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Enhancing the sensitivity of optomechanical mass sensors with a laser in a squeezed state
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The non-Hermitian system has been widely studied recently in various fields from quantum physics to
condensed matter, in which the “exceptional point” (EP) as an essential feature of the systems can be used to
design sensors, for example, a mass sensor to detect the mass of nano-objects. Inspired by the LIGO gravitational
wave detector by using squeezed states of light, we here aim to enhance the sensitivity of the mass sensor
by a nonlinear laser drive. The system consists of two optomechanical cavities that are mechanically coupled
and driven nonlinearly by detuned lasers (squeezed lasers). Compared to the case of linear drive, our results
are more sensitive to the mass, and the split width of the eigenvalues at EP can be further increased by using
the squeezed lasers. The sensitivity enhancement factor and optical damping of resonators are also calculated
and discussed, and a great improvement is found consequently. This work would provide a wider view for the
new quantum sensors in order to be applied in the fields of nanoparticle detection, precision measurement, and
quantum metrology.
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I. INTRODUCTION

Owing to the rapid progress in the micro/nanoengineering
of mechanical resonators, mass sensors based on an optome-
chanical system come to play an important role in the field
of ultrasensitive detection, for example, the mass detection of
biomolecules or viruses and the detection of nanoscale sub-
stances or particles [1,2]. The advantage of a sensor based on
an optomechanical system is its simplicity and high sensitivity
as well as that the optical field serves both as an actuator and
a probe for the precise monitoring of mechanical frequencies.

In addition to these sensors based on Hermitian optome-
chanical systems, mass sensors working with non-Hermitian
systems have also been proposed, aimed at reaching new
levels of sensitivity and to break through the limitation of
frequency restriction [3,4]. Non-Hermitian systems have at-
tracted great attention since 1998 [5], where the effective
Hamiltonian of the system is no longer Hermitian and has
complex eigenvalues and peculiar topological structures in
the complex space—an exceptional point (EP) [6–8]. At this
point, the eigenvalues and the eigenvectors of the system
coalesce. Once the system obtains a slight perturbation, the
eigenvalues and the eigenvectors at the exceptional point
would split rapidly, the scales of the splitting width being
proportional to the square root of the perturbation. Based on
this feature, the sensitivity of the optomechanical mass sensor
is greatly enhanced. This is different from a conventional mass
sensor system, where the linewidth and the shift and split of
the frequency is in proportion to the perturbation [9,10].

The squeezing of quantum observables is a central strat-
egy to improve measurement sensitivities beyond classical
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limits and has thus become a key concept in quantum
metrology [11], leading to major theoretical and experimental
advancements in many fields [12–17]. Especially, in Ref. [18],
the performance of one of the detectors of the Laser In-
terferometer Gravitational-Wave Observatory (LIGO) beyond
the quantum noise limit has been improved by injecting a
squeezed state of light. With the injection of squeezed states,
this LIGO detector demonstrated the best broadband sensitiv-
ity to gravitational waves achieved to date.

Inspired by the LIGO experiment and in order to further
enhance the sensitivity, in this paper we consider driving the
system by a laser in squeezed states. In quantum optics [19],
squeezed states significantly affect the sensitivity of laser
interferometers even under the effect of quantum noise. A
squeezed laser can be generated by four-wave mixing in an
optical fiber and by degenerate parametric down-conversion
(PDC) in a second-order nonlinear crystal placed in an optical
cavity.

The advantages of the present scheme are twofold. First, as
aforementioned, our model, based on a non-Hermitian system
with EP, has a unique topological structure compared to other
optical mass sensors or single-cavity optomechanical systems.
Owing to the absence of PT symmetry [20], the eigenvalues
at the EPs rapidly split due to mass deposition. The split-
ting scales as the square root of the perturbation, leading to
an enhancement of the sensitivity of the sensor. Second, a
squeezed-laser drive can further enhance the scales of the
split of the eigenvalues, leading to a more robust sensitiv-
ity enhancement factor related closely to the average photon
numbers.

The remainder of this paper is organized as follows. In
Sec. II, we introduce our model and obtain the equation of
motion for the system. In Sec. III, we will discuss the sensi-
tivity of the sensor, and finally in Sec. IV, we conclude and
discuss our results.

2469-9926/2021/104(1)/013521(7) 013521-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8480-3051
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.013521&domain=pdf&date_stamp=2021-07-22
https://doi.org/10.1103/PhysRevA.104.013521


T. LI, W. WANG, AND XUEXI YI PHYSICAL REVIEW A 104, 013521 (2021)

FIG. 1. Schematic illustration. Two optomechanical cavities, one
with gain and the other of loss, are mechanically coupled. Both sides
are driven by a red- (blue-) detuned squeezed laser.

II. OPTOMECHANICAL MODEL AND EQUATIONS

The schematic setup of our proposal is illustrated in Fig. 1.
The setup consists of two optomechanical cavities that are me-
chanically coupled via a movable mechanical resonator. The
coupling constant is denoted by J [3,4]. The tunable coupling
of two mechanical resonators can be achieved through the
piezoelectric effect or the photothermal effect [21]. Instead
of driving both cavities linearly, for the left cavity, we use a
red-detuned squeezed laser to drive, while for the right cavity,
we use a blue-detuned squeezed laser. By driving this system
symmetrically, we can effectively control the mechanical gain
and loss, and make this system work at the EP. When the
cavity is driven below resonance, the mechanical resonator
can be cooled to its ground state; instead, if the cavity is driven
above resonance, then the mechanical resonator is in states of
self-sustaining oscillation. In the rotating frame, setting the
driving frequency �p, h̄ = 1, we can write the Hamiltonian of
the system as follows,

H = HoptM + Hcp + Hdrive, (1)

with

HoptM =
∑
j=1,2

[ω jb
†
jb j − � ja

†
j a j − ga†

j a j (b j + b†
j )],

Hcp = −J (b1b†
2 + b†

1b2),

Hdrive =
∑
j=1,2

E
(
a†

j
2 + a j

2
)
, (2)

where HoptM is the Hamiltonian of the optomechanical cav-
ities, Hcp denotes the Hamiltonian of these two coupled
systems, and Hdrive describes the Hamiltonian of the driv-
ing mode. In quantum optics, a squeezed-laser drive can be
obtained by means of parametric down-conversion. In this
Hamiltonian, a j and b j are the annihilation bosonic field
operators describing the optical and mechanical modes, re-
spectively. The mechanical frequency is ω j and j = 1, 2. The
optical detuning between the driving frequency and the cavity
(� j

cav) is defined as � j . J denotes the mechanical coupling
strength between the two mechanical resonators, which are
assumed to be tunable in the following discussion—it is
defined differently in many experiments. By adjusting the
laser power, one can effectively control the mechanical cou-
pling between the two cantilevers [22–26]. For generality, in
the following discussion we will not specify our theoretical
model to any particular system. The linear optomechanical
coupling is g, which defined as g = g0

√
n̄cav, where g0 is the

optomechanical single-photon coupling strength, and n̄cav in-
dicates the photon number circulating inside the cavity.

The evolution of the system is described by the standard
master equation

ρ̇ = − i

h̄
[H, ρ] + Lmρ + Lcρ, (3)

where the coupling of the mechanical resonators to their ther-
mal surroundings at temperature T is described by

Lmρ = −χm

2
(n̄ + 1)(b†bρ + ρb†b − 2bρb†)

− χm

2
n̄(bb†ρ + ρbb† − 2b†ρb), (4)

with χm the mechanical damping rate and n̄ =
[exp(h̄ω j/kBT ) − 1]−1. The cavity is described by

Lcρ = −γ

2
(a†aρ + ρa†a − 2aρa†), (5)

where γ denotes the decay rate, and here we assume h̄�p �
kBT so that we can neglect thermal fluctuations while �p is
the frequency of the laser. According to the theory of open
quantum systems [27], the strength of the driving pump can
be written as E = √

γαin, where the input laser power Pin acts

through αin =
√

Pin
h̄�p

.

We perform a Wigner transformation of the master equa-
tion, denote 〈a j〉 = α j , 〈b j〉 = β j , neglecting third-order
derivative terms, and use a truncated Wigner function ap-
proximation, and finally we can obtain the coupled Langevin
equations,

α̇ j =
(

i(� j + g(β∗
j + β j )) − γ

2

)
α j − 2i

√
γαinα

∗
j + ζα j ,

β̇ j = −
(

iω j + χm

2

)
β j + iJβ3− j + igα∗

j α j + ζβ j . (6)

The stochastic force terms ζα j , ζβ j have zero mean values and
nonzero second-order moments 〈ζα∗

j
(t )ζα j (t

′)〉 = δ(t − t ′)γ /2

and 〈ζβ∗
j
(t )ζβ j (t

′)〉 = δ(t − t ′)χm(n̄ + 1
2 ). However, we seek

to investigate in the classical limit where phonon numbers are
assumed large in the system, and noise terms can be neglected
in the analysis.

Without loss of generality, we assume that in this scheme
the parameters χm, g, and γ are fixed for the whole system
and satisfy the following condition, χm, g � γ � ωm. From
Ref. [4], we can get the overall properties of the steady state
that is the solution to Eq. (6), and three regimes can be iden-
tified in the parameter’s space. It is easy to find that as the
driving αin increases for a fixed J , the system switches from a
linear regime to a nonlinear one. The EPs of the system then
change and behave differently in different regimes.

In order to obtain a Hamiltonian-like description and
formulate the EP as well as demonstrate the enhance-
ment in sensitivity, we need to make some assumptions
for Eq. (6) [3,4]. We assume that the solution of the me-
chanical oscillation takes the following form, β j (t ) = β̄ j +
Nj exp(−iω̃t ), while β̄ j is the initial displacement, Nj is the
amplitude that slowly changes over time, and ω̃ is the mechan-
ical degeneracy frequency when the resonator experiences a
frequency locking. Bringing this hypothesis back into Eq. (6),
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we can get

α̇ j =
(

i(�̃ j + 2gRe(Nj ) cos ω̃t ) − γ

2

)
α j − 2i

√
γαinα

∗
j ,

(7)
where �̃ j = � j + 2gRe(β̄ j ) is nonlinear detuning, which is
induced by the initial displacement of the mechanical oscil-
lator. This equation is similar to that of a forced vibration
system. Performing a Fourier expansion on α j , we write the
equation for α j as follows,

α j = e−iθ j (t )
∑

n

α j
neinω̃t . (8)

To simplify the expression, we defined θ j (t ) = −ν j sin ω̃t ,
ν j = 2gRe(Nj )

ω̃
. Bringing all of the above formula back to

Eq. (6), and then making some mathematical transformations,
we can get∑

n

α j
neinω̃t = −2i

√
γαinα

∗
j

1

r j
n

e−2iν j sin ω̃t , (9)

where r j
n = i(nω̃ − �̃ j ) + γ

2 . Mathematically, Eq. (9) is the
Jacobi-Anger expansion, which can be solved by a transfor-
mation and comparing the coefficients on both sides of the
equation. After that, we get the Fourier expansion coefficient
of α j ,

α j
n = −2i

√
γαinα

∗
j

Jn(−2ν j )

r j
n

, (10)

where Jn(−2ν j ) is nth Bessel function of the first kind. There-
fore, we have α∗

j α j = ∑
n,m α

j
m

∗
α

j
nei(n−m)ω̃t . In order to derive

an expression for α j (t ), we set m = n + 1. Then we arrive at

β̇1(t ) = −i(ω01 + δω1)β1 − χm + χ1
opt

2
β1 + iJβ2,

β̇2(t ) = −i(ω02 + δω2)β2 − χm + χ2
opt

2
β2 + iJβ1, (11)

with an optical spring effect represented by

δω j = −2[4γ (gαin )2|α j |2]

ω̃ν j
Re

(∑
n

Jn+1(−2ν j )Jn(−2ν j )

r j∗
n+1r j

n

)
,

(12)
and an optical damping denoted by

χ
j

opt = 2[4|α j |2(gγ λin)2]

ν j

∑
n

Jn+1(−2ν j )Jn(−2ν j )∣∣r j∗
n+1r j

n

∣∣2 , (13)

It is easy to see from the above expression that the opti-
cal damping term obtained by driving the cavity with the
squeezed laser is changed by a factor 4|α j |2, which is related
to the average number of photons involved. In the follow-
ing discussion, we will see that this change can effectively
enhance the scales of the splitting in the spectra of the me-
chanical system, so we can enhance the sensitivity of the
sensor which is related to the average photon numbers in-
volved.

Here, we will discuss the feature of the optical damping.
For ν j � 1, the linear approximation is still valid and the
optical damping can be rewritten accordingly. Mathemati-
cally, we have Jn(−ν j ) ≈ 1

n! ( −ν j

2 )n for n � 0 and J−n(−ν j ) =

Δ̃j

-1 -0.5 0 0.5 1

χ
j op

t

-1.5

-1

-0.5

0

0.5

1

1.5

|α
j
|2=10

|α
j
|2=20

|α
j
|2=30

Δ̃1

-1 -0.8 -0.6 -0.4 -0.2 0

Δ
χ
j op

t

0

0.5

1

1.5

2

2.5
|α

j
|2=10

|α
j
|2=20

|α
j
|2=30

(a) (b)

FIG. 2. (a) The optical damping vs the effective detuning in
different average photon numbers in cavities. (b) The difference
between the optical damping in two cavities, αin = 4.2 × 102√ωm,
γ = 10−1ωm, g = 2.5 × 10−4ωm, and effective detuning from −1 to
1.

Jn(ν j ), where we take n = −1, 0; using these considerations
in Eq. (13) yields

χ
j

opt ≈ − 8|α j |2�̃ jω̃(2gγαin)2(
�̃2

j + γ 2

4

)[
(ω̃ + �̃ j )2 + γ 2

4

][
(ω̃ − �̃ j )2 + γ 2

4

] .

(14)

It is demonstrated that χ
j

opt is not amplitude dependent and we
show the overall properties of the optical damping and their
difference between two cavities in Fig. 2.

III. THE EFFECTIVE HAMILTONIAN AND
THE SENSITIVITY AT EP

Treating β j (t ) ( j = 1, 2) as a two-component wave func-
tion, we can write an effective Hamiltonian to govern the
dynamics of β j (t0) according to Eq. (11). In other words, if we
set � = (β1, β2)T , Eq. (11) can be rewritten as i ∂

∂t � = Heff�,
where the effective Hamiltonian Heff takes

Heff =
(

ω1
eff − i χ1

eff
2 −J

−J ω2
eff − i χ2

eff
2

)
, (15)

where ω
j
eff = ω0 j + δω j and χ

j
eff = χm + χ

j
opt are modulated

frequencies and damping rates, respectively. They depend on
the average photon number of the system, and as we will show
below, the sensitivity of the sensor is enhanced sharply by
these modulations.

Obviously, the effective Hamiltonian is non-Hermitian, and
its eigenvalues are calculated as

λ± = ω1
eff + ω2

eff

2
− i

4

(
χ1

eff + χ2
eff

) ± ε

4
, (16)

with

ε =
√

16J2 + [
2
(
ω1

eff − ω2
eff

) + i
(
χ2

eff − χ1
eff

)]2
, (17)

where the eigenfrequencies and eigendampings of the system
are defined as ω± = Re(λ±), which denotes the mechanical
frequencies, and χ± = Im(λ±), which denotes the spectral
linewidths. So the eigenvalues of this non-Hermitian system
can be written in the form of λ± = ω± + iχ±. In general,
the dissipation terms are not zero. Now we deposit a tiny
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FIG. 3. (a) Real part of the eigenvalues vs the driving strength
αin, and J = 1.760ωm was chosen for this plot. With increasing
driving strength, the exceptional point appears. (b) Imaginary part
of the eigenvalues vs the driving strength αin.

mass on the optomechanical mass sensor, and the well-known
relationship between the frequency shift and the deposition
mass will be used in the discussion,

δm = k−1δω, (18)

with k = ωm
2m . This states that the frequency shift is propor-

tional to the intensity of the perturbation. At the exceptional
point, the eigenfrequency (ω±) and the eigendamping (χ±)
are coalesced, and any external perturbation will cause these
eigenvalues to split with a high sensitivity of the perturba-
tion. We assume that the mass is deposited in the mechanical
resonator driven by the blue-detuned squeezed laser. When
the resonators are coupled, this local perturbation will affect
the entire system, causing the splitting of eigenvalues at the
exceptional point. Considering the two resonators to be de-
generate (cavities of equal frequency) and δω j � ωm, Eq. (16)
reduces to

λ± ≈ ωm − i

4

(
χ1

eff + χ2
eff

) ±
√

J2 −
(

�χeff

4

)2

, (19)

while �χeff = χ2
opt − χ1

opt. From Eq. (19), we can know that if
4J > �χeff, the real parts of the eigenvalues can be written as
ωm ± J cos κ with sin κ = �χeff

4J . When 4J < �χeff, the imag-

inary parts of the eigenvalues can be written as −χ1
eff+χ2

eff
4 ±

J sinh κ , where cosh κ = �χeff

4J . When 4J = �χeff, a phase
transition between these two regimes occurs at the exceptional
point. The quantity �χeff is quadratic in αin, and due to the
factor 4|α j |2 in Eq. (13), we can get the same result as in
Ref. [3] for a small αin, where |α j |2 is the intracavity photon
number which can be controlled by the optical drive signal. In
order to enhance the splitting width at EP in our system, we
modulate the coupling constant to take J = 1.760ωm to match
�χeff with a mean photon number |α j |2 = 10 in the numerical
simulation. Figure 3 shows the dependence of the eigenvalue
(both the real part and imaginary part) on the drive around the
exceptional point. As the driving strength αin increases to EP,

the real part of the eigenvalues begins to coalesce while the
imaginary part starts to split. We can find that the EP appears
at αin = 4.2 × 102ωm, and J = 1.760ωm in the parameter’s
space (αin, J ).

When the second resonator experiences a small perturba-
tion δm,

λδω
± =

∑
j ω j + δω

j
opt + δω

2
− i

4

(
χ1

eff + χ2
eff

) ± εδω

4
, (20)

with

εδω =
√

16J2 + [2� + i�χeff]2, (21)

while � = (ω1 − ω2 − δω1
opt − δω2

opt − δω). Considering de-

generate mechanical resonators, i.e., ω j ≡ ωm and δω
j
opt �

ωm, Eq. (20) becomes

λδω
± = ωm + δω

2
− i

4

(
χ1

eff + χ2
eff

)

±
√

J2 −
(

�χeff

4

)2

+ δω2 − iδω�χeff

4
. (22)

When we are trying to evaluate the sensitivity of the sensor at
EP, we need to know the effect of the frequency perturbations
on the supermode frequency splitting near the EP, therefore,
sensitivity can be measured by the difference between the
unperturbed and perturbed eigenvalues,

λδω
± − λ± = δω

2
±

√
J2 −

(
�χeff

4

)2

+ δω2 − iδω�χeff

4

∓
√

J2 −
(

�χeff

4

)2

, (23)

and considering the condition at the exceptional point, 4J =
�χeff, we have

λEP
± (δω) = λδω

± − λ±

= δω

2
±

√
δω2 − iδω�χeff

4

= 1

2

(
δω ±

√
δω2 − iδω�χeff

)
, (24)

so we write the results as real and imaginary parts, and the
square root of the complex term reads

Re
(
λEP

±
) = 1

2

⎛
⎝δω ±

√
δω2

2
+ δω

2

√
δω2 + �χ2

eff

⎞
⎠, (25)

and

Im
(
λEP

±
) = ± i

2

√
δω

2

√
δω2 + �χ2

eff − δω2

2
. (26)

The numerical results are shown in Fig. 4. We find that
one branch of the eigenvalues splits as a square root at the
exceptional point. This is to say, when there is mass deposi-
tion, the originally coalesced eigenvalues would split rapidly,
which means the perturbation can break the steady state of
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FIG. 4. (a), (c) Frequencies of the effective mechanical system
without the factor 4|α j |2, and squeezed-laser drive with |α j |2 = 10
before perturbation (solid lines) and after perturbation by a mass
deposition (dashed lines). (b), (d) Gap difference between the per-
turbed and unperturbed vs the driving strength with J = 0.022ωm

and 1.760ωm, respectively.

the mechanical resonators. By measuring the splitting width,
we can easily define the sensitivity of the mass sensor. In
Refs. [3,4], their eigenvalue at EP (J = 0.022ωm, αin[ω1/2

m ] =
420) is 1.0057ωm, while our result is increased by one order
of magnitude by using a squeezed laser with the parame-
ters J = 1.760ωm, |α j |2 = 10. In Ref. [28], they provided a
novel view of sensitivity on parameter estimation near the
exceptional point by means of quantum Fisher information.
Nevertheless, they studied the energy splitting which shows a
square-root perturbation dependence by means of the differ-
ence of the positive eigenvalue and negative one in the same
mechanical spectrum. In contrast, we here mainly study the
split of the real parts of the eigenvalues in different spectra
because |Im(λEP

± )| � |Re(λEP
± )|.

Now if we set |δω| � |�χeff|, Eq. (25) reduces to
√

δω�χeff

8 .
First, according to the special topological structure of the ex-
ceptional point, it is easy to see that the split of the eigenvalues
is related to the square root of the perturbation strength (δω),
which is different from traditional optical mass sensors that
are proportional to the perturbation. Meanwhile, it is obvious
that the optomechanical mass sensor working at EP has a
larger splitting width after deposition, thus showing a great
sensitivity [3,4]. On the other hand, the splitting width is also
related to the difference of effective damping �χeff between
the two cavities. In addition, in our model the cavities are
driven by a squeezed laser. According to the above calculation
and Eq. (13), this squeezed-laser driving leads to an improve-
ment of factor 4|α j |2 on �χeff. Note that |α j |2 represents the
average number of photons involved, and it might be manip-
ulated by setting appropriate values of the average photon
number, so we conclude that the use of lasers in squeezed
states can enhance the width of the eigenvalues’ splitting,
thus enhancing the sensitivity. In this paper, we assume two
|α j |2 values, i.e., 10 and 20, to show the results (see Fig. 5).
Considering the statistic properties of photon numbers and the
oscillation of �χeff in this result, the sensitivity measured by
Re(�λEP) can be enhanced even for small perturbations δω at
the exceptional point.
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FIG. 5. Sensitivity at the exceptional point vs the strength of the
perturbation δω in different sets of driving fields. We set the |α j |2 as
10 and 20, respectively. The squeezed-laser drive can indeed enhance
the sensitivity.

Now, we define the sensitivity enhancement factor as [3,4]

θ =
∣∣∣∣Re(�λEP)

δω

∣∣∣∣ =
√

�χeff

8δω
=

√
m�χeff

4ωmδm
, (27)

which shows a square-root dependence of the sensitivity on
the perturbation strength. In addition, we observe that the
squeezed-laser drive can enhance �χeff by choosing an ap-
propriate |α j |2, hence it increases the sensitivity enhancement
factor. From Fig. 5 we observe that the sensitivity of the
sensor based on the exceptional point would end up going
towards a linear relationship with the perturbation strength
when the perturbation becomes large enough. Therefore, the
mass sensor operating at the exceptional point can be widely
used in the field of extremely small substance detection. The
relationship between the sensitivity enhancement factor and
the perturbation strength is shown in Fig. 6. By contrast with
the earlier proposal, the enhancement factor is more promi-
nent in the range 0–0.4 × 10−4 of δω and it depends on the
photon number involved.

Finally, we consider the influence of various noises of the
system which will cause an increase in frequency uncertainty.
For the mechanical resonators, the main noise is the thermo-
mechanical fluctuations [29,30]. Mechanical resonators have
resonant frequencies in the radio-frequency range or below,
and thermal fluctuations would tend to mask the quantum
features, so we tend to develop ways of cooling a mechanical
resonator down to its ground state. In this paper, we assume
h̄�p � kBT so that we neglect thermal fluctuations. Here,
according to the fluctuation-dissipation theorem [31,32], the
frequency fluctuation induced by thermal noise can be calcu-
lated by δω′ = √

kBT/2πτ (mωm〈x j
2〉Q). Q is the mechanical

quality factor, T is the effective temperature, kB is the Boltz-
mann constant, and x j is the mean amplitude of the resonator.
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FIG. 6. Sensitivity enhancement factor θ vs δω with different J
and |α j |2. The sensor driven by a squeezed laser performs better if
the mass deposition is small enough. It ends up towards the same
performance as the conventional ones as the perturbation increases.

If we take high mechanical quality and low temperature, we
can reduce the thermal noise. Now we want to obtain the
quantum-noise-limited sensitivity of the mass deposition, so

we assume that δω′ =
√

δω�χeff

8 , and we take a sample time of
τ = 1 s,

δωmin = kBTeff

πmωm
〈
x j

2
〉
QJ

. (28)

If we cool down the resonators to Teff = 1 K, take a high Q
factor and appropriate 4|α j |2 to increase J , the sensitivity can
be enhanced to a drastic level. If we take the same values of

parameters in Eq. (28) without the value of J , for a linear drive
we take J = 0.022ωm, and for the squeezed-laser drive we
take J = 3.520ωm (because of the different |α j |2), the δωmin

will reach 1/160 times the linear drive, which smaller than
the result of the linear drive.

IV. SUMMARY

Taking the interesting properties of non-Hermitian systems
and the advantage of squeezed states into account, we propose
a scheme to enhance further the optomechanical mass sensor
working at the exceptional point by quadrature drives. The
model system consists of two optomechanical cavities, which
are mechanically coupled via a movable mechanical arm and
kept in balance between the gain and loss. The cavities are
driven by red- and blue-detuned squeezed lasers in each of the
two cavities, respectively, and the dynamics of the system can
be described by an effective Hamiltonian. At the exceptional
point, all eigenvalues and eigenvectors coalesce. Any slight
perturbation to the system can cause the eigenvalues at the
EP to split rapidly as the square root of the perturbation.
This is a unique topological structure in this system [33–36].
Therefore, the sensitivity to the perturbation can be used to
detect the deposition of small masses. Moreover, it was found
that driving of a squeezed laser can display more powerful
sensitivity than the earlier proposal, and the present result is
related to the number of photons involved that is different
from the earlier one. We believe that the theoretical optimiza-
tion of this model can be applied in practice, especially in the
detection and development of micro- and nanotechnology and
the measurement of small substances.
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