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Bright-soliton frequency combs and dressed states in χ(2) microresonators

D. N. Puzyrev, V. V. Pankratov , A. Villois, and D. V. Skryabin *

Department of Physics, University of Bath, Bath BA2 7AY, England, United Kingdom

(Received 13 May 2021; accepted 29 June 2021; published 19 July 2021)

We present a theory of frequency comb generation in high-Q ring microresonators with quadratic nonlin-
earity and normal dispersion and demonstrate that the naturally large difference of the repetition rates at the
fundamental and second-harmonic frequencies supports a family of bright soliton frequency combs provided the
parametric gain is moderated by tuning the index-matching parameter to exceed the repetition rate difference
by a significant factor. This factor equals the sideband number associated with the high-order phase-matched
sum-frequency process. The theoretical framework, i.e., the dressed-resonator method, to study the frequency
conversion and comb generation is formulated by including the sum-frequency nonlinearity into the definition
of the resonator spectrum. The Rabi splitting of the dressed frequencies leads to four distinct parametric down
conversion conditions (signal-idler-pump photon energy conservation laws). The parametric instability tongues
associated with the generation of the sparse, i.e., Turing-pattern-like, frequency combs with varying repetition
rates are analyzed in detail. The sum-frequency matched sideband exhibits optical Pockels nonlinearity and
strongly modified dispersion, which limit the soliton bandwidth and also play a distinct role in Turing comb
generation. Our methodology and data highlight the analogy between the driven multimode resonators and the
photon-atom interaction.
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I. INTRODUCTION

Ring microresonators break through the traditional barriers
of frequency conversion in terms of power efficiency, gen-
erated bandwidth, and compactness [1,2]. Together with the
rise of microresonator frequency conversion, Kerr-soliton fre-
quency combs are reaching unprecedented levels of practical
relevance for optical solitons [1,2].

Second-order, χ (2), nonlinearity is a viable alternative to
the Kerr one. It provides a much stronger nonlinear response
but comes with the caveat of the need to care about phase
and group velocity matching to take full advantage of it.
References [3–6] have been among the first ones to demon-
strate frequency conversion in high-quality factor whispering
gallery microresonators with quadratic nonlinearity. Since
then, this area has made significant progress (see Ref. [7]
for a few-years-old overview, and Refs. [8–15] for some
more recent experimental contributions). It is also important
to mention the work on χ (3) dominant frequency conver-
sion in significantly mismatched χ (2) resonators (see, e.g.,
Refs. [16–19], and Appendix B for the relative weighting of
the χ (2) and χ (3) effects). Materialwise, lithium-niobate re-
mains the best-established platform choice for small-footprint
χ (2) photonics [8], with silicon [20] and aluminium [15] ni-
trides gaining ground with accelerating pace.
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The whispering gallery system considered below achieves
finesses F ∼ 104. The high finesse is an important prerequi-
site for achieving conditions when the rate of the sideband
generating photon energy exchange driven by the sum-
frequency nonlinear terms exceeds the loss rate [21,22] and
the parametric gain rate [23], which corresponds to the strong-
coupling (SC) regime between the ω and 2ω photons. As we
have reported recently [23] and investigate in depth below, this
makes the frequency conversion and soliton generation mech-
anisms depart significantly from what has been known about
these effects in the relatively low finesse resonators, F ∼ 102,
which often have no resonator feedback at one of the gen-
erated harmonics (see, e.g., Refs. [24,25] for an overview).
A couple of the most obvious and important features of
the high-F resonators are the channeling of the paramet-
ric gain into the tonguelike instability domains [23] and the
strong coupling associated with the dressed states [21] and
polaritons [23].

Experimental results on the χ (2)-driven microresonator
solitons are limited for now by the outstanding recent report
by Bruch and colleagues [15] on solitons due to parametric
down conversion (PDC) in the aluminium-nitride micror-
ing with the finesse �103. The numerical data reported in
Ref. [15] show the exponentially localized pulse in the half-
harmonic field and the delocalized waveform in the pump.
Reference [15] poses several problems, in particular, what
are the physical mechanisms facilitating the compensation of
the large group velocity (repetition rate) difference between
the pump and half-harmonic fields allowing for the soliton to
form; and whether a better shaped pulse in the pump field
is possible. Identifying conditions for multicolor multipulse
mode-locked solitons to compensate the large group velocity
differences is one of the classic problems [26,27], that needs
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to be addressed in the context of high-Q microresonators (see
Ref. [28] for the no-resonator, i.e., bulk propagation, analysis).

Results on bright PDC solitons in the resonators with group
velocity offset published two decades ago [27] provided a
conceptual answer, that the compensation of the group veloc-
ity difference is achieved via the balancing interplay between
the dissipative and nonlinear effects. However, Ref. [27]
was published well before frequency combs and solitons in
microresonators became possible. Therefore, it could not an-
ticipate a combination of the small sizes and high Q-factors of
modern day devices, which leads to the strong quantization
of the spectra of the operators underpinning the frequency
conversion and soliton formation processes. The model that
fully reflects these aspects has been recently presented in
Ref. [29], the introduction of which also includes sufficiently
comprehensive coverage of recent and historical work on dis-
sipative χ (2) solitons in resonators.

Following our recent work on the theory of χ (2) microres-
onators [12,23,29–31], we present here the latest findings
obtained in the second-harmonic generation setting. One of
the prime results included below is the demonstration of
bright soliton pulses in a microresonator which has a large
repetition rate difference between the fundamental, ωp, and
second-harmonic frequencies, 2ωp (see Sec. XIII).

The resonator considered here has a �20-GHz repetition
rate and a 1-GHz rate difference, which implies that the linear
ωp and 2ωp pulses would be on the opposite sides of the
resonator only after about 70 round trips. The dispersion of the
resonator is normal and its deviation from the bulk dispersion
is insignificant. The dispersion value is � − 100 kHz so that
the linear pulse becomes twice as broad after 105 round trips,
and hence the repetition rate difference is by far the most dan-
gerous for the bright soliton mode locking, which nevertheless
will be shown to exist across a broad and practical range of
system parameters.

The soliton combs reported below represent a pair of the ωp

and 2ωp mode-locked, and hence the repetition rate locked,
bright pulses, the existence and properties of which are de-
rived and interpreted by examining the details of how the
comb teeth, i.e., the frequency sidebands, are generated and
interact via the sum-frequency and PDC nonlinear mixing
processes. The detailed understanding of this problem has
become possible thanks to the dressed resonator theory [23].
The content of what follows is much wider than just reporting
the soliton mode locking, and it is now useful to give it a brief
overview.

II. CONTENT AND RESULTS OVERVIEW

The coupling between the sidebands, i.e., the resonator
mode pairs or the comb teeth, underpins the formation of
any frequency combs and mode locking in optical resonators.
Below we consider microresonator second-harmonic genera-
tion, where the sideband coupling mechanisms embrace the
complex interplay of the parametric process that couples the
μ and −μ sidebands with the two sum-frequency processes.
One is responsible for the coupling between the μ sidebands
of the fundamental and second harmonic, while the other does
the same but for the −μ sidebands. The sum-frequency pro-
cesses can be phase matched for the select sidebands with the

FIG. 1. A schematic illustration of the spectrum of the linear, i.e.,
bare, resonator, � = 0, around the pump laser frequency, ωp, and
its second harmonic, 2ωp. The frequency mismatch parameter ε0 is
tunable and could be comparable with D1ζ .

positive and negative numbers, μ = μ∗ or μ = −μ∗, where
μ∗ is the ratio between the phase-mismatch parameter and
the repetition rate difference. The key resonator parameters
and characteristics, including μ∗, are illustrated in Fig. 1, and
defined in Tables I and II.

If the microresonator is tuned to operate away from the
μ = 0 phase matching, then the sum-frequency sideband
coupling rate exceeds the parametric gain. It creates an op-
portunity to redefine the resonator spectrum by including the
sum-frequency associated nonlinear terms. The new spec-
trum, i.e., the dressed spectrum, can be calculated analytically,
bringing a close analogy with the dressing of the atomic
transitions and the Rabi theory [21,23,32].

The condition of the maximal parametric gain [33–35],

2h̄ωp = h̄ωsignal + h̄ωidler, (1)

should then be redefined using the dressed frequencies [23].
The Rabi splitting leads to four distinct PDC conditions [see
Eq. (43)]. Knowing them allows understanding the com-
plex structures of the parametric instability tongues and the
Turing-pattern-like frequency combs across the parameter
space spanned by the pump laser frequency, ωp, and the in-
traresonator power.

The dressed modes around either μ∗ or −μ∗ exhibit dis-
persion with the inverted signs and the values significantly
exceeding the bare-resonator ones. Therefore, only making
μ∗ sufficiently large, i.e., by taking it away from the soliton
spectral core, creates enough of the modal bandwidth around
μ = 0 with the low dispersion allowing the formation of the
two-color bright soliton pulses. The large values of μ∗ are
achieved by making the frequency mismatch parameter be-

TABLE I. The resonator parameters characteristic for a bulk-cut
LiNbO3 resonator pumped at 1065 nm [12,23,29]. D2f,2s < 0 corre-
spond to the normal dispersion.

Parameters Values

Linewidths κf/2π = 1 MHz, κs/2π = 4 MHz
Repetition rates D1f/2π = 21 GHz, D1s/2π = 20 GHz
Dispersions D2f/2π = −100 kHz, D2s/2π = −200 kHz
Nonlinear coefficients γf,s/2π = 300 MHz/

√
W
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TABLE II. Definitions of the key parameters, which complement
the ones illustrated in Fig. 1 and listed in Table I. ωp is the laser
photon frequency. ωμζ and ω̃

( j)
μζ are the bare and dressed resonator

frequencies, respectively ( j1,2 = 1, 2, 3, 4; ζ = f , s).

Parameters Values

Rabi frequency � = ψ0f
√

8γfγs

≈ ψ0f × 0.8 GHz/
√

W
Rabi detuning Δμ = ωp + ωμf − ωμs

Sum-frequency mismatch εμ = ω0f + ωμf − ωμs

Effective Rabi frequency �μ =
√

Δ2
μ + |�|2

PDC frequency mismatch ε( j1 j2 )
μ = ω̃

( j1 )
μf + ω̃

( j2 )
−μf − 2ωp

Strong-coupling condition κζ � |�| � 8|ε0|
Sum-frequency matching ε±μ∗ = 0, μ∗ ≈ |ε0|/|D1f − D1s|

tween the fundamental and second-harmonic modes exceed
the repetition rate difference by a significant, � 1, factor,
which works out to be μ∗ itself. Now, we are proceeding with
the details of the theoretical and numerical results.

III. LINEARIZED SIDEBAND EQUATIONS AND CW STATE

We assume the intraresonator electric fields of the funda-
mental and second harmonic to be

ψfe
iMϑ−iωpt + c.c., ψse

i2Mϑ−i2ωpt + c.c., (2)

where |ψf,s|2 have units of power [29] (see Appendix A). M
and 2M are the absolute (physical) mode numbers with fre-
quencies ω0f and ω0s. ϑ ∈ (−π, π ] is the angular coordinate
and t is time. ωp is the pump laser frequency tunable around
ω0f, so that

δ = ω0f − ωp (3)

is the respective pump detuning.
The envelopes of the fundamental, ψf, and second har-

monic, ψs, are expressed via their mode expansions as

ψζ = ψ0ζ (t ) +
∑
μ>0

[ψμζ (t )eiμϑ + ψ−μζ (t )e−iμϑ ], (4)

with ζ = f , s, and μ is an integer characterizing the rela-
tive mode number. The resonator frequencies associated with
ψ±μζ are

ω±μζ = ω0ζ ± μD1ζ + 1
2μ2D2ζ , (5)

where D1ζ /2π are the repetition rates (free spectral ranges)
and D2ζ are the dispersions (see Fig. 1 for a schematic illus-
tration). The photon angular momenta corresponding to ω±μf

and ω±μs are

h̄(M ± μ), and h̄(2M ± μ).

Physical values of the parameters implemented throughout
this paper are shown in Table I, and are typical for a bulk-
cut LiNbO3 resonator. Detunings of the resonator frequencies
ω±μζ from the pump laser frequency, ωp, and its second
harmonic, 2ωp, are ω±μf − ωp and ω±μs − 2ωp. A Galilean
transformation to the reference frame rotating with the rate
D1/2π ,

θ = ϑ − D1t, (6)

FIG. 2. Cw state of the (a) fundamental and (b) second harmonic
(see Appendix C). Pump laser power is W = 0.1 mW [see Eq. (49)].
Mismatch parameter ε0/2π = −5 GHz.

converts these detunings to

Δ±μf = (ω±μf − ωp) ∓ μD1

= δ ± μ(D1f − D1) + 1
2 D2fμ

2,

Δ±μs = (ω±μs − 2ωp) ∓ μD1

= 2δ − ε0 ± μ(D1s − D1) + 1
2 D2sμ

2, (7)

where ε0 = 2ω0f − ω0s is the μ = 0 frequency mismatch pa-
rameter. Setting

D1 = D1f, (8)

we get an immediate access to the difference of the repetition
rates, D1s − D1f, inside Δ±μs.

If c is the vacuum speed of light, nM+μ is the effective
refractive index of the mode M + μ, and R is the resonator
radius, then

ωμf = c

R

(M + μ)

nM+μ

, ωμs = c

R

(2M + μ)

n2M+μ

. (9)

Hence,

ε0 = 2ω0f − ω0s = 2M
c

R

[
1

nM
− 1

n2M

]
, (10)

and requiring ε0 = 0, yields the anticipated index matching
condition, nM = n2M . Refractive index, and hence ε0, can be
fine tuned by, e.g., temperature or electro-optic controls.

The cw state of the resonator operation implies ψζ =
ψ0ζ = constζ , i.e., ∂tψ0ζ = 0 (see Fig. 2 and Appendix C).
During the initial stage of the comb development, the side-
bands evolve and grow on top of the undepleted cw state, so
that the field envelopes can be sought as the cw plus small
perturbations, with the latter taken as a superposition of the
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resonator modes:

ψζ (t, θ ) = ψ0ζ +
∑
μ�0

[ψ̃μζ (t )eiμθ + ψ̃∗
−μζ (t )e−iμθ ]. (11)

Here ψ̃±μζ are the amplitudes of the growing sidebands.
Complex conjugation of ψ̃−μζ was introduced to make the
equations less cluttered. If Eq. (4) could be referred to as
the mode expansion in the bare resonator representation, then
Eq. (11) is a step towards the dressed resonator theory.

Substituting Eq. (11) into the envelope equations (A1), and
linearizing for small sidebands, we find that ψ̃μζ (t ) are driven
by the sideband combinations with the matched net momenta
(see Appendix D). The resulting equations are

i∂t ψ̃μf =
(

Δμf − i
1

2
κf

)
ψ̃μf − γf(ψ̃μsψ

∗
0f + ψ̃−μfψ0s),

i∂t ψ̃μs =
(

Δμs − i
1

2
κs

)
ψ̃μs − 2γsψ̃μfψ0f,

i∂t ψ̃−μf =
(

−Δ−μf − i
1

2
κf

)
ψ̃−μf + γf(ψ̃−μsψ0f + ψ̃μfψ

∗
0s),

i∂t ψ̃−μs =
(

−Δ−μs − i
1

2
κs

)
ψ̃−μs + 2γsψ̃−μfψ

∗
0f. (12)

Here, κζ are the loaded linewidth parameters, and γζ are the
nonlinear coefficients measured in Hz/W1/2 [29] (see Table I).

Equations (12) are linear in the approximation of the
undepleted cw state, and they represent one of the funda-
mental models in nonlinear optics expressing the interplay of
the PDC and sum-frequency processes. The sum-frequency
terms are underlined once and the parametric ones, describ-
ing conversion to the ±μ sidebands (photon-pair generation),
are underlined twice. The momentum conservation laws
corresponding to the parametric conversion and the two sum-
frequency processes are

h̄(M + μ) + h̄(M − μ) = h̄2M (13)

and

h̄(M ± μ) + h̄M = h̄(2M ± μ), (14)

respectively.
The eigenvalues and eigenvectors of the matrix acting

on the vector (ψ̃μf, ψ̃μs, ψ̃−μf, ψ̃−μs)T in the right-hand side
of Eq. (12) are known in the explicit form in two cases:
(i) for Δμf = Δ−μf, Δμs = Δ−μs, and κf = κs (see, e.g.,
Refs. [36–38]) and (ii) for κf �= κs and Δ±μζ = 0 (see
Ref. [39]). While Δμf = Δ−μf is satisfied exactly, and κf = κs

could be assumed, the Δμs = Δ−μs condition is typically far
from being true. In most of the practical cases, the repetition
rate difference, Δμs − Δ−μs = 2μ(D1s − D1f), creates one of
the dominant frequency scales in Eqs. (7), which can be com-
parable only to ε0.

IV. RABI FREQUENCY, PARAMETRIC GAIN, AND
LINEWIDTH

To address the problem at hand, it is important to under-
stand the balances between the characteristic frequency scales
implicated in Eq. (12). ψ0s, i.e., the cw second-harmonic am-
plitude, can be controlled by tuning the frequency mismatch,

FIG. 3. (a) The sum-frequency matched Rabi oscillations near
to the μ = 5 avoided crossing (red, fundamental, left axis; green,
second harmonic, right axis), �5 ≈ |�| ≈ 2π × 68 MHz. (b) As
in (a) but plotted over the time interval as is used in (c).
(c) The mismatched Rabi oscillations for the μ = 4 sidebands,
�4 ≈ |Δ4| ≈ 2π × 1 GHz. Parameters: (a, b) δ = 15.15κf, ε0/2π =
−5 GHz, W = 1.7 mW (pump power), |ψ5s|2 = 0.36 mW (side-
band power) at t = 0; (c) δ = 6.45κf, ε0/2π = −5 GHz, W =
2.11 mW, |ψ4s|2 = 0.33 mW at t = 0.

ε0, so that the parametric gain coefficient, γfψ0s, can be made
to be much less than the sum-frequency associated rate of the
energy exchange, γζψ0f (see Fig. 2 and compare the frequency
scales along the vertical axes).

If the aim is to create the modal bandwidth sufficient for
the soliton generation at both harmonics, then the moderation
of the parametric gain is useful since it would then keep
the energy of the second-harmonic pulse under control, and,
hence, could be expected to ease, for the stronger fundamental
pulse, the task of synchronizing its repetition rate with the
second harmonic.

The sum-frequency driven energy exchange is illustrated in
Fig. 3, where one can see the fast antiphase oscillations of the
ωμf and ωμs sidebands. The frequency of the oscillations is
much larger than the decay rates, so that, in the leading order,
the first two equations in Eqs. (12) can be approximated with
[23,40]

i∂t

[
ψ̃μf

ψ̃μs

]
≈
[

Δμf −γfψ
∗
0f

−2γsψ0f Δμs

][
ψ̃μf

ψ̃μs

]
+ . . . . (15)

The second pair of equations resembles the above but with
μ → −μ. Parametric gain and losses should then come in
the next to leading order, suggesting the development of a
perturbation theory. The Rabi theory, well known in the semi-
classical atom-photon interaction [32], is an obvious and best
suited methodology to describe solutions of Eq. (15). The
Rabi formalism was also previously applied for the resonator-
free sum-frequency generation model [41].
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The frequency of the oscillations in Fig. 3 would then be
the effective Rabi frequency:

�μ =
√

Δ2
μ + |�|2. (16)

It is controlled by the difference of the sideband detunings,
i.e., the Rabi detuning,

Δμ = Δμf − Δμs, (17)

and by the coupling coefficient, i.e., by the off-diagonal terms
in Eq. (15), characterized by the complex Rabi frequency, �:

� = ψ0f

√
8γfγs. (18)

The complex second-harmonic amplitude can also be ex-
pressed via � and the auxiliary complex frequency �s:

γfψ0s = �2

�s
,�s = 8

(
2δ − i

1

2
κs

)
− 8ε0 (19)

(see Appendix C).
|�|/2π ∼ 102 MHz gives |ψ0f|2 � 1W, which would be

typical inside the resonator. Then, for κζ /2π ∼ 1 MHz we
have |�| � κζ , i.e., the Rabi flops are indeed much faster
than the decay rate. The frequency scale associated with the
parametric gain is set by

γf|ψ0s| = |�|2
|�s| . (20)

Arranging |ε0| to be close to or larger than the repetition rate
difference,

|ε0|
2π

� |D1f − D1s|
2π

� 1 GHz, (21)

makes

1

|�|
|�|2
|�s| ≈ |�|

8|ε0| � 1. (22)

Hence, the Rabi frequency is also much larger than the para-
metric gain rate. Thus, both the linewidth and the parametric
terms are small relative to the right-hand side of Eq. (15), and
the SC condition [23],

κζ � |�| � |�s|, (23)

is satisfied. Reference [21] reported measurements of the χ (2)

Rabi splitting (≈1 GHz for the laser power W = 80 mW) in
the AlN resonators with |�|/κζ ∼ 1, which should be well
outperformed by the bulk resonators considered here. The
μ = 0 Rabi oscillations in the χ (2) resonators were looked at
in Ref. [42], well before the multimode high-Q χ (2) microres-
onators were demonstrated.

The notations related to the Rabi theory and also the key
quantities used below to characterize the matching conditions
for the sum-frequency and parametric processes are summa-
rized in Table II.

V. SUM-FREQUENCY MATCHING

While the cascade of the sum- and difference-frequency
events engaging a sequence of μ’s is critical for the generation
of the fully blown combs (see Sec. X), the frequency matching
for the one-step sum-frequency process in Eq. (13) is also

FIG. 4. (a) Frequency matching for the sum-frequency genera-
tion: The Rabi detuning Δ−μ = ωp + ω−μf − ω−μs vs the sideband
order number μ, δ = 5κf. ε0/2π = 10.5 and 10 GHz correspond to
the mismatched and near-matched (μ = μ̂ = 10) cases, respectively.
(b) Avoided-crossing diagram: The dressed frequencies vs δ for
|�| = 20κf. The straight lines correspond to � = 0.

very important and should be analyzed in more details. As
it is well known for the coupled oscillators, the full periodic
power transfer between ψ̃μf and ψ̃μs is ensured by minimizing
the Rabi detuning, i.e., Δμ → 0, �μ → |�| [see Eq. (16)].

Here, we are dealing with a system possessing two differ-
ent effective Rabi frequencies �μ and �−μ, and the respective
Rabi detunings, Δ±μ, can be reexpressed as

Δ±μ = ωp + ω±μf − ω±μs. (24)

If one of Δ±μ = 0 is resolved by an integer, i.e.,

Δμ̂ = 0, or Δ−μ̂ = 0, μ̂ ∈ Z, μ̂ > 0, (25)

it implies the exact matching for one of the two coexisting
sum-frequency processes. The examples of the exact matching
between ω−μf and ω−μs for μ = 10 and of the mismatched
case are shown in Fig. 4(a). In the mismatched case, the
SC condition, Eq. (23), is perfectly satisfied, but the power
transfer during the Rabi flops is significantly reduced [see
Figs. 3(b) and 3(c)].

If the real positive μ∗ solves one of the Δ±μ = 0 equations,
i.e.,

Δμ∗ = 0, or Δ−μ∗ = 0, μ∗ ∈ R, μ∗ > 0, (26)

then an integer, or two, nearest to μ∗ provide the sidebands
order best complying with the frequency matching. To find
μ∗, we introduce a new parameter

ε±μ = ω0f + ω±μf − ω±μs (27)

[see Eq. (24)], so that

Δ±μ = ε±μ − δ. (28)

We note that ε±μ depend only on the resonator geometry and
refractive index [see Eq. (10)]. Using Eq. (5), we express
ε±μ as

ε±μ = ε0 ± μ(D1f − D1s) + 1
2μ2(D2f − D2s). (29)

Relative smallness of the dispersion, i.e., of the μ2D2ζ and δ

terms, provides an excellent approximation for μ∗:

μ∗ ≈ |ε0|
|D1f − D1s| . (30)
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FIG. 5. �μ and �−μ Rabi frequencies vs μ. (a) ε0/2π =
10.5 GHz, and (b) ε0/2π = −10.5 GHz, δ = 14κf, |�| = 300κf.
Δ−μ = ωp + ω−μf − ω−μs is nearly matched for μ = 10 in (a), and
Δμ = ωp + ωμf − ωμs is in (b).

If ε0 > 0, then μ∗ solves Δ−μ = 0 [see Fig. 4(a)], and if
ε0 < 0, then μ∗ solves Δμ = 0. This point is further facilitated
in Fig. 5, where we plot �μ and �−μ vs μ for different signs of
ε0. For ε0 > 0, �−μ has a minimum at μ = μ∗ ≈ μ̂, �−μ∗ =
|�|, and for ε0 < 0, �μ is the one with the minimum. The
simple approximations for �±μ are also inferred from Fig. 5.
For ε0 > 0, we have

�μ ≈ Δμ for all μ,�−μ ≈ Δ−μ for μ < μ̂,

�−μ̂ ≈ |�| for μ = μ̂,�−μ ≈ −Δ−μ for μ > μ̂. (31)

The same approximations for ε0 < 0 require the �±μ → �∓μ

swap in every part of Eq. (31) [see Fig. 5(b)].

VI. DRESSED STATES

Equation (15) has an obvious and important class of
solutions with time-independent sideband powers—dressed
(eigen) states. The Rabi oscillations stem from a superposition
of the dressed states. Dressing the states, i.e., working with
the superpositions between ψ̃μf and ψ̃μs, rather than with the
modes of the linear resonator, allows us to develop a theory
embracing the cases with the arbitrary (small, large, or near 1)
ratios of the |ψ̃μs|2 and |ψ̃μf|2 powers [23].

After the rescaling, ψ̃±μf = e±iφf ã±μf/
√

2, ψ̃±μs =
e±iφs ã±μs/

√
γ2f/γ2s, φζ = arg ψ0ζ , Eqs. (12) become

i∂t |ãμ〉 = (Ĥμ + V̂ )|ãμ〉. (32)

Here |ãμ〉 = (ãμf, ãμs, ã−μf, ã−μs)T is the state vector,

Ĥμ =

⎡⎢⎢⎣
Δμf − 1

2 |�|e−iφ 0 0
− 1

2 |�|eiφ Δμs 0 0
0 0 −Δ−μf

1
2 |�|eiφ

0 0 1
2 |�|e−iφ −Δ−μs

⎤⎥⎥⎦,

(33)

φ = 2φf − φs, and

V̂ =

⎡⎢⎢⎢⎣
−i 1

2κf 0 −|�|2e−iφ

|�s| 0
0 −i 1

2κs 0 0
|�|2eiφ

|�s| 0 −i 1
2κf 0

0 0 0 −i 1
2κs

⎤⎥⎥⎥⎦. (34)

Setting

|ã(t )〉 = |aμ〉 exp{tλμ − itβμ},
λμ ∈ R, βμ ∈ R, (35)

we find

(βμ + iλμ)|aμ〉 = (Ĥμ + V̂ )|aμ〉, (36)

where βμ is the frequency shift, and λμ is the sideband growth
rate, such that λμ transiting from negative to positive signals
instability of the cw state relative to the excitation of the
±μ pair.

In the SC regime [see Eq. (23)], V̂ is a perturbation to Ĥμ,
and therefore, before incorporating V̂ , we look into the details
of the dressed states:

Ĥμ

∣∣b( j)
μ

〉 = β ( j)
μ

∣∣b( j)
μ

〉
, j = 1, 2, 3, 4. (37)

The eigenfrequencies, β ( j)
μ , and state vectors, |b( j)

μ 〉, of the four
branches of the dressed spectrum are [23]

β (1)
μ = 1

2 (Δμf + Δμs) + 1
2�μ,∣∣b(1)

μ

〉 = |�|e−iφ |1〉 + (Δμ − �μ)|2〉;
β (2)

μ = 1
2 (Δμf + Δμs) − 1

2�μ,∣∣b(2)
μ

〉 = |�|e−iφ |1〉 + (Δμ + �μ)|2〉;
β (3)

μ = − 1
2 (Δ−μf + Δ−μs) − 1

2�−μ,∣∣b(3)
μ

〉 = |�|eiφ|3〉 + (Δ−μ − �−μ)|4〉;
β (4)

μ = − 1
2 (Δ−μf + Δ−μs) + 1

2�−μ,∣∣b(4)
μ

〉 = |�|eiφ|3〉 + (Δ−μ + �−μ)|4〉. (38)

The branches (1) and (2) describe the Rabi induced cou-
pling between the +μ sidebands in the fundamental and
second harmonic, and (3) and (4) do the same for the −μ

sidebands. The corresponding dressed frequencies are

ω̃
(1),(2)
μf = ωp + μD1 + β (1),(2)

μ ,

ω̃
(3),(4)
μf = ωp − μD1 − β (3),(4)

μ ,

ω̃(1),(2)
μs = 2ωp + μD1 + β (1),(2)

μ ,

ω̃(3),(4)
μs = 2ωp − μD1 − β (3),(4)

μ . (39)

Taking the explicit expressions for Δμ and (Δμf + Δμs)/2
inside β

( j)
μ one would find that ω̃

( j)
μζ are the reference frame,

i.e., D1, independent.
Power distribution between the fundamental and second-

harmonic sidebands within a given branch and for a given μ is
determined by the dressing parameters, Δ2

±μ/|�|2. If the Rabi
detuning is relatively large, i.e., a particular mode is far from
being sum-frequency matched [see the points away from the
zero line in Fig. 4(a)], then the corresponding dressed state,
|b( j)

μ 〉, tends towards an eigenstate of the bare, i.e., � = 0,
resonator. The bare states are

|1〉 = (1, 0, 0, 0)T , ei(M+μ)ϑ−itωμf ,

|2〉 = (0, 1, 0, 0)T , ei(2M+μ)ϑ−itωμs ,

|3〉 = (0, 0, 1, 0)T , ei(M−μ)ϑ−itω−μf ,

|4〉 = (0, 0, 0, 1)T , ei(2M−μ)ϑ−itω−μs , (40)

013520-6



BRIGHT-SOLITON FREQUENCY COMBS AND DRESSED STATES … PHYSICAL REVIEW A 104, 013520 (2021)

FIG. 6. Diagram illustrating the dressed spectra. (a) Pump fre-
quency tuned to satisfy the intrabranch PDC condition, h̄2ωp =
h̄ω̃

(1)
μf + h̄ω̃

(1)
−μf. (b) How the cross-branch PDC condition is satisfied,

h̄2ωp = h̄ω̃
(2)
μf + h̄ω̃

(1)
−μf. The red and blue arrows show how the PDC

gain and Rabi flops redistribute power within the spectrum. The black
dotted lines show the Rabi frequencies, �μ and �−μ, and highlight
their inequality.

where, for the sake of clarity, we explicitly associated each of
the state vectors to the corresponding resonator mode.

The maximal dressing condition, Δ±μ = 0, involves fre-
quencies of the bare resonator, while the matching points are
replaced by the avoided crossings in the dressed resonator
[see Fig. 4(b)]. The avoided crossing between ω̃

(1)
±μζ and ω̃

(2)
±μζ

exists for every μ; however, most of them do not come to
the practical, tens of MHz, proximity of δ = 0, apart from the
ones nearest to ±μ∗.

Noting the symmetries

β (3)
μ = −β

(1)
−μ, i.e., ω̃

(1)
−μζ = ω̃

(3)
μζ ,

β (4)
μ = −β

(2)
−μ, i.e., ω̃

(2)
−μζ = ω̃

(4)
μζ ,

(41)

we conclude that there are two ways to proceed from this
point. First, the problem could be formulated using the four
dressed frequencies, e.g., ω̃

(1)
μf , ω̃

(2)
μf , ω̃

(3)
μf , ω̃

(4)
μf [23]. Second,

one could switch to using the two-branch formulation and deal
with ω̃

(1)
μf , ω̃

(1)
−μf, ω̃

(2)
μf , ω̃

(2)
−μf. The latter approach is slightly

more intuitive and we choose to follow it here. In either
case, the four frequencies and eigenstates have to be traced.
The ω̃

(1)
±μf and ω̃

(2)
±μf frequencies in the dressed spectrum are

illustrated in Fig. 6. The ω̃
(1)
±μs and ω̃

(2)
±μs spectra characterize

the same dressed states as ω̃
(1)
±μf and ω̃

(2)
±μf. If the former are

plotted then they would make the same spectrum as in Fig. 6
apart from being centered at 2ωp [see Eq. (39)].

VII. DRESSED SPECTRUM AND ENERGY
CONSERVATION IN PARAMETRIC DOWN CONVERSION

In any parametric system, the parametric resonance is
achieved for, usually, a sequence of the resonance values of

the drive frequency [43]. In optical resonators in general,
and in the dressed χ (2) system, in particular, this is done by
tuning ωp to the midpoint between the desired sidebands, e.g.,
ω̃

(1)
μf and ω̃

(1)
−μf. One peculiar feature of our case is that the

dressed resonances depend on the pump power and frequency.
Another is that for the two pairs of frequencies, ω̃

(1)
±μf and

ω̃
(2)
±μf, there could be four different midpoints for the same

μ, and hence four conditions providing the maximum of the
parametric gain [23,44]:

2h̄ωp = h̄ω̃
(1)
μf + h̄ω̃

(1)
−μf,

(
β (1)

μ = −β
(1)
−μ

)
, (42a)

2h̄ωp = h̄ω̃
(2)
μf + h̄ω̃

(2)
−μf,

(
β (2)

μ = −β
(2)
−μ

)
, (42b)

2h̄ωp = h̄ω̃
(1)
μf + h̄ω̃

(2)
−μf,

(
β (1)

μ = −β
(2)
−μ

)
, (42c)

2h̄ωp = h̄ω̃
(2)
μf + h̄ω̃

(1)
−μf,

(
β (2)

μ = −β
(1)
−μ

)
. (42d)

The auxiliary frequency ω̃μ = ωp + μD1f + 1
2 (Δμf +

Δμs) makes the role of the Rabi splitting in the above more
transparent:

2h̄ωp = h̄
(
ω̃μ + 1

2�μ

)+ h̄
(
ω̃−μ + 1

2�−μ

)
, (43a)

2h̄ωp = h̄
(
ω̃μ − 1

2�μ

)+ h̄
(
ω̃−μ − 1

2�−μ

)
, (43b)

2h̄ωp = h̄
(
ω̃μ + 1

2�μ

)+ h̄
(
ω̃−μ − 1

2�−μ

)
, (43c)

2h̄ωp = h̄
(
ω̃μ − 1

2�μ

)+ h̄
(
ω̃−μ + 1

2�−μ

)
. (43d)

The first pair of conditions, Eqs. (42a) and (42b), corre-
sponds to the intrabranch PDC, which is satisfied by tuning
the pump frequency to the midpoint between ω̃

( j)
μf and ω̃

( j)
−μf.

The second pair, Eqs. (42c) and (42d), are the cross-branch
PDC conditions. They are satisfied by ωp being tuned to the
midpoint between the μ and −μ sidebands from the two
different branches of the dressed spectrum.

Figure 6 illustrates achieving frequency matching for the
intra- and cross-branch cases, and also shows how the ef-
fective Rabi frequencies, �±μ, come into play. �μ and �−μ

are generally very different, and coincide only for μ = 0 (see
Fig. 5).

To gain further important insights into the PDC conditions
in Eq. (42), we rearrange them as

ε( j1, j2 )
μ = ω̃

( j1 )
μf + ω̃

( j2 )
−μf − 2ωp (44)

and plot ε
( j1, j2 )
μ vs μ (see Fig. 7). The sideband numbers

grouped around the zero lines correspond to the MHz level
mismatches that are more easily compensated by the nonlin-
ear effects providing ε

( j1, j2 )
μ = 0. The sidebands with ε

( j1, j2 )
μ

detuned away from zero by the GHz offsets [see the black
dots in Figs. 7(a) and 7(b)] are cut off from the groups of the
PDC capable mode numbers. The cutoff is happening for μ’s
around μ∗, corresponding to the sum-frequency matching [see
Eq. (30)].

Figure 7(a) shows that the intrabranch condition in
Eq. (42a) can be satisfied for 0 � μ � μ∗, while ε0 is set to
be positive. The second intrabranch condition, Eq. (42b) [see
Fig. 7(c)], is shifted away from zero by ≈2ε0, and will be
swapped with the first one for ε0 → −ε0. Figures 7(b) and
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FIG. 7. Frequency matching parameters ε( j1 j2 )
μ = ω̃

( j1 )
μ1f + ω̃

( j2 )
μ2f −

2ωp for the four types of the parametric down conversion (PDC) con-
ditions. The sideband numbers grouped around the dashed horizontal
lines, ε( j1 j2 )

μ = 0, correspond to the MHz mismatches that can be
compensated by the nonlinear effects and lead to the exact PDC fre-
quency matching (see insets). (a, b) δ = 2.55κf, |�|/2π = 76 MHz.
(c, d) δ = 8.1κf, |�|/2π = 105 MHz, and ε0/2π = 10 GHz. μ ≈ 10
(see the corner points) corresponds to the sum-frequency matching,
Δ−μ ≈ 0.

7(d) show the cross-branch PDC conditions, with one of them
being satisfied for μ � μ∗.

The challenge with resolving Eq. (42) analytically for ei-
ther � or δ is in the occurrences of them under the square-root
sign in the equation for �μ (see Table II). However, the
algebra is proceedable [23,44], and leads to finding that all
four PDC conditions are resolved by |�| = |�pdc|, where

|�pdc|2 = 4(Δμf + Δ−μf )(Δμs + Δ−μs)

× (Δμf + Δ−μs)(Δμs + Δ−μf )

(Δμf + Δ−μf + Δμs + Δ−μs)2
. (45)

Plots of |�pdc| vs δ for positive and negative ε0, and their
associations with the PDC conditions, are shown in Fig. 8.
These plots in Fig. 8 could be compared with the tempera-
ture tuning diagrams of the parametric oscillators (see, e.g.,
Refs. [33–35]), but in our case, the temperature is assumed
fixed, while the tuning parameters are the pump power ex-
pressed via |�|, and the pump frequency. The range of |�|s
considered by us provides relatively small intraresonator pow-
ers, on the order of mW to <1W (cf. the left and right axes in
Fig. 9).

If |ε0| dominates over all δ’s, and μ∗ falls between the two
nearest integers, i.e., the exact sum-frequency matching point
has been missed, then Eq. (45) simplifies to

|�pdc|2 ≈ −4ε0(δ − δμf )

[
1 − μ2

μ2∗

]
, δμf = −1

2
D2fμ

2 (46)

(see Appendix E for details).
Equation (46) reveals what has been described above based

on the numerical plots. First, one can see that the resonances

FIG. 8. Lines corresponding to the exact PDC frequency match-
ing conditions in the parameter space of the pump detuning, δ, and of
the Rabi frequency, |�|, characterizing the intraresonator cw power
(see Fig. 2). The red lines (numbered 0 to 5) correspond to the
intrabranch PDCs, which are h̄ω̃

(1)
μf + h̄ω̃

(1)
−μf = h̄2ωp in (a) where

ε0/2π = 5 GHz, and h̄ω̃
(2)
μf + h̄ω̃

(2)
−μf = h̄2ωp in (b) where ε0/2π =

−5 GHz, 0 � μ � 5. The blue lines (numbered 5 to 11) correspond
to the cross-branch PDCs, which are h̄ω̃

(1)
μf + h̄ω̃

(2)
−μf = h̄2ωp in (a),

and h̄ω̃
(2)
μf + h̄ω̃

(1)
−μf = h̄2ωp in (b), μ � 5. The lines in (a) and (b) use

Eq. (45), while the dots in (a) are derived from the approximate
Eq. (46) for μ �= 5 and Eq. (E5) for μ = 5.

converge to points δ = δμf for � → 0, which corresponds to
the zero of the first bracket in the numerator of Eq. (45).
Second, the direction of the nonlinearity induced tilts of the
resonances depends on the sign of ε0 and the value of μ

(see Fig. 8). If ε0 < 0, then the tilt is towards δ > δμf for
0 � μ < μ∗, and towards δ < δμf for μ > μ∗. ε0 > 0 changes
the tilt direction for the two groups of modes.

Figure 8 also shows a good agreement between the exact
and approximate |�pdc|2 vs δ dependencies. Analytical ap-
proximation for |�pdc| in the case when the sum-frequency
process is either nearly or exactly matched, i.e., μ = μ̂ ≈ μ∗,
is considered in Appendix E.

To summarize, the intrabranch PDC conditions are satisfied
for a compact group of sideband numbers,

0 � μ � μ∗, i.e., for

[
1 − μ2

μ2∗

]
� 0, (47)

while the cross-branch ones are engaged for the unbound set
of sidebands,

μ � μ∗, i.e., for

[
1 − μ2

μ2∗

]
� 0. (48)
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FIG. 9. Parametric down conversion (PDC) instability tongues mapped onto the parameter space spanned by the laser detuning, δ, and the
Rabi frequency, |�| (see the left axis), or, and equivalently, by the intraresonator cw power, |ψ0f|2 (see the right axis). (a) ε0/2π = 5 GHz.
(b) ε0/2π = −5 GHz. The gray shaded tongues correspond to the intrabranch PDC conditions marked by the red lines in Fig. 8, and the blue
tongues correspond to the cross-branch PDCs. Some of the tongues are marked with the respective μ’s (see Fig. 8 for the complete illustration
of the μ ordering). The magenta lines show |�| = |ψ0f|

√
8γfγs vs δ achieved for the laser powers W = 66 μW, 10 mW, and 100 mW.

Thus, the sum-frequency matched sideband, μ∗ or −μ∗, de-
fines the transition between the two different PDC scenarios.

VIII. PDC INSTABILITY TONGUES

While the PDC frequency matching provides conditions
for the maximal parametric gain, the latter still needs to over-
come the dissipation in order to trigger the exponential growth
of sidebands, i.e., to induce the cw instabilities. Regions of
the PDC instabilities for every ±μ pair of sidebands can be
computed numerically by solving the eigenvalue problem in
Eq. (36) and plotting the lines λμ = 0 [23]. Every μ-specific
instability area is represented by a tonguelike domain shaped
around the respective |�pdc| vs δ line (see Figs. 8 and 9).

The intrabranch instabilities, Eqs. (42a) and (42b), are col-
ored in gray in Fig. 9, while the cross-branch ones, Eqs. (42c)
and (42d), are shown in blue. The magenta lines show |�|’s
vs δ corresponding to the cw state achieved for three represen-
tative values of the laser power, W = 66 μW, 10 mW, and
100 mW. The cw state is expressed via � as per Eq. (18),
while � itself is a solution of

� =
√

κfκs

2

√
W
W∗

κf

�f

[
1 − |�|2

�f�s

]−1

, (49)

where �f = δ − i 1
2κf, �s = 8(2δ − i 1

2κs) − 8ε0, W is the
laser power in watts, and W∗ is its scaling [see Eq. (C5)].
Taking the modulus squared of Eq. (49) we find a real cubic
equation for |�|2, that can have either one or three positive
roots, with the latter case signaling the cw bistability (see
Fig. 2, and further details in Appendix C).

Thus, a scan of the laser frequency, ωp, would go along
an individual power-defined path crossing the different PDC
domains (see the magenta lines in Fig. 9). The yellow shading
marks the μ = 0 tongue embracing the middle branch of the
bistability loop (see Fig. 2). For the Kerr resonators, similar
tongue diagrams were recently reported in Refs. [45,46].

IX. PARAMETRIC THRESHOLDS

PDC thresholds, i.e., the minimal intraresonator powers
triggering the exponential growth of the ±μ sideband pairs,
happen at the tips of the instability tongues (see Fig. 9). To find
the threshold when the system is confined to the |μ|-specific
PDC lines (see Figs. 8 and 9), we apply the degenerate state
perturbation theory to Eq. (36) by treating V̂ as a perturbation
to Ĥμ, which is valid in the SC regime. The generic condition
for the parametric gain to overcome losses has been intro-
duced in Ref. [23]:

V ( j1 j2 )
μ · V ( j2 j1 )

μ = V ( j1 j1 )
μ · V ( j2 j2 )

μ , (50)

where V ( j1 j2 )
μ = 〈b( j1 )

μ |V̂ |b( j2 )
μ 〉 are the matrix elements of V̂ .

Opening up Eq. (50) for ( j1, j2) = (1, 3), ( j1, j2) = (2, 4),
( j1, j2) = (1, 4), and ( j1, j2) = (2, 3) yields four threshold
conditions:[

κf + κs
(Δμ − �μ)2

|�|2
][

κf + κs
(Δ−μ − �−μ)2

|�|2
]

= 4|�|4
|�s|2 ,

(51a)[
κf + κs

(Δμ + �μ)2

|�|2
][

κf + κs
(Δ−μ + �−μ)2

|�|2
]

= 4|�|4
|�s|2 ,

(51b)
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[
κf + κs

(Δμ − �μ)2

|�|2
][

κf + κs
(Δ−μ + �−μ)2

|�|2
]

= 4|�|4
|�s|2 ,

(51c)[
κf + κs

(Δμ + �μ)2

|�|2
][

κf + κs
(Δ−μ − �−μ)2

|�|2
]

= 4|�|4
|�s|2 .

(51d)

Equations (51) express the balance between the PDC gain
(right) and the net loss (left). The second-harmonic losses,
κs, are weighted by the coefficients characterizing the power
distribution between the components in the state vectors
[see Eq. (38)]. The explicit threshold condition presented in
Ref. [23] transforms to Eq. (51c) after making use of the
identity |�|

�μ−Δμ
= �μ+Δμ

|�| .
We now note that in the SC regime |�s| ≈ 8|ε0| [see

Eq. (22)], and hence the right-hand sides in Eq. (51) are
approximated with |�|4/16|ε0|2. To simplify the threshold
conditions we make use of the approximations in Eq. (31)
related to the case of ε0 > 0 and �−μ̂ ≈ |�| [see Fig. 5(a)].
Then, for μ < μ̂ both coefficients after κs in Eq. (51a)
are small and can be omitted in the leading order, so
that the threshold is determined by κf only and is well
approximated by ∣∣�(μ)

th

∣∣2 ≈ 4|ε0|κf, μ �= μ̂ (52)

[see the gray tongues in Fig. 9(a)]. For μ > μ̂ the left-hand
side of Eq. (51a) becomes ≈4κfκs|Δ−μ|2/|�|2, which creates
prohibitively large power thresholds (see the cutoff transitions
in Fig. 7).

For μ = μ̂, the threshold is approximated by∣∣�(μ̂)
th

∣∣2 ≈ 4|ε0|
√

κf(κf + κs). (53)

κs is now also impacting the threshold, but still in a way that
is not equally important with κf. This is because the powers
of the fundamental and second harmonic are balanced only
for ω̃

(1)
−μ̂f and ω̃

(1)
−μ̂s, but not for ω̃

(1)
μ̂f and ω̃

(1)
μ̂s sidebands. In

the latter pair, the sum-frequency condition is mismatched,
and hence the second-harmonic sideband is still very weak
and can be disregarded, i.e., Δμ̂ ≈ �μ̂ in Eq. (51a), while the
approximations that work in the minus bracket are Δ−μ̂ ≈ 0
and �−μ̂ ≈ |�|.

The first cross-branch condition, Eq. (51c), has a practical
threshold at μ = μ̂ as in Eq. (53), and for μ > μ̂ as in Eq. (52)
[see the blue tongues in Fig. 9(a)]. The second intrabranch,
Eq. (51b), and second cross-branch, Eq. (51d), conditions do
not create practical thresholds for ε0 > 0, and play their roles
for ε0 < 0 [see Figs. 8(b) and 9(b)].

The analytical estimates for the detuning values where the
μ-specific instabilities first happen, i.e., locations of the tips
of the instability tongues, and the respective laser powers are
derived in Appendix F.

X. ENVELOPE AND COUPLED-MODE EQUATIONS FOR
MODE-LOCKED COMBS

We anticipate that the frequency comb solutions bifurcate
from the μ-specific boundaries of the instability tongues in
Fig. 9 (see Ref. [45]). Since we are going to continue to

number the sidebands within the combs with μ, we use below
the letter ν = 1, 2, 3, . . . to mark the comb states with the
sideband spacing given by ν. We seek the mode-locked combs
as the solutions of the equation that couple all the modes
through all the allowed nonlinear coupling terms [see Eq. (A1)
in Appendix A].

The mode-locked combs are assumed to have the period
2π/ν, i.e., ψζ (t, ϑ ) = ψζ (t, ϑ + 2π/ν), and, therefore, we
use the substitution

ψζ (t, ϑ ) = �νζ (θν ), θν = ν(ϑ − D1νt ). (54)

Here θν is a new auxiliary coordinate, such that the period
2π in θν corresponds to the period 2π/ν in θ , �νζ (θν ) =
�νζ (θν + 2π ). D1ν is an unknown comb repetition rate gen-
erally different from either D1f or D1s. If the reference frame
is chosen to rotate with D1f, then D1ν �= D1f would imply the
relative rotation with the D1ν − D1f rate, leading to the tilted
spatiotemporal profiles like in the bottom row in Fig. 10.

The selection mechanisms of the velocity of the dissipative
χ (2) solitons, equivalent to the selection of D1ν , have been dis-
cussed before the microresonator combs came into existence
[27]. This selection is a generic aspect also encountered in,
e.g., the equations with the higher-order dispersion terms [47],
and in the cases showing the spontaneous symmetry-breaking
effects [45].

Substituting Eq. (54) into Eq. (A1) we find

δ�νf − iν(D1f − D1ν )
d�νf

dθν

− ν2D2f

2

d2�νf

dθ2
ν

− γf�νs�
∗
νf − iκf

2
(�νf − H) = 0,

(2δ − ε0)�νs − iν(D1s − D1ν )
d�νs

dθν

− ν2D2s

2

d2�νs

dθ2
ν

− γs�
2
νf − iκs

2
�νs = 0. (55)

As one can see, the use of θν as an argument has allowed us
to conveniently sort the mode-locked combs by the spacing,
ν, their sidebands make in the momentum space, since ν

enters Eq. (55) explicitly. In fact, ν plays a role of the Bloch
momentum which is now quantized, unlike the one that varies
continuously in the theory of the unbound crystal lattices [48]
and resonators [49].

For the frequency combs with the spatial period 2π/ν, the
modes making nonzero contributions to the �νζ have numbers
μ = νm, where m = 0,±1,±2,±3, . . . is another integer:

�νζ =
∞∑

m=−∞
�mνζ eimθν =

∞∑
m=−∞

�mνζ eimν(ϑ−D1ν t ). (56)

Here �mνζ are constants satisfying an algebraic system of
equations [see Eq. (57)]. The repetition rate with which the
2π/ν state is reproducing itself while rotating in the resonator
is νD1ν/2π .

The coupling between the different mν sidebands is pro-
vided by the sequence, i.e., cascade, of the sum-frequency
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FIG. 10. Examples of the Turing-pattern frequency combs for ε0/2π = 5 GHz. First and second columns show the combs emerging
from the intrabranch PDC instability tongues [gray areas in (a) and (b)], and the third column shows the cross-branch PDC tongue [blue
area in (c)] and the associated comb. Magenta lines in (a)–(c) show the cw states, |�| = |ψ0f|

√
8γfγs vs δ. The respective laser powers

(a) W = 0.664 mW, (b) 103 mW, and (c) 10 mW. |�|/2π = 0.2 GHz corresponds to the intraresonator power |ψ0f|2 � 55 mW. (d–f) Ratio
of the second harmonic and fundamental powers in the indicated sidebands. The μ = −5 case corresponds to the sum-frequency matching
leading to the best conversion efficiency. The thick full lines are stable solutions, and the thin lines (full and dashed) are unstable. (g–i)
Self-explanatory spectra of the Turing patterns (red, fundamental; green, second harmonic). (j–l) Space-time profiles of the corresponding
Turing patterns. The tilt relative to the vertical axis characterizes deviation of the pattern repetition rate from D1f.

and difference-frequency events, which become evident on
substituting Eq. (56) into Eq. (55):

Δmνf�mνf − iκf

2
(�mνf − δ̂m,0H)

−γf

∑
m1m2

δ̂m,m1−m2�m1νs�
∗
m2νf = 0, (57a)

Δmνs�mνs − iκs

2
�mνs

−γs

∑
m1m2

δ̂m,m1+m2�m1νf�m2νf = 0. (57b)

The sideband detunings, Δmνζ , are defined in Eq. (7),
where μ = mν. δ̂m,m1±m2 = 1 for m = m1 ± m2 and is zero
otherwise. Hence, every term inside the nonlinear sums in
Eqs. (57a) and (57b) corresponds to the momentum conser-
vation laws,

h̄(M + mν) = h̄(2M + m1ν) − h̄(M + m2ν), (58a)

h̄(2M + mν) = h̄(M + m1ν) + h̄(M + m2ν), (58b)

describing the sum- and difference-frequency cascades. The
left- and right-hand sides of Eq. (58) correspond to the linear
and nonlinear terms in Eq. (57), respectively.

XI. TURING-PATTERN COMBS

The comb equations, Eqs. (55) and (57), have been solved
by us with a Newton method allowing us to self-consistently
find the sideband amplitudes, �mνζ , and the comb repetition
rate, D1ν . Figure 10 shows how the comb branches with
different periods, 2π/ν, emanate from the boundaries of the
respective instability tongues.

The sparse combs, ν � 1, described by a combination of
few noticeable μ = νm sidebands have been observed and
modeled in connection to several recent χ (2)-resonator ex-
periments (see, e.g., Refs. [11–13,24]). In the context of the
Kerr microresonators, the combs with the sparse spectra, as in
Fig. 10, are often called the Turing-pattern frequency combs
[45,50,51]. The Kerr microresonator instability tongues and
their connection to the Turing patterns have been reported in
Refs. [45,46]. The prior to the ring microresonator era results
on the spatial pattern formation in the planar χ (2) resonators
can be found in, e.g., Refs. [52–58].
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FIG. 11. (a) PDC instability tongues for μ = 12–18, ε0/2π = 5 GHz as in Fig. 9(a). The magenta line shows the cw state for the laser
power W = 10 mW. The left axis is the Rabi frequency, |�|, and the right axis is the intraresonator cw power, |ψ0f|2. (b) The spectrum
computed from the scan of the cw frequency along the magenta line in (a). (c) The integrated intraresonator powers corresponding to (b). The
red line (left axis) is the fundamental, and the green line (right axis) is the second harmonic. Panels in the two bottom lines show the comb
spectra computed at the detunings marked with the respective letters in (a), and with the dashed white lines in (b). In the two bottom rows, the
shorter bars are plotted in green and the longer ones are plotted in red.

A typical bifurcation scenario that we found is that the
two Turing-comb branches split from the two edges of the
tongues and extend well beyond the tongues. The branch
crossing into the tongue area can be stable (full lines in
the second row in Fig. 10), while the one deviating out-
side the tongue (dashed lines) is always unstable. These two
branches coalesce for some detuning value [see Fig. 10(e)].
The Turing combs emerging from the intrabranch PDC con-
ditions for ν = 4, 5 are shown in the first two columns in
Fig. 10, and the ν = 16 cross-branch case is shown in the third
column.

The ν = 5 tongue in Fig. 10(b) corresponds to the ωp +
ω−5f − ω−5s = 0 sum-frequency matching [see Eq. (24)], and
therefore the power of the negative fifth sideband in the second
harmonic is either comparable to or even exceeds the one in
the fundamental [see Figs. 10(e) and 10(h), and compare the
y-axis scales in Figs. 10(d)–10(f)]. The bottom line in Fig. 10
shows how the Turing patterns loop around the resonator in
the reference frame rotating with D1f, so that the most effi-
cient generation of the second harmonic leads to the largest
differences between the linear and nonlinear repetition rates,
D1f − D1ν [see the pattern angles in Figs. 10(j)–10(l)].

Figure 11 shows a more global outlook on the frequency
conversion processes happening across the PDC tongues
when the laser frequency is scanned and its power is fixed,
and ε0 > 0. The stable Turing combs are typically generated
for the relatively small intraresonator powers achieved for
large positive detunings. When detunings are reduced and the
intraresonator powers are increasing the instabilities bring the
breather states producing the denser combs as in Figs. 11(f),
11(g) and 11(i), and then more developed chaotic states as in
Figs. 11(d) and 11(e).

The difference between the breathers and chaos is fur-
ther elucidated in Fig. 12. The first and second columns
in Fig. 12 compare the spatiotemporal and spatial profiles
of the two. The coherence of the breather and the incoher-
ence of the turbulent state are confirmed by comparing the
rf spectra of the net powers (third column in Fig. 12), and
the per-mode rf spectra (fourth column). The latter shows
|FFT{ψμf(t )}|2 plotted vs the mode number, μ, and the rf
frequency. The top, i.e., the breather, panel has five visi-
ble tilted lines that are vertically separated by the breather
period. These are the five subcombs having different offset
frequencies.
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FIG. 12. The top row shows the breather state corresponding to the point “f” in Fig. 11(a). The bottom row is the turbulent state at the point
“e” in Fig. 11(a). The first and second columns compare the spatiotemporal dynamics (fundamental) and snapshots of the spatial profiles. The
third and fourth columns show the rf spectra of net powers (third), |FFT

∑
μ |ψμf(t )|2|, and the per-mode rf spectra (fourth), |FFT{ψμf(t )}|2.

One can see that the breather state consists from the five coherent subcombs with the different offsets and the same repetition rates, while the
turbulent state shows no mode-locking signs.

In the example shown in the top line of Fig. 12, the
maximal parametric gain comes to the sidebands with μ =
±15 and to the associated subcombs (see the top panel in
the last column), so that the breather could be interpreted
as a quasisoliton created via the nondegenerate PDC and
dominated by the three groups of modes centered around μ =
−15, 0, 15. The power and per-mode rf spectra in the second
line of Fig. 12 are unambiguous about the absence of the
intermode coherence in the turbulent state. For studies of the
transitions between the breather and chaotic states associated
with the rogue-wave turbulence in the Kerr resonators, see,
e.g., Refs. [59–61].

XII. BRIGHT SOLITON PREREQUISITES

The strong-coupling regime and the dressed state that
naturally emerges from it imply that the parametric gain is
relatively small, and therefore, to the leading order, the soliton
existence problem could be approached through the prism
of the nonlinearity vs dispersion balance. In this section, we
work through the dispersive and nonlinear properties of the
dressed states, and the stability of the cw state that under-
pins the existence of the bright soliton frequency combs. For
normal dispersion, D2ζ < 0, as we have here, these properties
suggest the soliton existence for ε0 > 0, which is the case we
describe in detail below. Solitons themselves are introduced in
Sec. XIII.

A. Dispersion of dressed states

The microresonator dressed states are parametrized by
momentum μ, and represent families of the quasiparticles,
photon-photon polaritons, with the effective mass inversely
proportional to the polariton dispersion [23]. Our focus here is
on the frequency conversion, and therefore the dispersion ter-
minology is more natural. Dispersions of the first and second
branches in the dressed spectrum are calculated as

∂2
μω̃

(1)
±μζ = ∂2

μβ
(1)
±μ = 1

2 (D2f + D2s) + 1
2�′′

±μ, (59a)

∂2
μω̃

(2)
±μζ = ∂2

μβ
(2)
±μ = 1

2 (D2f + D2s) − 1
2�′′

±μ, (59b)

where �′′
μ = �μ+1 + �μ−1 − 2�μ. �′′

μ depends on |�| (i.e.,
on the sum-frequency nonlinearity), D2ζ , and on the repetition
rate difference, D1f − D1s, which means that the dressed state
dispersion is determined by the interplay of all three factors.
This is unlike the bare-state dispersion, trivially given by
∂2
μω±μζ = D2ζ .

For ε0 > 0, none of the ω̃
(1)
μζ frequencies is sum-frequency

matched, while ω̃
(1)
−μζ are quasimatched for μ around μ∗ (see

Sec. V and Fig. 5). Therefore, the dressed states corresponding
to ω̃

(1)
μζ are the quasibare states, |b(1)

μ 〉 ≈ |1〉, with the disper-
sion ≈ D2f [see the red line in Fig. 13(a)]. The dressed states
corresponding to ω̃

(1)
−μζ are |b(1)

−μ〉 ≈ |3〉 for μ < μ∗; then, in
the proximity of μ∗, they hybridize to the maximally dressed
state, |3〉eiφ − |4〉; and then they transform to the quasibare |4〉
states.

It is instructive to evaluate the dressed dispersion for μ

around μ∗, where Δ−μ ≈ 0, �−μ ≈ |�| [see Eqs. (16) and
(17)]:

�′′
−μ ≈ Δ3

−μΔ′′
−μ + |�|2(Δ′

−μΔ−μ)′

�3−μ

≈ (Δ′
−μ)2

|�| ≈ (D1f − D1s)2

|�| ∼ 1 to 10 GHz. (60)

The above strongly dominates over D2ζ , so that the dispersion
of ω̃

(1)
−μζ becomes largely anomalous. Thus, dressing the ω̃

(1)
−μζ

branch creates two zero dispersion points around μ∗ and puts
a group of modes into the range of anomalous dispersion [see
Fig. 13(a)].

The dressing induced dispersion changes are very large
[see Eq. (60)], so that for the nonlinearity to compensate the
dispersive pulse spreading it would be preferential to engage
the modes with the bare resonator dispersion around μ = 0,
and away from μ∗. Thus keeping μ∗ � 1 and increasing it by
tuning the index to make |ε0| larger [see Eq. (30)] is expected
to increase the bandwidth of modes suitable for the bright
soliton mode-locking regime.

In other words, the repetition rate difference can be large,
but the sum-frequency matching to the appropriately large
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FIG. 13. Dispersion of the dressed states [see Eq. (59)], normal-
ized to 2π : (a) ω̃

(1)
±μζ and (b) ω̃

(2)
±μζ . The red lines correspond to

the positive sidebands, ω̃
(1),(2)
μζ , and the blue ones correspond to the

negative sidebands, ω̃
(1),(2)
−μζ . The values of −100 and −200 kHz are

the values of D2f and D2s in the bare resonator. The gray shading
and stars show the dressed states with the anomalous dispersion
induced by the dressing. In (a), the maximal anomalous dispersion of
≈1 GHz (not shown) is achieved at μ = 25 for the |b(3)

25 〉 ≈ |3〉eiφ −
|4〉 state. Parameters are |�|/2π = 116 MHz, ε0/2π = 25 GHz,
δ = −3.8κf.

sideband number puts the undesirably large dispersion this
difference creates away from the spectral core of the soliton.

B. Optical Pockels and cascaded-Kerr nonlinearities

Since we are expecting to work with the normal dispersion,
the bright solitons would require the negative, i.e., defocusing,
nonlinearity to compensate for it. Derivatives of ω̃

( j)
±μζ in |�|

describe the rate of the nonlinear shifts of the frequencies in
the dressed spectrum with the intraresonator power:

∂ω̃
(1)
±μζ

∂|�| = 1

2

∂�±μ

∂|�| = |�|
2�±μ

> 0,

∂ω̃
(2)
±μζ

∂|�| = − |�|
2�±μ

< 0. (61)

The signs of the above expressions determine the signs of the
effective nonlinearities experienced by the sidebands. Since
the resonator frequencies are inversely proportional to the
refractive index [see Eq. (9)], we conclude that the frequencies
ω̃

(2)
±μζ in the dressed spectrum experience the net positive (self-

focusing) nonlinearity, and ω̃
(1)
±μζ experience the net negative

(defocusing) nonlinearity.
Though the branch nonlinearities do not change signs,

their dependence on |�| varies profoundly. Indeed, �±μ ad-

mits two qualitatively different Taylor series expansions (see
Table II):

�±μ = |�| + Δ2
±μ

2|�| + . . . ,
Δ2

±μ

|�|2 � 1, (62a)

�±μ = |Δ±μ| + |�|2
2|Δ±μ| + . . . ,

Δ2
±μ

|�|2 � 1. (62b)

Thus, if μ is near to μ∗, then the nonlinear shift of ω̃
( j)
±μζ

frequency is proportional to the amplitude of the cw state,
|�| ∼ |ψf|, which corresponds to the optical Pockels effect
[see Eq. (62a)], while, for μ away from μ∗, the nonlinear
shifts are proportional to the power, |�|2 ∼ |ψf|2, and hence
are Kerr-like, i.e., correspond to the cascaded-Kerr effect [see
Eq. (62b)].

C. Cw-state stability and instability

From the above, one should conclude that, for ε0 > 0, the
first branch of the dressed states should be considered as
the one able to form the bright solitons, since it provides a

FIG. 14. (a) Parametric instability tongues in the (δ, |�|) plane,
for ε0/2π = 25 GHz [see ε0/2π = 5 GHz in Fig. 9(a)]. The col-
orbar shows the number of the simultaneously unstable sidebands,
N . The black dotted line embraces the μ = 0 instability range, i.e.,
the middle branch of the bistability loop. N is clamped by μ∗ =
|ε0|/|D1f − D1s| = 25, N � μ∗. (b) N vs δ for three values of W
(laser power) computed along the upper branch of the cw state.
The magenta line (W = 333 μW) terminates at the tip of the cw
resonance, i.e., at the end of the bistability range. The other two
lines are for the higher powers and terminate before the tip, thereby
marking stabilization of the cw state.
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FIG. 15. Families of the bright solitons computed for the laser power W = 333 μW and plotted vs δ. The first line data show the
fundamental field, and the second line is for the second harmonic. (a, b) Soliton branches (red and green lines) and the cw state (magenta
lines) vs δ. The solitons are shown for a range of frequency mismatch parameters, ε0/2π = 21, 23, 25, 27, and 29 GHz. The full lines
correspond to the stable solutions, and the dashed lines correspond to the unstable ones. The ε0/2π = 25 GHz case in (a) and (b) is the one
that shows how the unstable soliton splits from the cw state and then connects to the stable soliton. (c, e) How the spatial profile of the soliton
changes with δ for ε0/2π = 25 GHz. (d, f) Like (c) and (e) but showing the envelopes of the discrete soliton spectra (see Fig. 17).

combination of the defocusing nonlinearity and the relatively
small normal dispersion, except several μ’s around μ∗, where
dispersion is anomalous.

The same condition, as the one just stated, leads to the in-
trabranch instability of the cw state [see and compare Fig. 9(a)
for ε0/2π = 5 GHz and Fig. 14(a) for ε0/2π = 25 GHz].
Recalling the results of Sec. VII [see Eq. (47)], the num-
ber, N , of the sidebands that can be simultaneously unstable
under these conditions is clamped by μ∗. Therefore, and
also in line with the previous subsection, ε0/2π = 25 GHz
brings more of the unstable sidebands. Figure 14 shows
that there exists the optimal laser power, W , achieving the
maximal N .

N going up and then down with δ tuned more negative
and powers increasing [see Fig. 14(b)] is due to the nonlinear
shifts becoming saturated by the higher-order terms in the ex-
pansions of the root function in �±μ. The weakened nonlinear
shifts gradually bring the parametric gain below the threshold
first for some and finally for all the sidebands. The N vs δ

dependencies in Fig. 14(b) would be very different in the Kerr
resonators, where the number of the unstable sidebands tends
to infinity with the simultaneous increases of δ and W [46].

It is now important to note that, for δ < 0, the above
discussed instabilities happen to the upper state of the cw
bistability loop, while the low branch is either exclusively

or largely stable [see Figs. 14(a) and 15(a)]. The stable
low-amplitude cw state makes the background for the bright
solitons reported in the next section.

XIII. BRIGHT SOLITON FREQUENCY COMBS

The results of the previous section allow us to conclude
that, for the normal dispersion of the bare resonator modes,
D2ζ < 0, the bright solitons are expected provided one ar-
ranges the index (frequency) matching parameter between the
M and 2M resonator modes to be positive,

ε0 ∼ (n2M − nM ) > 0, (63)

and sufficiently large, so that the sum-frequency matching or
near matching,

ω0f + ω−μf − ω−μs = 0, (64)

happens for

μ = μ∗ � 1. (65)

The detuning should than be tuned to δ < 0, i.e., “blue” de-
tuning. μ∗ is well approximated by the ratio between |ε0| and
the repetition rate difference, |D1f − D1s| [see Eq. (30)].

We now do as prescribed and select the laser power, W , and
detuning, δ, corresponding to a large number of the simulta-
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FIG. 16. Instability of the cw state and spontaneous birth of the
bright soliton. Laser power W = 333 μW, ε0/2π = 25 GHz, and
δ = −3.8κf. (a) Fundamental field. (b) Second harmonic.

neously unstable sidebands (see Fig. 14). Initializing Eq. (A1)
with the cw state we immediately observe its instability and
the subsequent formation of the stable two-color soliton (see
Fig. 16).

For D2ζ > 0 (anomalous dispersion), the bright solitons
would require ε0 < 0, adjusting ω0f + ωμf − ωμs = 0 for μ =
μ∗ � 1, and, then, tuning to δ > 0, i.e., “red” detuning.
The mixed dispersion case, D2fD2s < 0, requires a separate
analysis.

To trace the soliton families in the parameter space we
solve the comb equations in Sec. X. Since the teeth of the
single soliton combs follow with step 1, i.e., their spatial
period is 2π , we set ν = 1 in Eqs. (55) and (57). Families
of the bright solitons traced in δ for the laser power W =
333 μW and for a range of frequency mismatch parameters,
ε0/2π ∈ [21, 29] GHz, are shown in Fig. 15. The unstable
soliton branch (dashed red and green lines) splits from the
middle branch of the cw state (dashed magenta lines) at the
point of its μ = 1 instability. The stable soliton branches
extend outside the cw bistability towards more negative δ’s.

The soliton profiles along the resonator circumference
shown in Figs. 15 and 17 are characterized by the tails os-
cillating with the period 2π/μ∗. The corresponding spectra
have pronounced peaks at μ = −μ∗, where the powers of
the fundamental and second-harmonic sidebands are balanced
due to the sum-frequency matching. The background of the
soliton in the fundamental field is set primarily by the μ = 0
sideband [see spectra in Fig. 15(d)], where μ = 0 is stronger
than μ = −μ∗. Therefore, the fundamental background drops
with δ becoming more negative [see the correlated changes of
the full cw line in Fig. 15(a) and of the soliton background

in Fig. 15(c)]. The background of the soliton in the second
harmonic is, however, set primarily by the μ = −μ∗ sideband
[see spectra in Fig. 15(f)], where μ = −μ∗ is the strongest
and its power correlates with the soliton peak power. This
explains why the second-harmonic soliton background goes
up with δ becoming more negative [see the dropping full cw
line in Fig. 15(b) and the increasing soliton background in
Fig. 15(e)].

The oscillatory soliton tail should be interpreted as due to
the inability of the nonlinear effects to compensate for the
sharp rise and the sign change of the dressed state disper-
sion around μ∗ (see Fig. 13). Therefore, the nature of the
tails here is similar to the soliton Cherenkov radiation in the
resonators [40,62,63], fibers [64], and bulk crystals [65]. We
note that, in the present case, the dispersion can be signifi-
cantly altered by the pump power dependent state dressing,
which provides a more flexible tool to control the radiation
frequency.

Figure 17 shows how the soliton families change with the
tuning of ε0. Here the structure of the families appears to be
more complex. The period of the oscillations of the soliton
tail, 2π/μ∗, can change only discretely while |ε0| is tuned
continuously, so that the solution is forced to accommodate
itself, as much as it can, to the rigid period of its tails, which
leads to the discrete set of the soliton families. Each family is
centered around the value of |ε0| = μ∗|D1f − D1s|; we recall
that |D1f − D1s|/2π = 1 GHz. The tail oscillations of the Kerr
solitons in microresonators with the large higher-order disper-
sions also lead to somewhat similar “quantized” behavior of
the soliton parameters [47].

XIV. DISCUSSION

There are numerous open problems left for a researcher
tempted to understand the multimode dynamics of the high-Q
χ (2) microresonators by looking into properties of the in-
dividual modes, in line with the present-day experimental
capabilities. The extension of our results to the case of the
exact index matching ε0 = 0 while keeping D1f − D1s large
requires separate consideration. Extending the bandwidth of
the soliton combs by taking the shorter resonators with the
higher repetition rates and lower quality factors and, perhaps,
larger μ∗ needs to be investigated.

The power induced dispersion engineering of the dressed
states offers a method to control the comb widths and shapes.
Further work on the solitons and Rabi splitting is of course
important and can be performed with the currently available
resonators and index matching control tools. We note the
relatively high conversion efficiency from the pump to the
soliton-comb spectra seen in Fig. 17, which could be an im-
portant practical aspect requiring further exploration.

We should recall here the prior theoretical work on
the spatial [55,57] and temporal [30,38] resonator solitons
achieved via the second-harmonic generation arrangements
requiring the exactly or near matched phase, ε0 = 0, and
group, D1f = D1s, velocities. While a combination of these
assumptions appears as the desirable idealization in the con-
texts of the currently available ring microresonators, future
studies along these lines are warranted. The relevance of
the strong-coupling and dressed states for the microres-
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FIG. 17. Families of the bright solitons computed for the laser power W = 333 μW and plotted vs ε0 for δ = −3.9κf. The first and second
columns show the fundamental and second-harmonic data, respectively. (a, b) Multiple soliton branches centered around ε0/2π ≈ μ∗ [see
Eq. (30)]. (c–f) Spectra at the indicated values of ε0. (g, i) Respective spatial soliton profiles. The shaded areas in (c)–(f) highlight the interval
between the two zero dispersion points (see Fig. 13).

onator half-harmonic generation arrangement remains to be
analyzed, including their links to the results on the half-
harmonic bright-bright, dark, and dark-bright soliton pulses
[15,27,31,58,66–69].

XV. SUMMARY

(1) The theoretical framework, i.e., dressed-resonator
method, to study frequency conversion and solitons is for-
mulated by including the sum-frequency nonlinearity into the
definition of the resonator spectrum.

(2) The Rabi splitting of the dressed frequencies leads to
the four distinct PDC conditions [see Eq. (43)], which are
used to explain the existence and generation of the sparse
nonsoliton, i.e., Turing-pattern-like, frequency combs.

(3) The effective nonlinearity and dispersion of the dressed
states have been used to demonstrate that the microresonator
with the normal dispersion and naturally large difference of
the repetition rates at the fundamental and second-harmonic
frequencies, D1f − D1s, supports a family of the bright soli-

ton frequency combs (see Figs. 15 and 17). Conditions for
this are provided by tuning the index and frequency match-
ing parameter, ε0 = 2ω0f − ω0s, to be positive and large, so
that it exceeds the repetition rate difference by a significant
factor, μ∗ = |ε0|/|D1f − D1s| � 1. μ∗ and −μ∗ approximate
the mode number associated with the phase-matched sum-
frequency process and set limits on the soliton bandwidth.
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APPENDIX A: ENVELOPE EQUATIONS

The intraresonator electric fields of the fundamental and
second harmonic are expressed as per Eq. (2). Envelopes of

013520-17



PUZYREV, PANKRATOV, VILLOIS, AND SKRYABIN PHYSICAL REVIEW A 104, 013520 (2021)

the fundamental, ψf, and second, ψs, harmonic satisfy the
following system of partial-differential equations:

i∂tψf = δψf − iD1f∂ϑψf − 1
2 D2f∂

2
ϑψf

− γfψsψ
∗
f − Nf − i 1

2κf(ψf − H), (A1a)

i∂tψs = (2δ − ε0)ψs − iD1s∂ϑψs − 1
2 D2s∂

2
ϑψs

− γsψ
2
f − Ns − i 1

2κsψs. (A1b)

Conditions ψζ (t, ϑ ) = ψζ (t, ϑ + 2π ) make this system
equivalent to a set of coupled-mode equations for ψμζ (t ). The
first-principle derivation of Eq. (A1) is given in Ref. [29].

All parameters are explained in Sec. III of the main text,
apart from H2, which characterizes the pump power [29]. If
F = D1f/κf = 20 000 is the finesse, then H2 is expressed via
the incoming laser power W as

H2 = η

π
FW . (A2)

η < 1 is the coupling efficiency. Nζ are the intrinsic Kerr, i.e.,
χ (3), nonlinearity terms:

Nf,s = γ3f,3s(|ψf,s|2 + 2|ψs,f|2)ψf,s. (A3)

Nonlinear coefficients γζ /2π and γ3ζ /2π have units of
Hz/

√
[b]W and Hz/W, respectively [29]. Units and numerical

values of other parameters can be found in Table I.

APPENDIX B: CW STATE: χ(2) VS χ(3)

The cw state, i.e., the μ = 0 mode in the fundamental
and its second harmonic, is a solution of Eqs. (A1) with
ψζ = ψ0ζ , ∂ϑψ0ζ = ∂tψ0ζ = 0. Let us now evaluate the rel-
ative impact of the χ (2) and χ (3) effects on the cw state. If ε0

dominates over the linewidth and detuning parameters, then
ψ0s ≈ −γsψ

2
0f/ε0, and the net nonlinear frequency shift of the

fundamental resonance is[
−γsγf

ε0
+ γ3f

]
|ψ0f|2 = γ3f

[
−εcr

ε0
+ 1
]
|ψ0f|2. (B1)

Hence, only for |ε0| � |εcr|, εcr = γsγf/γ3f, the second har-
monic becomes weak enough for the χ (3) induced shift to
catch up with the χ (2) one. For the parameters in Table I and
γ3ζ /2π � 1 MHz/W [29], εcr/2π � 100 GHz, i.e., in order
for the χ (3) effects to make the impact on the cw solutions
as χ (2), the 2ωp photon should miss the resonator frequency
providing the exact frequency matching by more than five free
spectral ranges. Thus, in the range of ε0/2π ∈ [−30, 30] GHz
explored in this project and for the combs with the relatively
low powers, the χ (3) terms can be neglected. However, most
of the numerical data in this paper have been calculated with
and without Nζ . The differences that we have observed are
not worth mentioning in the context of our paper. For all the
above reasons, we set Nζ = 0 in this paper. Some results on
the interplay of the χ (2) and χ (3) effects in the half-harmonic
generation setup can be found in, e.g., Refs. [15,31].

APPENDIX C: CW STATE: χ(2) ONLY

The cw state is sought in the form

ψ0f = �√
2κfκs

H∗, ψ0s = 8γ2sψ
2
0f

�s
= �2

γ2f�s
, (C1)

where � is the Rabi frequency. �s is defined in Eq. (19), and

H2
∗ = κfκs

4γ2fγ2s
≈ 30 μW (C2)

is the characteristic intraresonator power. Thus, the explicit
relation between the Rabi frequency and the power in the
fundamental field is

|ψ0f|2 = |�|2
8γ2fγ2s

. (C3)

Using Eqs. (A1), one can show that

� =
√

κfκs

2

√
W
W∗

κf

�f

[
1 − |�|2

�f�s

]−1

. (C4)

Here, �f,s are defined after Eq. (49), and

W∗ = πH2
∗

ηF ≈ 10 nW. (C5)

Taking the modulus squared of Eq. (C4) we find the real cubic
equation for |�|2:

2|�f|2|�|2
κ3

f κs
×
[

1 − |�|2Re

{
2

�f�s

}
+ |�|4

|�f|2|�s|2
]

= W
W∗

= H2

H2∗
. (C6)

A useful insight into the cw properties is provided by
taking the limit when |ε0| is large relative to |δ|, and |δ| is
large relative to κζ , so that �s ≈ −8ε0 and �f ≈ δ. Then,
bistability of the cw state requires δε0 < 0 [the square bracket
in Eq. (C4) can be zero]. In this regime,

max
δ

|�|2 � −δε0, (C7)

implying that the resonance shifts proportionally to the pump
power, i.e., in the same way as it happens in Kerr effect.
This means that the cw state behaves as it would in the Kerr
resonator. For ε0 = 0 or smaller, �f ≈ δ, �s ≈ 16δ. Then,
the cw becomes simultaneously bistable for δ > 0 and δ < 0
[30,38], and maxδ |�|2 � δ2, i.e.,

max
δ

|�| � |δ|. (C8)

This is the Pockels regime of the cw state, when the nonlin-
ear change of the refractive index is proportional to the first
power of the field amplitude, which we do not consider in
this paper. Conditions for the μ �= 0 sidebands to be in either
cascaded-Kerr or Pockels regimes are different and discussed
in Sec. XII B.

APPENDIX D: LINEARIZATION AROUND THE CW STATE

In order to develop a theory of the growth of the multiside-
band signal, i.e., frequency comb, on top of the cw solution,
ψ0ζ , we extend Eqs. (A1) by a pair of the complex-conjugated
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equations [70], and seek a solution in the form

⎡⎢⎣ψf

ψs

ψ∗
f

ψ∗
s

⎤⎥⎦ =

⎡⎢⎣ψ0f

ψ0s

ψ∗
0f

ψ∗
0s

⎤⎥⎦+
∑
μ�0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

ψ̃μf

ψ̃μs

ψ̃−μf

ψ̃−μs

⎤⎥⎥⎥⎦eiμθ

+

⎡⎢⎣0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤⎥⎦
⎡⎢⎢⎢⎣

ψ̃∗
μf

ψ̃∗
μs

ψ̃∗
−μf

ψ̃∗
−μs

⎤⎥⎥⎥⎦e−iμθ

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (D1)

If ϑ is the angle measured along the resonator circumference,
then θ = ϑ − D1t is the coordinate in the rotating frame [see
Eq. (6)]. ψ̃±μζ (t ) are the sideband amplitudes. Summing up
the first and second lines gives the net signals in the fun-
damental and second harmonic, respectively, with the third
and fourth lines being their conjugations [see Eq. (11)]. Sub-
stituting Eq. (D1) into the extended Eq. (A1), we assume
smallness of the sideband amplitudes, linearize, and then de-
rive equations for the individual sidebands using the angular
momentum matching. For a given μ this leads to a coupled
system of the four ordinary differential equations for ψ̃μf,
ψ̃−μf, ψ̃μs, and ψ̃−μs [see Eq. (12)].

APPENDIX E: APPROXIMATE PDC CONDITIONS

To present the PDC condition in Eq. (45) in a more trans-
parent form, we first make explicit how δ, ε0, and μ∗ are
implicated there:

|�pdc|2 = 4

[(δ − δμf ) + (2δ − δμs − ε0)]2

× (δ − δμf )

× (2δ − δμs − ε0)

×
[

3δ − δμs − δμf − ε0

(
1 + μ

μ∗

)]
×
[

3δ − δμs − δμf − ε0

(
1 − μ

μ∗

)]
, (E1)

where we have defined

δμf = − 1
2 D2fμ

2, δμs = − 1
2 D2sμ

2. (E2)

Equation (21) implies that |ε0| dominates over all δ’s. The
first case to consider is when μ∗ falls between the two nearest
integers, i.e., the sum-frequency matching point μ = μ∗ has
been missed. Then Eq. (E1) simplifies to Eq. (46):

|�pdc|2 ≈ −4ε0(δ − δμf )

[
1 − μ2

μ2∗

]
. (E3)

If the sum-frequency process is either nearly or exactly
matched at

μ = μ̂ ≈ μ∗, where μ̂ ∈ Z, μ∗ ∈ R, (E4)

then ∣∣�(μ̂)
pdc

∣∣2 ≈ 8(δ − δμ̂f )(3δ − δμ̂s − δμ̂f ). (E5)

Transition from Eq. (E3) to Eq. (E5) implies transition from
the square-root (Kerr-like) dependence of |�pdc| vs δ to the
quasilinear (Pockels-like) one.

APPENDIX F: LASER POWER AT THE PDC THRESHOLDS

Detunings at the tips of the instability tongues are worked
out by imposing conditions∣∣�pdc

∣∣2 = ∣∣�(μ)
th

∣∣2, (F1a)∣∣�(μ̂)
pdc

∣∣2 = ∣∣�(μ̂)
th

∣∣2. (F1b)

Equations (F1a), (46), and (52) yield

δ
(μ)
th = δμf − κfsgn(ε0)

1 − μ2

μ2∗

, μ �= μ̂. (F2)

For μ = μ̂, the procedure is the same. In order not to
overcomplicate the answer, we impose a plausible condi-
tion (D2f + D2s) = 3D2f, leading to δμ̂s + δμ̂f = 3δμ̂f. Then,
Eqs. (F1b), (E5), and (53) yield

δ
(μ̂)
th = δμ̂f ±

√
|ε0|
6

√
κf(κf + κs). (F3)

Transparent analytic estimates for the laser powers W at
the tips of the instability tongues can be worked out after
observing that along the tails of the nonlinear resonances (see
Fig. 2) the square bracket in Eq. (C4) is ≈1:

W
W∗

≈ 2δ2|�|2
κ3

f κs
(F4)

[see Eq. (C5) for W∗].
The balance of terms in Eq. (F3) is such that the root term

dominates and δμ̂f can be neglected, which gives the following
estimate for the power:

W (μ̂)
th

W∗
≈ 4|ε0|2(κf + κs)

3κ2
f κs

, μ = μ̂. (F5)

In Eq. (F2), the two terms are balanced for the moderate
μ’s leading to a longer equation not included here, but for
μ2 � μ2

∗ the second term can be neglected, so that

W (μ)
th

W∗
≈ 2μ4 D2

2f|ε0|
κ2

f κs
, μ � μ∗. (F6)

Thus, the powers to generate the sum-frequency matched
sideband, μ = μ̂, scale with |ε0|2, and the ones for μ �= μ̂

scale with |ε0| [see Eqs. (F5) and (F6)].

[1] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M.
Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye,

X. Xue, A. M. Weiner, and R. Morandotti, Micro-combs: A
novel generation of optical sources, Phys. Rep. 729, 1 (2018).

013520-19

https://doi.org/10.1016/j.physrep.2017.08.004


PUZYREV, PANKRATOV, VILLOIS, AND SKRYABIN PHYSICAL REVIEW A 104, 013520 (2021)

[2] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. Gorodetsky,
Dissipative Kerr solitons in optical microresonators, Science
361, eaan8083 (2018).

[3] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki,
Nonlinear Optics And Crystalline Whispering Gallery Mode
Cavities, Phys. Rev. Lett. 92, 043903 (2004).

[4] J. U. Furst, D. V. Strekalov, D. Elser, M. Lassen, U. L.
Andersen, C. Marquardt, and G. Leuchs, Naturally Phase-
Matched Second Harmonic Generation In A Whispering-
Gallery-Mode Resonator, Phys. Rev. Lett. 104, 153901 (2010).

[5] J. U. Furst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen,
Ch. Marquardt, and G. Leuchs, Low-Threshold Optical Para-
metric Oscillations In A Whispering Gallery Mode Resonator,
Phys. Rev. Lett. 105, 263904 (2010).

[6] T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman,
D. Haertle, K. Buse, and I. Breunig, Highly Tunable Low-
Threshold Optical Parametric Oscillation In Radially Poled
Whispering Gallery Resonators, Phys. Rev. Lett. 106, 143903
(2011).

[7] I. Breunig, Three-wave mixing in whispering gallery res-
onators, Laser Photonics Rev. 10, 569 (2016).

[8] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M.
Loncar, Monolithic ultra-high-Q lithium niobate microring res-
onator, Optica 4, 1536 (2017).

[9] R. Wolf, Y. C. Jia, S. Bonaus, C. S. Werner, S. J. Herr,
I. Breunig, K. Buse, and H. Zappe, Quasi-phase-matched
nonlinear optical frequency conversion in on-chip whispering
galleries, Optica 5, 872 (2018).

[10] R. Ikuta, M. Asano, R. Tani, T. Yamamoto, and N. Imoto,
Frequency comb generation in a quadratic nonlinear waveguide
resonator, Opt. Exp. 26, 15551 (2018).

[11] M. Stefszky, V. Ulvila, Z. Abdallah, C. Silberhorn, and
M. Vainio, Towards optical-frequency-comb generation in
continuous-wave-pumped titanium-indiffused lithium-niobate
waveguide resonators, Phys. Rev. A 98, 053850 (2018).

[12] J. Szabados, D. N. Puzyrev, Y. Minet, L. Reis, K. Buse,
A. Villois, D. V. Skryabin, and I. Breunig, Frequency Comb
Generation Via Cascaded Second-Order Nonlinearities In Mi-
croresonators, Phys. Rev. Lett. 124, 203902 (2020).

[13] J. Szabados, B. Sturman, and I. Breunig, Frequency comb
generation threshold via second-harmonic excitation in
chi(2) optical microresonators, APL Photonics 5, 116102
(2020).

[14] I. Hendry, L. S. Trainor, Y. Xu, S. Coen, S. G. Murdoch,
H. G. Schwefel, and M. Erkintalo, Experimental observation
of internally pumped parametric oscillation and quadratic comb
generation in a chi((2)) whispering-gallery-mode microres-
onator, Opt. Lett. 45, 1204 (2020).

[15] A. W. Bruch, X. Liu, Z. Gong, J. B. Surya, M. Li, C. L. Zou,
and H. Tang, Pockels soliton microcomb, Nat. Photonics 15, 21
(2021).

[16] S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta,
and M. Lipson, On-chip frequency comb generation at visible
wavelengths via simultaneous second- and third-order optical
nonlinearities, Opt. Exp. 22, 26517 (2014).

[17] X. Xue, F. Leo, Y. Xuan, J. A. Jaramillo-Villegas, P.-H.
Wang, D. E. Leaird, M. Erkintalo, M. Qi, and A. M. Weiner,
Second-harmonic-assisted four-wave mixing in chip-based mi-
croresonator frequency comb generation, Light Sci. Appl. 6,
e16253 (2017).

[18] Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen,
H. Wang, K. Vahala, and Q. Lin, A self-starting bi-chromatic
LiNbO3 soliton microcomb, Optica 6, 1138 (2019).

[19] M. Yu, Y. Okawachi, R. Cheng, C. Wang, M. Zhang, A. L.
Gaeta, and M. Loncar, Raman lasing and soliton mode-locking
in lithium niobate microresonators, Light Sci. Appl. 9, 9 (2020).

[20] X. Lu, G. Moille, A. Rao, D. A. Westly, and K. Srinivasan,
Efficient photoinduced second-harmonic generation in silicon
nitride photonics, Nat. Photonics 15, 131 (2021).

[21] X. Guo, C. L. Zou, H. Jung, and H. X. Tang, On-Chip Strong
Coupling And Efficient Frequency Conversion Between Tele-
com And Visible Optical Modes, Phys. Rev. Lett. 117, 123902
(2016).

[22] J. Lu, M. Li, C. L. Zou, A. A. Sayem, and H. X. Tang, To-
ward 1% single-photon anharmonicity with periodically poled
lithium niobate microring resonators, Optica 7, 1654 (2020).

[23] D. V. Skryabin, V. V. Pankratov, A. Villois, and D. N. Puzyrev,
Photon-photon polaritons in χ (2) microresonators, Phys. Rev.
Research 3, L012017 (2021).

[24] I. Ricciardi, S. Mosca, M. Parisi, F. Leo, T. Hansson, M.
Erkintalo, P. Maddaloni, P. De Natale, S. Wabnitz, and M.
De Rosa, Optical frequency combs in quadratically nonlinear
resonators, Micromachines 11, 230 (2020).

[25] V. Ulvila and M. Vainio, Experimental study of the effect of
phase mismatch on a CW-pumped cascaded quadratic nonlinear
frequency comb, J. Phys. Photonics 2, 034006 (2020).

[26] M. H. Dunn and M. Ebrahim-Zadeh, Parametric generation
of tunable light from continuous-wave to femtosecond pulses,
Science 286, 1513 (1999).

[27] D. V. Skryabin and A. R. Champneys, Walking cavity solitons,
Phys. Rev. E 63, 066610 (2001).

[28] L. Torner, D. Mazilu, and D. Mihalache, Walking Solitons In
Quadratic Nonlinear Media, Phys. Rev. Lett. 77, 2455 (1996).

[29] D. V. Skryabin, Coupled-mode theory for microresonators with
quadratic nonlinearity, J. Opt. Soc. Am. B 37, 2604 (2020).

[30] A. Villois and D. V. Skryabin, Soliton and quasi-soliton
frequency combs due to second harmonic generation in mi-
croresonators, Opt. Express 27, 7098 (2019).

[31] A. Villois, N. Kondratiev, I. Breunig, D. N. Puzyrev, and D. V.
Skryabin, Frequency combs in a microring optical parametric
oscillator, Opt. Lett. 44, 4443 (2019).

[32] R. Boyd, Nonlinear Optics (Academic, New York, 2008).
[33] R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer,

Optical parametric oscillator frequency tuning and control,
J. Opt. Soc. Am. B 8, 646 (1991).

[34] S. Schiller and R. L. Byer, Quadruply resonant optical paramet-
ric oscillation in a monolithic total-internal-reflection resonator,
J. Opt. Soc. Am. B 10, 1696 (1993).

[35] D. V. Strekalov, A. S. Kowligy, V. G. Velev, G. S. Kanter, P.
Kumar, and Y. Huang, Phase matching for the optical frequency
conversion processes in whispering gallery mode resonators,
J. Mod. Opt. 63, 50 (2016).

[36] C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch,
A. Gatti, and L. Lugiato, Transverse effects and mode couplings
in OPOS, Appl. Phys. B 66, 685 (1998).

[37] A. V. Buryak and Y. S. Kivshar, Solitons due to 2nd-harmonic
generation, Phys. Lett. A 197, 407 (1995).

[38] T. Hansson, P. Parra-Rivas, M. Bernard, F. Leo, L. Gelens, and
S. Wabnitz, Quadratic soliton combs in doubly resonant second-
harmonic generation, Opt. Lett. 43, 6033 (2018).

013520-20

https://doi.org/10.1126/science.aan8083
https://doi.org/10.1103/PhysRevLett.92.043903
https://doi.org/10.1103/PhysRevLett.104.153901
https://doi.org/10.1103/PhysRevLett.105.263904
https://doi.org/10.1103/PhysRevLett.106.143903
https://doi.org/10.1002/lpor.201600038
https://doi.org/10.1364/OPTICA.4.001536
https://doi.org/10.1364/OPTICA.5.000872
https://doi.org/10.1364/OE.26.015551
https://doi.org/10.1103/PhysRevA.98.053850
https://doi.org/10.1103/PhysRevLett.124.203902
https://doi.org/10.1063/5.0021424
https://doi.org/10.1364/OL.385751
https://doi.org/10.1038/s41566-020-00704-8
https://doi.org/10.1364/OE.22.026517
https://doi.org/10.1038/lsa.2016.253
https://doi.org/10.1364/OPTICA.6.001138
https://doi.org/10.1038/s41377-020-0246-7
https://doi.org/10.1038/s41566-020-00708-4
https://doi.org/10.1103/PhysRevLett.117.123902
https://doi.org/10.1364/OPTICA.403931
https://doi.org/10.1103/PhysRevResearch.3.L012017
https://doi.org/10.3390/mi11020230
https://doi.org/10.1088/2515-7647/ab9150
https://doi.org/10.1126/science.286.5444.1513
https://doi.org/10.1103/PhysRevE.63.066610
https://doi.org/10.1103/PhysRevLett.77.2455
https://doi.org/10.1364/JOSAB.397015
https://doi.org/10.1364/OE.27.007098
https://doi.org/10.1364/OL.44.004443
https://doi.org/10.1364/JOSAB.8.000646
https://doi.org/10.1364/JOSAB.10.001696
https://doi.org/10.1080/09500340.2015.1063726
https://doi.org/10.1007/s003400050455
https://doi.org/10.1016/0375-9601(94)00989-3
https://doi.org/10.1364/OL.43.006033


BRIGHT-SOLITON FREQUENCY COMBS AND DRESSED STATES … PHYSICAL REVIEW A 104, 013520 (2021)

[39] P. D. Drummond, K. J. McNeil, and D. F. Walls, Non-
equilibrium transitions in sub/second harmonic generation, Opt.
Acta 27, 321 (1980).

[40] X. Guo, C. L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, and
H. X. Tang, Efficient Generation of a Near-visible Frequency
Comb via Cherenkov-like Radiation from a Kerr Microcomb,
Phys. Rev. Appl. 10, 014012 (2018).

[41] H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Geomet-
rical representation of sum frequency generation and adiabatic
frequency conversion, Phys. Rev. A 78, 063821 (2008).

[42] I. Carusotto and G. C. La Rocca, Two-photon Rabi splitting and
optical Stark effect in semiconductor microcavities, Phys. Rev.
B 60, 4907 (1999).

[43] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A
Universal Concept in Nonlinear Sciences (Cambridge Univer-
sity, Cambridge, England, 2001).

[44] The PDC conditions in Eq. (42) are the same as the four-wave-
mixing ones, h̄ωp + h̄ωp = h̄ω

( j1 )
μf + h̄ω

( j2 )
μf , in Ref. [23].

[45] D. V. Skryabin, Z. Fan, A. Villois, and D. N. Puzyrev, Threshold
of complexity and Arnold tongues in Kerr ring microresonators,
Phys. Rev. A 103, L011502 (2021).

[46] D. N. Puzyrev and D. V. Skryabin, Finesse and four-wave mix-
ing in microresonators, Phys. Rev. A 103, 013508 (2021).

[47] D. V. Skryabin and Y. V. Kartashov, Self-locking of the fre-
quency comb repetition rate in microring resonators with higher
order dispersions, Opt. Express 25, 27442 (2017).

[48] C. Kittel, Introduction to Solid State Physics (Wiley, New York,
1996).

[49] P. Parra-Rivas, D. Gomila, L. Gelens, and E. Knobloch, Bi-
furcation structure of periodic patterns in the Lugiato-Lefever
equation with anomalous dispersion, Phys. Rev. E 98, 042212
(2018).

[50] A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M.
Dudley, C. R. Menyuk, and Y. K. Chembo, Azimuthal turing
patterns, bright and dark cavity solitons in kerr combs generated
with whispering-gallery-mode resonators, IEEE Photonics J. 5,
6100409 (2013).

[51] Z. Qi, S. Wang, J. Jaramillo-Villegas, M. H. Qi, A. M. Weiner,
G. D’Aguanno, T. F. Carruthers, and C. R. Menyuk, Dissipative
cnoidal waves (Turing rolls) and the soliton limit in microring
resonators, Optica 6, 1220 (2019).

[52] G. L. Oppo, M. Brambilla, and L. A. Lugiato, Formation and
evolution of roll patterns in optical parametric oscillators, Phys.
Rev. A 49, 2028 (1994).

[53] G. J. de Valcarcel, K. Staliunas, E. Roldan, and V. J. Sanchez-
Morcillo, Transverse patterns in degenerate optical parametric
oscillation and degenerate four-wave mixing, Phys. Rev. A 54,
1609 (1996).

[54] S. Longhi, Traveling-wave states and secondary instabilities in
optical parametric oscillators, Phys. Rev. A 53, 4488 (1996).

[55] C. Etrich, U. Peschel, and F. Lederer, Solitary Waves In
Quadratically Nonlinear Resonators, Phys. Rev. Lett. 79, 2454
(1997).

[56] M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef,
Walk-off and pattern selection in optical parametric oscillators,
Opt. Lett. 23, 1167 (1998).

[57] P. Lodahl and M. Saffman, Pattern formation in singly resonant
second-harmonic generation with competing parametric oscil-
lation, Phys. Rev. A 60, 3251 (1999).

[58] D. V. Skryabin, Instabilities of cavity solitons in
optical parametric oscillators, Phys. Rev. E 60, R3508
(1999).

[59] A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo,
Optical rogue waves in whispering-gallery-mode resonators,
Phys. Rev. A 89, 013835 (2014).

[60] S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko,
M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, Mode-
Locked Ultrashort Pulse Generation From On-Chip Normal
Dispersion Microresonators, Phys. Rev. Lett. 114, 053901
(2015).

[61] S. Coulibaly, M. Taki, A. Bendahmane, G. Millot, B. Kibler,
and M. G. Clerc, Turbulence-Induced Rogue Waves In Kerr
Resonators, Phys. Rev. X 9, 011054 (2019).

[62] C. Milian and D. V. Skryabin, Soliton families and resonant
radiation in a micro-ring resonator near zero group-velocity
dispersion, Opt. Express 22, 3732 (2014).

[63] V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P.
Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Photonic
chip-based optical frequency comb using soliton Cherenkov
radiation, Science 351, 357 (2016).

[64] D. V. Skryabin and A. V. Gorbach, Colloquium: Looking at a
soliton through the prism of optical supercontinuum, Rev. Mod.
Phys. 82, 1287 (2010).

[65] M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, Op-
tical Cherenkov radiation by cascaded nonlinear interaction: An
efficient source of few-cycle energetic near- to mid-IR pulses,
Opt. Express 19, 22557 (2011).

[66] M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A.
Ingold, R. L. Byer, and M. M. Fejer, Temporal Simultons In
Optical Parametric Oscillators, Phys. Rev. Lett. 120, 053904
(2018).

[67] P. Parra-Rivas, L. Gelens, T. Hansson, S. Wabnitz, and F. Leo,
Frequency comb generation through the locking of domain
walls in doubly resonant dispersive optical parametric oscilla-
tors, Opt. Lett. 44, 2004 (2019).

[68] V. E. Lobanov, Two-color flat-top solitons in microresonator-
based optical parametric oscillators, Phys. Rev. A 102, 013518
(2020).

[69] E. Podivilov, S. Smirnov, I. Breunig, and B. Sturman,
Nonlinear solutions for chi(2) frequency combs in
optical microresonators, Phys. Rev. A 101, 023815
(2020).

[70] D. V. Skryabin, Instabilities of vortices in a binary mixture
of trapped Bose-Einstein condensates: Role of collective exci-
tations with positive and negative energies, Phys. Rev. A 63,
013602 (2000).

013520-21

https://doi.org/10.1080/713820226
https://doi.org/10.1103/PhysRevApplied.10.014012
https://doi.org/10.1103/PhysRevA.78.063821
https://doi.org/10.1103/PhysRevB.60.4907
https://doi.org/10.1103/PhysRevA.103.L011502
https://doi.org/10.1103/PhysRevA.103.013508
https://doi.org/10.1364/OE.25.027442
https://doi.org/10.1103/PhysRevE.98.042212
https://doi.org/10.1109/JPHOT.2013.2277882
https://doi.org/10.1364/OPTICA.6.001220
https://doi.org/10.1103/PhysRevA.49.2028
https://doi.org/10.1103/PhysRevA.54.1609
https://doi.org/10.1103/PhysRevA.53.4488
https://doi.org/10.1103/PhysRevLett.79.2454
https://doi.org/10.1364/OL.23.001167
https://doi.org/10.1103/PhysRevA.60.3251
https://doi.org/10.1103/PhysRevE.60.R3508
https://doi.org/10.1103/PhysRevA.89.013835
https://doi.org/10.1103/PhysRevLett.114.053901
https://doi.org/10.1103/PhysRevX.9.011054
https://doi.org/10.1364/OE.22.003732
https://doi.org/10.1126/science.aad4811
https://doi.org/10.1103/RevModPhys.82.1287
https://doi.org/10.1364/OE.19.022557
https://doi.org/10.1103/PhysRevLett.120.053904
https://doi.org/10.1364/OL.44.002004
https://doi.org/10.1103/PhysRevA.102.013518
https://doi.org/10.1103/PhysRevA.101.023815
https://doi.org/10.1103/PhysRevA.63.013602

