short-lived but al-
ways present, envelope 1/

√
t . One important aspect of the

κ-deformed Dirac equation is the appearance of an approx-
imately flat band for a large value of η. It is remarkable that
by changing the next-nearest-neighbor coupling of microwave
resonators, the band becomes flat. We also found a strong
dependence on the ballistic part t2, controlling the overall
speed of expansion, but such an effect already appears in the
evolution of scalar particles, as it has little to do with spin.
From a technical point of view, we have shown that photonic
waveguides may enable experimentalists to study the effects
of noncommutative spacetime in the laboratory. We should
also comment on a renewed interest in elastic systems due to
the flexibility of their experimental setups. The construction
of elastic waveguides using aluminum plates makes acoustic
transport an attractive area in which emulations may play an
interesting role, given the rich phenomenology of vibrational
transport using various types of polarizations [65–68]. As we
mention above, microwave experiments may also be consid-
ered for the realization of the κ-deformed Dirac equation.
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