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Electro-optic effect of graded-pitch chiral photonic structures under oblique illumination

Laura O. Palomares * and J. Adrian Reyes †

Física Química, Instituto de Física, Universidad Nacional Autónoma de México Apartado Postal 20-364,
C.P. 01000, Ciudad de México, Mexico

(Received 25 March 2020; accepted 23 June 2021; published 19 July 2021)

We studied theoretically optical spectra when circularly polarized light obliquely impinges on a slab of a chiral
photonic structure with linearly and uniformly spatial varying pitch. The material that we considered locally has
a 4̄2m point-group symmetry and presents Pockels effect, hence, we controlled optical spectra by a low frequency
(DC) electric field applied along the nonhomogeneity axis. The spectra display a Bragg-type broadband, where
the edge wavelengths of the photonic band are expressed in terms of the medium parameters and the external
electric-field magnitude. This allows us to select the region of the electromagnetic spectrum, where the band
could become as broad as we choose. We studied three samples with iridescent, silver, and golden colors due
to their reflection properties. We observed an enhancement as well as a broadening of the optical band by the
application of the electric field. We found that, under certain conditions, when the optical band is practically
absent, a very broad band could be created (comparable to the whole visible spectrum) when a DC electric field
is applied. This is the result of electro-optic contributions in the permittivity tensor elements, which give rise
to a tremendous increase in both the rotatory power and dichroism. Therefore, these media could be used as
electrically controlled broadband frequency and polarization filters. Moreover, we observed the usual blueshift
of the band as the incidence angle of light increases and an asymmetry in the reflection band amplitude as
the incidence angle of the light increases, depending on whether the pitch increases or decreases and the pitch
gradient; which endows the sample with different reflection colors for different gradients and incidence angles
of the light. The asymmetry in the reflection band vanishes as the magnitude of the electric field increases.
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I. INTRODUCTION

Chiral photonic structures usually present circular Bragg
phenomenon [1–3], where a co-handed circularly polarized
plane wave, impinging normally, is highly reflected in a
certain wavelength regime, whereas a similar wave of the
contrary handedness is extremely transmitted; which made
them frequency and polarization filters.

Chiral structures with a constant pitch have been ex-
tensively studied due to their technological applications.
However, in this study we are concerned with structurally
chiral media (SCMs) with spatially varying pitch, which are
ubiquitous in nature: they appear especially in the exoskele-
tons of crustaceans and in the cuticles of insects and beetles.
The beautiful colors that are observed in some of these living
beings are the result of a chiral structure in their most ex-
ternal layers, giving rise to reflection at certain wavelengths.
For instance, iridescent colors are due to reflection in either
different or in broad regions of the visible spectrum, while
the silver color is due to reflection in a wider region than
the visible spectrum; such that the human eye is unable to
perceive iridescence [4–14]. Indeed, the graded pitch profiles
and effective refractive indexes of some beetles have been
recently determined through nonlinear regression analysis of
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the experimental Mueller matrix by using a cuticle model
based on twisted biaxial dielectric slices [15,16].

Different pitch gradients result in different reflection spec-
tra; for instance, a uniform or linear gradient produces a
broadening in the wavelength region of the reflection band,
and it is broader as the difference between the initial and final
pitch of the structure increases; such that this band can even be
broader than the entire visible spectrum. Meanwhile, the repe-
tition of a linear gradient in layers yields reflection in different
narrow regions of the electromagnetic spectrum, where a few
of the reflection bands can remain in the visible spectrum [17].
Continuously tunable and bandwidth-variable optical notch
and band-pass filters were created by using a liquid crystal
wedge cell with a continuous-pitch gradient. The band wave-
length position can be spatially tuned from 470 to 1000 nm
[18]. Also, dye-doped polymer-stabilized cholesteric liquid
crystals with negative dielectric anisotropy were fabricated,
and mirrorless lasing with an electrically tunable wavelength
was successfully achieved. Unlike conventional liquid-crystal
lasers, the proposed laser aided in tuning the emission wave-
length through controlling the reflection bandwidth based on
gradient pitch distribution [19]. Moreover, the reflection band
of this type of material has been broadened by applying DC
electric fields, which is caused by a pitch gradient that origi-
nates in turn by the motion of the polymer backbone [19].

Since some years ago, an important effort has been ongo-
ing for developing efficient methods to produce cholesteric
structures with spatially varying pitch, for instance, by ther-
mal processing, by diffusing chiral nematic liquid crystals
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in silica aerogel, or by physical vapor deposition [2,20–24].
Nowadays, a great deal of interest focuses on designing, based
on diverse mechanisms, photonic broadband gaps by means of
graded-pitch cholesteric liquid crystals, which have been ex-
tensively studied, fabricated, and applied in various contexts
[25]. For instance, a humidity-gated temperature-responsive
infrared reflective and reversible broadband photonic coating
with potential application for smart windows in high-humidity
environments has been reported in Ref. [26]. Also, a laser
which is aided in tuning the emission wavelength through
controlling the reflection bandwidth based on gradient-pitch
distribution was achieved by dye-doping polymer-stabilized
cholesteric liquid crystals with negative dielectric anisotropy
[26]. Besides, chiral nematic liquid crystal slabs with heli-
cal order that varies in three dimensions were constructed,
namely, gradient-pitch cholesterics endowed with in-plane
space-variant angular positioning of the supramolecular helix
[27]. Finally, an interesting method for fabricating helical
structures with different pitches in order to broaden the re-
flection band, was managed by controlling the UV-induced
polymerization by varying the distance between UV lamp and
sample cell, which affects the polymerization rate and leads to
the formation of imprinted chiral structures [28].

The electro-optic effect has also been extensively stud-
ied in SCMs of constant pitch, where the broadening
and enhancement of the Bragg band has been observed
[19,24–29]. Here we presented a theoretical study of the
electro-optic effect in photonic chiral media with linear pitch
gradient and uniformly varying pitch, where a Bragg-type
broadband has been produced [17].

In this context, we consider that the appropriate method, to
obtain the chiral media with the pitch gradients we propose,
is the physical vapor deposition in which a vaporized bire-
fringent solid is gradually deposited over a uniformly rotating
substrate to form a helical structure which is similar to a
cholesteric liquid crystal. However, the angular velocity of
the rotating substrate has to be varied accordingly with the
required pitch gradients, instead of keeping it simply constant;
the result is a chiral sculptured thin film (CSTF) [2,24] with
spatially linear varying pitch. Here, we consider this method
to obtain the desired chiral structure, although it is not re-
stricted to this method.

We calculate the circularly copolarized and cross-polarized
optical spectra without and with a low frequency (DC) elec-
tric field applied along the nonhomogeneity axis, when light
obliquely impinges on a slab of structurally chiral medium
with a linear or uniformly varying pitch. Based on the electro-
optical effect, induced by the externally applied field in the
chiral medium, we expect that the magnitude of the optical
activity and circular dichroism grow; and in turn, the optical
discriminatory band gap broadens. The outline of our paper
is the following: in Sec. II we discuss the basic equations. In
Sec. III we present with detail our results and discussion. In
Sec. IV we finally address our conclusions.

II. MODEL AND BASIC EQUATIONS

We shall analyze the propagation of electromagnetic waves
with arbitrary incidence angle, lying in the xy plane of a
system formed by a slab of a SCM whose pitch is spatially

(a) (b)

FIG. 1. Obliquely incident light impinges on a SCM with
(a) linearly and (b) uniformly spatial varying pitch along the non-
homogeneity axis, x axis, where a low-frequency (DC) electric field,
Ex = Exx̂, is applied along the x axis. L is the thickness of the sample
and χ is the tilt of the chiral structure. A local structural period
is defined as a length along the nonhomogeneity axis, where the
director rotates a full turn. (a) The pitch linearly increases (decreases)
in every point of the sample with a constant change rate δ from
an initial pitch pi = p0 to a final pitch pf . The pitch at each point
of the sample is p(x) = p0 + δx and the pitch at the end of the j
period is pj = p0

(1−δ) j , j = 1, 2 . . ., where p0 and δ are given values.
(b) The pitch value is constant in each local structural period and it
uniformly increases (decreases) in subsequent periods in the SCM.
The pitch value in the first period is p1, and, pj = p1 + δ( j − 1), in
the j period, where δ is the constant change rate of the pitch value
and j = 1, 2 . . ..

varying restricted by the planes x = 0 and x = L (see Fig. 1).
This artificial material can be experimentally built in the same
way as a CSTF, whose production process is thoroughly ex-
plained elsewhere [2,24].

We take the x direction parallel to helical axis of the struc-
ture. In the following discussion we explain a matrix approach
to formulate the boundary-value problem which should be
solved in order to obtain the reflection and transmission co-
efficients.

A. Matrix formulation

The propagation of optical waves by a SCM, we study here,
is ruled by the Maxwell curl equations and their respective
constitutive equations [30]. These equations can be settled (in
Gaussian units), for a nonmagnetic medium, in the following
form:

∂ψ (x)

∂x
= ik0A(x) · ψ (x), (1)

where we have introduced the time-harmonic transversal four-
component vector

�(x, y, z, t ) ≡ ψ (x) exp [i(kyy + kzz) − iωt]

= (ey(x), ez(x), hy(x), hz(x)) exp [i(kyy + kzz) − iωt],
(2)

and k0 = ω/c is the wave number in free space, c stands
for the speed of light in vacuum, ω the angular frequency
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of the propagating wave and k0 = (kx, ky, kz ) = k0(cos(θ ),
sin(θ ), 0) is the wave vector of the electromagnetic and the
angle of incidence of the light is θ ; ey(x), ez(x), hy(x), and

hz(x) are the transverse components of the electric and mag-
netic fields, respectively. In Eq. (1), the 4×4 matrix A(x) is
defined as

A(x) =

⎛
⎜⎜⎜⎜⎝

− kyεxy (x)
k0εxx (x) − kyεxz (x)

k0εxx (x) 0 1 − k2
y

k2
0εxx (x)

0 0 −1 0
εzx (x)εxy (x)

εxx (x) − εzy(x) εzx (x)εxz (x)
εxx (x) − εzz(x) + k2

y

k2
0

0 kyεzx (x)
k0εxx (x)

εyy(x) − εyx (x)εxy (x)
εxx (x) εyz(x) − εyx (x)εxz (x)

εxx (x) 0 − kyεyx (x)
k0εxx (x)

⎞
⎟⎟⎟⎟⎠. (3)

Here εi j (x) (i, j = x, y, z) represent the elements of dielectric tensor whose expressions for a material with the point-group
symmetry 4̄2m, which exhibits the Pockels effect under the presence of an externally imposed low-frequency (DC) electric field,
Ex = Exx̂, applied along the nonhomogeneity axis are given [29,31] by

εxx = ε1 cos2 (χ ) + ε3 sin2 (χ ),

εyy = ε1 cos2 (qx) + sin2 (qx)[ε1 sin2 (χ ) + ε3 cos2 (χ )] + ε1Ex[ε3r41 cos2 (χ ) − ε1r63 sin2 (χ )] sin (2qx),

εzz = ε1 sin2 (qx) + cos2 (qx)[ε1 sin2 (χ ) + ε3 cos2 (χ )] + ε1Ex[ε1r63 sin2 (χ ) − ε3r41 cos2 (χ )] sin (2qx),

εxy = εyx = (ε1 − ε3) sin (qx) sin (2χ )/2 − ε1Ex(ε1r63 + ε3r41) cos (qx) cos (χ ) sin (χ ),

εxz = εzx = −(ε1 − ε3) cos (qx) sin (2χ )/2 − ε1Ex(ε1r63 + ε3r41) sin (qx) cos (χ ) sin (χ ),

εyz = εzy = (ε1 − ε3) sin (2qx) cos2 (χ )/2 + ε1Ex[ε1r63 sin2 (χ ) − ε3r41 cos2 (χ )] cos (2qx), (4)

where ε1 and ε3 are the elements of the local uniaxial dielectric
tensor and are the permittivities in the principal Cartesian
coordinate system with axes labeled 1, 2, and 3. The 1 axis,
which is known as the distinguished axis, makes a tilt angle
χ with respect to the y axis. Finally, the pitch is denoted by p
and is related to the helical wave number by q = 2π/p. These
expressions exhibit how the external DC field modifies the di-
electric permittivity ellipsoid of a helical medium susceptible
to the Pockels effect by means of the electro-optic coefficients
ri j . Inserting these element of the dielectric tensor into Eq. (1)
gives rise to the governing differential equations for the four
transverse components of the electromagnetic wave field.

In what follows we shall discuss some of the optical
properties of a SCM for normal incidence. Indeed, when
electromagnetic wave propagation in the SCM occurs parallel
to the axis of structural chirality; a special case amenable to
algebraic analysis emerges.

B. Optical activity, center wavelength and bandwidth for
a SCM with an applied low-frequency (DC) electric field

In the particular case of normal incidence, Eq. (1) was
solved analytically in Ref. [29] by applying a Ossen trans-
formation defined by

ψ ′(x) = R(x)ψ (x), (5)

where R is given by the expression

R(x) =

⎛
⎜⎝

cos qx sin qx 0 0
− sin qx cos qx 0 0

0 0 cos qx sin qx
0 0 − sin qx cos qx

⎞
⎟⎠, (6)

which performs the simultaneous rotation of both the electric
and magnetic field in the transverse plane. This operation

amounts to going from linearly polarized modes to circu-
larly polarized modes, in which the right- and left-circularly
polarized modes are delayed by the phases −iqx and iqx,
respectively [18]. Once using this transformation and setting
ky = 0, Eq. (1) can be expressed as

dψ ′(x)

dx
= iAaxψ

′(x), (7)

where

Aax =

⎛
⎜⎜⎝

0 −iq 0 μω

iq 0 −μω 0
−ωεE/c2 −ωε1/c2 0 −iq
ωεD/c2 ωεE/c2 iq 0

⎞
⎟⎟⎠, (8)

εD = ε1ε3

ε1 cos2 (χ ) + ε3 sin2 (χ )
, (9)

and

εE = Exε1εD[r41 cos2 (χ ) − r63 sin2 (χ )]. (10)

Since Aax is a matrix whose elements are constants, Eq. (7)
can be solved by searching its eigenvectors ψ̄ j and eigenval-
ues l j ; that is, we take

ψ ′(x) = ψ̄ j exp (il jx), (11)

which yields (Aax − l j I4)ψ̄ j = 0, where I4 is 4×4 identity
matrix and whose nontrivial solution are given by the secular
equation

Det(Aax − l j I4) = l4 − l2
(
k2

0ε1 + k2
0εD + 2q2

)
+ k4

0

(
ε1εD − ε2

E

)
− k2

0

(
q2ε1 + q2εD

) + q4 = 0. (12)
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Thus, solving this equation we get that the four eigenvalues
can be written as

l1 = −l3 =
√

k2
0S + q2 + k0

√
k2

0

(
a2 + ε2

E

) + 4q2S, (13)

l2 = −l4 =
√

k2
0S + q2 − k0

√
k2

0

(
a2 + ε2

E

) + 4q2S, (14)

where k0 = ω0/c and we have introduced the average S =
(ε1 + εD)/2, and contrast a = (ε1 − εD)/2 of permittivities.
Then the rotatory power or optical activity of the material
ϒ can be analytically derived by taking the phase difference
between two forward (backward) modes; that is,

ϒ/d = l1 − q − (l2 + q). (15)

ϒ/d is the rotatory power per unit of length, where d is the
thickness of the sample, and we have included the additional
delays {−q, q} on each mode originated by the Oseen trans-
formation, as commented above. The exact expression for ϒ

is obtained after substitution of the foregoing formulas for l1
and l2; nevertheless, because a is usually a small quantity,
it is customary to calculate an expression for ϒ up to first
order in this parameter. Notice, however, that for our case the
difference involved in the definition of ϒ is also depending
on εE which in turn is a function of the external DC electric
field. Hence, in order to perform the mentioned expansion, we
assume that εE is small, which gives

ϒ/d = q
(
a2 + ε2

E

)
4(λ′)2S2

[
1 − (λ′)2

]

− q
(
a2 + ε2

E

)2
[1 − 5(λ′)2]

64(λ′)4S4[1 − (λ′)2]3
+ O

(
a2 + ε2

E

)3 + . . . ,

(16)

where we have replaced q/(
√

Sk0) = λ′ with k0 = 2π/λ, the
reduced wavelength per helical-pitch unit is λ′ = λ/(p

√
S).

This expression is consistent with the one derived by De Vries
[1], when we keep up to second order in a and turn off the DC
field, εE = 0. For this case, if we take a structure whose pitch
is p ≈ 300 nm and take typical values for ε1 and ε3, we find
that (a/S)2 ≈ 10−3 and then ϒ/d ≈ 103 deg/cm, which is a
gigantic optical activity being striking different from that of
an isotropic liquid; nevertheless, typical for a cholesteric-like
structure. However, when taking into account the DC electric
field, the rotatory power should be even larger because its
contribution is quadratic. As can be seen, the external electric
field contributes greatly to increase the optical activity of the
helical structure.

On the other hand, expressions for the band edges of the
SCM of the partial reflection band can be obtained from
Eq. (14) by looking for the frequencies where this mode is no
longer real (l2 = 0). Once having these frequencies, we get
their respective wavelengths and from them we can find for-
mulas for the center wavelength λBr

0p=cte
and bandwidth λBr

0p=cte
,

for a SCM with a constant pitch and a low-frequency (DC)
electric field Ex = Exx̂ applied along the nonhomogeneity

axis x̂ [29]. These are given by

λBr
0p=cte

= p

2
(
√

εBξ + √
εDξ ), (17)

λBr
0p=cte

= p|(√εBξ − √
εDξ )|, (18)

where for a local point-group symmetry 4̄2m with electro-
optic coefficients r41 and r63 (all other electro-optic coeffi-
cients are zero, rJK = 0, J = 1, 2, . . . , 6 and K = 1, 2, 3),

εBξ = 1

2

[
ε1 + εD + (ε1 − εD)2 + 4ε2

E

ε1 − εD
cos (2ξ )

]
, (19)

εDξ = 1

2

[
ε1 + εD − (ε1 − εD)2 + 4ε2

E

ε1 − εD
cos (2ξ )

]
, (20)

ξ = 1

2
tan−1

(
2εE

εD − ε1

)
. (21)

Next we analyze structures possessing a variable pitch with
the help of the results and expressions summarized in this
section.

C. Boundary conditions transfer matrix and numerical
procedure for SCM with variable pitch

We state formally the general solution of Eq. (1) for a wave
propagating from x = 0 to x = L in the following form:

ψ (L) = M · ψ (0)

≡ exp

[
ik0

∫ L

0
A(x′)dx′

]
· ψ (0), (22)

where M stands for the transfer matrix, which allows us to
obtain the wave vector ψ at the left side of the photonic
structure departing from the corresponding wave vector at the
right side. In this work, we compute the matrix M by assuming
that our incident wave is expressed in terms of right- and left-
circularly polarized (RCP and LCP, respectively) fields. The
square of the absolute value of the elements of transfer matrix
is to be used to calculate the corresponding transmittances and
reflectances.

The numerical integration of Eq. (22) was performed by
means of the piecewise uniform approximation of the transfer
matrix M, over the whole SCM slab. As can be observed from
Eq. (3) the elements of the matrix A are explicit functions of x.
However, we can divide the whole sample in many thin slices
parallel to the plane boundaries, each of them characterized
with homogeneous and anisotropic optical parameters. As we
increased the number of slices for a given sample, the thick-
ness of each slice diminishes so that the variation with x of its
elements is very small and it can be neglected. The matrix
M can be recovered by multiplying iteratively the matrix
associated with each of the many thin layers from x = 0 to
x = L. The accuracy of the method grows by enlarging the
number of slices until certain critical size which is monitored
by checking the convergence in each calculation.

Because a SCM with variable pitch is no more a one-
dimensional (1D) period system, we need to define a locally
structural period as the distance along the helical axis (x axis),
for which the director rotates a complete turn (2π ). From now
on, the pitch, p = 2π/q is varying. Whether the pitch p is
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constant in the whole structure, the helical wave number q
is constant, and the structural period is the pitch; differently,
when the pitch value spatially varies, we have a different value
for the period after each turn. Hence, the j turn is referred to
as the j period.

With this convention, the integration limits of the numer-
ical integration are to be chosen by complete turns of the
director (integer multiples of 2π ). Therefore, the varying pe-
riod can be specified in terms of the initial pitch value p0,
the rate of change of the pitch value, δ, and the particular
period number, j. Complementary, if the pitch depends lin-
early on the x coordinate, with parameters δ and j, p = p(x),
and q = 2π

p(x) . For our research, we assume the following two
distinct models for representing a SCM with pitch gradients:

(a) SCM with linear pitch gradient: This model embodies
a spatially continuous (linear) variation of the pitch from
the initial value p0 to the final local structural period pn of
the SCM, where n is the number of turns in the slab. The
pitch in the j period changes linearly depending on the x
coordinate as p j (x) = p j−1 + δx, where the initial pitch of the
j period is p j−1 = p0

(1−δ) j−1 and the final pitch is p j = p0

(1−δ) j ,
for a given pitch rate of change, δ, and initial pitch, p0, with
j = 1, 2 . . . , n; regarding a sample with n periods, where the
length of the j period is pj − p j−1. As a consequence, the final
pitch for each turn is determined in terms of the initial pitch
p0, the pitch rate of change δ, and j.

(b) SCM with uniformly spatial varying pitch: The pitch is
constant within each turn but it changes with a constant pitch
rate of change after the director has completed a whole turn,
see Fig. 1(b). There, for the j period, the pitch value is p j =
p1 + δ( j − 1), where p1 is the pitch value in the first period
of the chiral structure, δ is the pitch rate of change and j =
1, 2, 3, . . . , n, with n being the number of periods in the SCM.

In a previous study [17], we found numerically that, for
normal incidence of light on a structurally chiral medium with
either linearly or uniformly varying pitch, with initial pi and
final p f pitch in the structure, the low and high edges of
the Bragg regime are approximately equal to the low edge
of a SCM with constant pitch pi and to the high edge of
a SCM with constant pitch p f , respectively. Therefore, by
generalizing this result, for normal incidence on a SCM with
either linear or uniformly varying pitch, the center wavelength
of the Bragg-type regime is approximately given by

λ0 = 1
2 (pi( f )

√
εDξ + p f (i)

√
εBξ ), (23)

and the corresponding full-width-at-half-maximum (FWHM)
bandwidth is

λ0 = p f (i)
√

εBξ − pi( f )
√

εDξ . (24)

Hence, the edges of the optical band are

λ− = pi( f )
√

εDξ , (25)

λ+ = p f (i)
√

εBξ , (26)

where the sign minus (plus) in the subscript is applied for
the edge bandwidth at shorter (longer) wavelengths. In the
subscripts of Eqs. (23)–(26), the letter outside (inside) the
parentheses is used when p f > pi (pi > p f ). Also, the cir-
cular optical activity can be generalized for variable-pitch

structures in the following way

γ

2πd
=

(
a2 + ε2

E

)
4λ0λ̃2S2(1 − λ̃2)

, (27)

where λ̃ = λ/λ0. This means that a small pitch gradient δ

disturbs adiabatically the whole structure in such way that
the graded pitch chiral medium behaves locally as an ordinary
constant-pitch chiral medium.

III. RESULTS AND DISCUSSION

We considered circularly polarized light obliquely im-
pinging on a right-handed structurally chiral medium with
spatially varying pitch and the 4̄2m point-group symme-
try. The material is ammonium dihydrogen phosphate (ADP,
NH4H2PO4). It presents the Pockels effect, which allows us
to modify the refractive indexes by an external low-frequency
(DC) electric field applied to the chiral medium along the non-
homogeneity axis. The material refractive indexes are n1 =
1.530, n3 = 1.483 (ε1 = n2

1, ε3 = n2
3), the electro-optic coef-

ficients are r41 = 24.5 pm/V and r63 = 8.5 pm/V, all other
electro-optic coefficients are zero, rJK = 0, J = 1, 2, . . . , 6
and K = 1, 2, 3 [32]; the tilt of the chiral structure is χ =
π/4. In our calculations, not variation of the refractive indexes
with frequency was considered, neither imaginary part was
taken into account which imply that dispersion and absorption
are neglected. Note that in all our calculations the number n
of local structural periods (where the director gives a full turn)
remains constant with n = 70.

In our plots, TRR (TLL) represents right (left) copolar-
ized transmittance, whereas the depolarized contribution or
cross-polarized transmittance is given by TRL (TLR). Com-
plementary, RRR (RLL) and RRL (RLR) are the corresponding
reflectances in which their subscripts refer to the same mean-
ing as that just explained for transmittances [33].

Before discussing the results, it is worth mentioning that
the center wavelength, bandwidth, and edge wavelengths
of the Bragg-type bands are given by Eqs. (23) and (24).
At normal incidence, they give the spectral region for the
Bragg-type band for a given magnitude of the DC applied
electric field Ex. For normal incidence, tilt angle χ = π/4,
and no applied electric field, the edges of the optical band
are given approximately by λ− = pi

√
2ε1ε3/

√
ε1 + ε3 (λ− =

p f
√

2ε1ε3/
√

ε1 + ε3 ), and λ+ = p f
√

ε1 (λ+ = pi
√

ε1), when
pi < p f (p f < pi). The edges of the bands obtained by these
latter expressions and Eqs. (23) and (24), agree with those
obtained by means of our computational simulations for chiral
photonic media with linear pitch gradients as well as for media
with uniformly varying pitch.

Figure 2(a) shows the transmission TRR and reflection RRR

spectra for circularly polarized light normally incident on a
chiral structure with a linear pitch gradient, where the pitch
rate of change is δ = 5.03×10−3, the initial pitch is pi =
260 nm and the final pitch is p f = p70 = 370 nm. We observe
a Bragg-type broadband, which is rippled and it broadens
and enhances as the intensity of the applied DC electric field
increases. We observe a stop transmission band and a reflec-
tion band with wavelength edges at λ− = 392 nm and λ+ =
566 nm, when there is no applied electric field, which are in

013519-5



LAURA O. PALOMARES AND J. ADRIAN REYES PHYSICAL REVIEW A 104, 013519 (2021)

(a)

(b)

FIG. 2. Transmission spectra TRR and reflection spectra RRR for
normal incidence of light on a SCM with linearly spatial varying
pitch. The pitch at each point of the sample is p(x) = p0 + δx, where
x is the nonhomogeneity coordinate and for the local structural j
period, the pitch at the end of the local period is pj = p0

(1−δ) j , j =
1, . . . , n. The number of local structural periods is n = 70. Low fre-
quency (DC) electric field Ex = 0 (black solid line), Ex = 0.5 GV/m
(blue dotted line), Ex = 1 GV/m (red dashed line), Ex = 2 GV/m
(green dot-dashed line), Ex = 3 GV/m (magenta dotted line), Ex =
5 GV/m (orange dashed line) a) δ = 5.03×10−3, the initial pitch is
pi = p0 = 260 nm, the final pitch is pf = p70 = 370 nm and p =
pf − pi = 110 nm. (b) δ = 1.04×10−2, the initial pitch is pi = p0 =
260 nm, the final pitch is pf = p70 = 540 nm, and p = 280 nm.
The refractive indexes are n1 = 1.530, n3 = 1.483, tilt χ = π/4, the
electro-optic coefficients r41 = 24.5 pm/V and r63 = 8.5 pm/V, all
other electro-optic coefficients are zero, rJK = 0, J = 1, 2, . . . , 6 and
K = 1, 2, 3.

the violet-green region of the visible spectrum. Meanwhile,
for an applied DC electric field Ex = 5 GV/m, the Bragg band
edges are λ− = 376 nm and λ+ = 587 nm, thus, the optical
band has broadened to the ultraviolet-yellow region of the
visible spectrum. The optical reflection band covers a wide
region of the visible spectrum, which means that the sample
is iridescent [4].

Figure 2(b) plots the same thing as Fig. 2(a) but takes δ =
1.04×10−2, p0 = 260 nm, and p f = 540 nm. The difference
between the initial pitch p0 and the final pitch p f has increased
(δ has increased for the given initial pitch) compared with the
above case, which implies that the Bragg-type broadband gets
wider. We observe the enhancement and broadening of the
band as the intensity of the applied electric field increases.
Here, the optical band gets wider than the visible spectrum
under an applied DC electric field. For normal incidence, the
wavelength edges of the Bragg band are at λ− = 392 nm and
λ+ = 826 nm, when there is no applied electric field, which
are in the violet-infrared region of the visible spectrum, while
the optical band edges are λ− = 376 nm and λ+ = 857 nm,
for an applied DC electric field Ex = 5 GV/m; thus, the op-
tical band is in the ultraviolet-infrared region of the visible
spectrum. Hence, the optical band covers a wider region than

(a)

(b)

FIG. 3. Transmission TRR and reflection RRR spectra versus wave-
length λ and angle of incidence of light, θ , for a chiral media
with linear pitch gradient and the same medium parameters as for
Fig. 2(a). pi = 260 nm, pf = 370 nm, and p = 110 nm. (a) No
electric field is applied, Ex = 0 GV/m. (b) Low-frequency (DC)
electric field, Ex = 5 GV/m.

the visible spectrum, which means that the sample looks silver
[4–14].

Figure 3 exhibits transmission TRR and reflection RRR spec-
tra versus wavelength λ and angle of incidence of light, θ ,
for circularly polarized light obliquely incident on a chi-
ral medium with linearly spatial-varying pitch and the same
parameters as for Fig. 2(a), where pi = 260 nm and p f =
370 nm, and the difference between the initial and final pitch
is p = 110 nm. We observe the Bragg-type broadband,
where the optical band blueshifts as the angle of incidence
increases. Here, as in Fig. 2(a), at normal incidence of light
and no applied electric field (black solid line), the optical band
is located in the violet-green region of the visible spectrum
[λ ∈ (392, 566) nm, see Fig. 3(a)].

We observe that the Bragg-type broadband is widened and
enhanced when a low-frequency (DC) electric field Ex is
applied along the nonhomogeneity axis [see Fig. 3(b)]. At nor-
mal incidence for a low-frequency (DC) electric field Ex = 5
GV/m, the optical band is in the ultraviolet-yellow region
of the visible spectrum [λ ∈ (376, 587) nm, as in Fig. 2(a),
orange dashed line], therefore, the Bragg optical band has
broadened from the violet-green region to the ultraviolet-
yellow region of the visible spectrum. We also observe the
blueshift of the band when the angle of incidence grows.

Figure 4 depicts transmission TRR and reflection RRR spec-
tra versus wavelength λ and angle of incidence, θ , of light,
for circularly polarized light obliquely incident on a chi-
ral medium with linearly spatial-varying pitch and the same
parameters as for Fig. 2(b), where pi = 260 nm and p f =
540 nm, whereas the difference between the initial and fi-
nal pitch, p = 280 nm, has increased (δ has increased for
a given initial pitch). The Bragg broadband is displayed in
transmission TRR and reflection RRR spectra and the band
blueshifts as the angle of incidence increases. We observe
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(a)

(b)

FIG. 4. Transmission TRR and reflection RRR spectra as a function
of the wavelength λ and angle of incidence angle, θ , of elec-
tromagnetic waves for a chiral media with linear pitch gradient
and the same medium parameters as for Fig. 2(b). pi = 260 nm,
pf = 540 nm, p = 280 nm. (a) No electric field is applied, Ex = 0
GV/m. (b) Low-frequency (DC) electric field, Ex = 5 GV/m.

that the Bragg-type band has broadened compared with the
band of the first case where p = 110 nm (see Fig. 3). For
normal incidence of light and no applied electric field, the
wavelength edges of the optical band are at λ− = 392 nm and
λ+ = 826 nm, which are in the violet-infrared region of the
visible spectrum [see Fig. 4(a)]. Moreover, the band is prac-
tically nonexistent when there is no electric field applied and
is dramatically broadened and enhanced when a DC electric
field is applied, as we discuss further below.

We observe in Fig. 4(b) that, when a low-frequency (DC)
electric field is applied along the nonhomogeneity axis, where
the magnitude is Ex = 5 GV/m, the practically absent Bragg-
type optical band has completely developed. The optical band
has broadened, compared with the band of the medium with
no applied DC electric field. Here, the wavelength edges of the
Bragg band are λ− = 376 nm and λ+ = 857 nm, hence, the
optical band is in the ultraviolet-infrared region of the visible
spectrum [as in Fig. 2(b), orange dashed line]. Thus, the Bragg
optical band has widened from the violet-infrared region to the
ultraviolet-infrared region of the electromagnetic spectrum,
which implies that, under the electric field, the appearance of
the sample is silver [4–14].

Heretofore, we have studied chiral media with linear pitch
gradients, in the next example the SCM owns a uniformly
varying pitch as depicted in Sec. II C. Below, we shall see
that the spectra exhibit a similar behavior as that for the linear
pitch gradient case.

Figure 5 presents transmission TRR and reflection RRR spec-
tra versus wavelength λ and angle of incidence of light, θ ,
for circularly polarized light obliquely incident on a chiral
medium with uniformly spatial-varying pitch, where the ini-
tial and final pitches in the chiral structure are pi = 345 nm
and p f = 665 nm, and p = 320 nm. We observe that the
Bragg-type band lies in the green-infrared region of the vis-

(a)

(b)

FIG. 5. Transmission TRR and reflection RRR spectra versus wave-
length λ and angle of incidence of light, θ , for a chiral medium
with uniformly spatial-varying pitch. Refractive indexes are n1 =
1.530, n3 = 1.483, tilt χ = π/4, the electro-optic coefficients r41 =
24.5 pm/V and r63 = 8.5 pm/V, all other electro-optic coefficients
are zero, rJK = 0, J = 1, 2, . . . , 6, and K = 1, 2, 3; pi = p1 = 345
nm, pf = p70 = 665 nm and p = 320 nm. (a) No electric field
is applied, Ex = 0 GV/m. (b) Low-frequency (DC) electric field,
Ex = 5 GV/m.

ible electromagnetic spectrum, λ ∈ (520, 1018) nm, and it
blueshifts as the angle of incidence increases.

Similar to the above case, the almost nonexistent optical
band, for no applied electric field, widens and enhances when
a DC electric field is applied along the nonhomogeneity axis,
Ex = 5 GV/m [see Fig. 5(b)]. We observe that the Bragg
band has broadened in the green-infrared region of the electro-
magnetic spectrum. Reflection in that region of the spectrum
manifests as a golden appearance of the chiral structure [11].

Figures 6 and 7 display the remaining remittances (trans-
mission TLL, reflection RLL, transmission TRL, and reflection
RRL) for a chiral medium with uniformly varying pitch and
the same medium parameters as for Fig. 5, when there is no
applied electric field, and when the applied DC electric field
is Ex = 5 GV/m, respectively. For no applied electric field,
we observe typical spectra, when circularly polarized light
impinges on a SCM, where incident left-circularly polarized
(LCP) light is highly transmitted through the chiral medium as
LCP light and there is no reflection of LCP light. Reflection
of LCP light is only observed when light impinges almost
perpendicular to the slab, while the transmission diminishes
as the angle of incidence increases for angles θ � 40◦. In ad-
dition, LCP (RCP) light is mostly not transmitted or reflected
as RCP (LCP) light (see Fig. 6).

On the other hand, when a DC electric field is applied,
mainly the above-described overall behavior is observed. Note
that the cross-polarized spectra show that, for LCP (RCP)
incident light on the SCM with spatially varying pitch, the
transmission as RCP (LCP) light diminishes, while partial
reflection of RCP (LCP) light appears at some regions of
angles of incidence, θ , and for wavelengths λ > 800 nm

013519-7



LAURA O. PALOMARES AND J. ADRIAN REYES PHYSICAL REVIEW A 104, 013519 (2021)

FIG. 6. Copolarized remittances: transmission TLL and reflection
RLL; cross-polarized remittances: transmission TRL and reflection RRL

against wavelength λ and angle of incidence, θ , of electromagnetic
waves for a chiral medium with uniformly varying pitch and the same
medium parameters as for Fig. 5, where pi = 345 nm, pf = 665 nm,
and p = 320 nm. No electric field is applied, Ex = 0 GV/m. TRL =
TLR and RRL = RLR to numerical accuracy, so the plots of TLR and RLR

are not displayed here.

(see Fig. 7), compared with the case where there is no applied
electric field.

Further calculations that are not displayed in this study
show that TLL, RLL, TRL, and RRL spectra have a similar be-

FIG. 7. Copolarized remittances: transmission TLL and reflection
RLL; cross-polarized remittances: transmission TRL and reflection RRL

against wavelength λ and angle of incidence of light, θ , of electro-
magnetic waves for a chiral medium with uniformly varying pitch
and the same medium parameters as for Fig. 5, where pi = 345 nm,
pf = 665 nm, and p = 320 nm. A low-frequency electric field
is applied, Ex = 5 GV/m. TRL = TLR and RRL = RLR to numerical
accuracy, so the plots of TLR and RLR are not displayed here.

(a)

(b)

FIG. 8. Transmission TRR and reflection RRR spectra where the
angle of incidence of light is θ = 65◦ for a chiral media with
linearly varying pitch and the same medium parameters as for
Figs. 2(a) and 3: (a) pi = 260 nm and pf = 370 nm, p = 110 nm.
(b) pi = 370 nm and pf = 260 nm, p = 110 nm. Ex = 0 GV/m
(black solid line), Ex = 2 GV/m (blue dotted line), and Ex = 5
GV/m (red dashed line).

havior as described above for the other cases that we have
considered here.

Notice that the transmission and reflection spectra fulfill
conservation of energy, where TRR + RRR + TRL + RRL = 1
(TLL + RLL + TLR + RLR = 1, TLL ≈ 1, RLL ≈ 0), our calcula-
tions gives that TRL + RRL ≈ 0.1, so TRR ≈ 0.9 − RRR, with
and without electric field, however, the reflection RRR in-
creases as the DC electric field increases, where RRR ≈ 0.9 in
the optical band for an external electric field Ex = 5 GV/m,
thus TRR ≈ 0 and we observe the enhancement of the optical
band.

Below, in Figs. 8 and 9, we analyze changes of the trans-
mission TRR and reflection RRR spectra for a particular oblique
angle of incidence of light (θ = 65◦) and different applied
DC electric fields, when the pitch value increases and when
it decreases in the chiral media, for linearly and uniformly
varying pitch, respectively.

Figure 8 displays transmission TRR and reflection RRR

spectra where the angle of incidence of light is θ = 65◦ for
[Fig. 8(a)] the case of increasing linear pitch gradient and
[Fig. 8(b)] the case of decreasing linear pitch gradient (same
edge pitches in the structure) for different DC electric-field
amplitudes [the same material parameters as in Figs. 2(a)
and 3]. We observe that the optical bands are in the same
wavelength region for both cases and there are peaks and
ripples in the spectra; when the pitch increases in the struc-
ture, the reflection amplitude is larger at shorter wavelengths.
Meanwhile, for the case of decreasing pitch gradient, the re-
flection amplitude is larger at larger wavelengths. This means
that the prevalent reflection colors at oblique incidence are to
some extent different, depending whether the pitch increases
or decreases in the chiral structure and depending on the
angle of incidence of light and the magnitude of the applied
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(a)

(b)

FIG. 9. Transmission TRR and reflection RRR spectra where the
angle of incidence is θ = 65◦ for a chiral media with uniformly
varying pitch and medium parameters as for Fig. 5. (a) pi =
345 nm, pf = 665 nm, and p = 320 nm. (b) pi = 665 nm and
pf = 345 nm, p = 320 nm. Ex = 0 GV/m (black solid line), Ex =
2 GV/m (blue dotted line), Ex = 5 GV/m (red dashed line).

electric field. In addition, the asymmetry, peaks, and ripples
in the spectra tend to disappear as the DC electric amplitude
increases.

Figure 9 displays transmission TRR and reflection RRR

spectra for which the incidence angle of light is θ = 65◦,
for [Fig. 9(a)] the increasing uniformly spatial-varying pitch
case and [Fig. 9(b)] the decreasing uniformly varying pitch
case (same edge pitch values in the structure); for various
DC electric field amplitudes (the same material parameters
as for Fig. 5). We observe that the optical bands are in the
same wavelength region for both cases while spectra display
peaks and ripples. For the positive-pitch gradient case, the
reflection amplitude is slightly larger at shorter wavelengths;
meanwhile, when the pitch decreases in the chiral medium,
the reflection amplitude is larger at larger wavelengths. This
implies that the prevalent reflection colors at oblique inci-
dence are slightly different, whether the pitch is increasing or
decreasing in the chiral structure and depending on the angle
of incidence of the light and the magnitude of the applied
electric field. We point out that the asymmetry, peaks, and
ripples in the spectra tend to be removed as the DC electric
amplitude increases, as in Fig. 8.

Figure 10 shows circular dichroism (CD) as a function of
the light wavelength λ. Figure 10(a) shows a SCM with lin-
early varying pitch for the same medium parameters as Fig. 4,
and [Fig. 10(b)] for a SCM with uniformly varying pitch, for
different values of DC electric field Ex. Here, circular dichro-
ism is defined as CD = TRR−TLL

TRR+TLL
. We observe a band for the

circular dichroism for those wavelengths of the optical band.
Since the circular dichroism depends on the difference of the
transmission, TRR − TLL, and the transmission TRR decreases
from one to zero as the applied electric field increases and
TLL is approximately one, the CD decreases from zero to
minus one as the DC electric field increases. Notice that the

(a) (b)

FIG. 10. Circular dichroism (CD) as a function of wavelength λ.
(a) For a chiral medium with linearly varying pitch and the same
medium parameters as for Figs. 2(b) and 4. (b) For a chiral medium
with uniformly varying pitch and the same medium parameters as
for Fig. 5. We considered different values of the low-frequency
(DC) electric field, Ex = 0 (black solid line), Ex = 0.5 GV/m (blue
dotted line), Ex = 1 GV/m (red dashed line), Ex = 2 GV/m (green
dot-dashed line), Ex = 3 GV/m (magenta dotted line), Ex = 5 GV/m
(orange dashed line).

circular dichroism is caused by the structural chirality, not by
a distinct absorption for different circular polarization of light.
Figure 10(b) displays the circular dichroism for the uniformly
varying pitch sample, here the difference between the uni-
formly and the linearly varying pitch case is the asymmetry
in the CD band for the uniformly varying pitch sample; the
same that is observed in the Bragg band.

Figure 11 exhibits the CD depending on the light wave-
length λ and the incident angle of light, θ . We observe the
enhancement of the CD when the DC electric field is applied
and the blueshift of the band as the incident angle increases.

A complementary property to characterize chiral systems
was calculated at the end of Sec. II B where a generalization
of the so-called optical activity for varying pitch media was
proposed. Here, we calculate such a quantity for the first
example [see Fig. 2(a)] that we analyze here. To evaluate
Eq. (27) we need to calculate the central wavelength λ0 as
given by Eq. (23) which for the parameters used for the model
of Fig. 2(a), we obtain λ0 = 479 nm. Then, for an electric
field Ex = 1 GV/m, we get, using Eq. (10), that εE = 0.126.
Hence, the optical activity gives rise to ϒ0/d = 105 deg/cm2,
near the first edge of the optical band, which is about two

FIG. 11. Circular dichroism (CD) as a function of wavelength λ

and angle of incidence of light, θ , for a chiral medium with uniformly
varying pitch and the same medium parameters as Fig. 5. (a) No
electric field is applied, Ex = 0 GV/m. (b) External applied DC
electric field along the nonhomogeneity axis: Ex = 5 GV/m.
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(a) (b)

FIG. 12. (a) Real part of the optical activity per centimeter,
Re[γ ], as a function of the dimensionless wavelength λ′, for a chiral
medium with spatially varying pitch, where γ = ϒ/d , ϒ is the
optical activity and d is the thickness of the medium. (b) Imaginary
part of the optical activity per centimeter, Im[γ ], as a function of
the dimensionless wavelength λ′ [same medium parameters as for
Fig. 2(b)]. For different values of the low-frequency (DC) electric
field: Ex = 0 (black solid line), Ex = 0.5 GV/m (blue dotted line),
Ex = 1 GV/m (red dashed line), Ex = 2 GV/m (green dot-dashed
line), Ex = 3 GV/m (magenta dotted line), Ex = 5 GV/m (orange
dashed line).

orders of magnitude larger than that estimated in Sec. II B for
a constant pitch structure; which is already an usual gigantic
optical activity for SCM. As we mentioned there, the external
field contributes to enlarge dramatically the rotatory power of
the helical structure. Indeed, we can affirm that the Pockels
effect, which affects the dielectric tensor by means of the
electro-optic coefficients, is responsible for the widening and
enhancement induced by the DC electric field of the optical
band. In Fig. 12 we plot the real and imaginary parts of
the normalized optical activity Re[γ ] (Im[γ ]) versus the di-
mensionless wavelength λ′, parametrized by the DC external
electric field without approximation [as given by Eq. (15)],
where γ = ϒ/d , ϒ is the optical activity, and d is the thick-
ness of the medium. Figure 12(a) corresponds to the real part
of γ , whereas Fig. 12(b) provides the corresponding imagi-
nary part. This plot evinces the dramatic dependence of the
rotatory power on the external field. As seen, both the magni-
tude of optical activity and bandwidth increase by enlarging
the DC electric field. In this plot the band reflection region
is delimited by the nondifferentiable points in the curves in
which the imaginary part of γ is not vanishing. It should be
mentioned that, for wavelengths longer than the characteristic
wavelength λ′ = 1, γ changes sign. Gigantic rotatory power
and circular dichroism have been also measured and calcu-
lated for diverse plasmonic systems [35–38]. Those systems
have the practical advantage of being constructed in very thin
films, however, the relevance of our proposed SCM of vary-
ing pitch is that this exhibits extremely broadband reflection
which, as discussed here, increases by applying the external
electric field. Indeed, our calculations depicted in Figs. 10–12
display that by applying an external DC field, the dichroism
and giant optical activity get larger in amplitude for an even
larger wavelength interval.

It is wealth to mention that, in Ref. [17], we found that,
for normal incidence of light, optical spectra are in the
same wavelength region for both cases: a chiral medium for
which the pitch increases or decreases (provided the edge

pitch values are swapped for both structures). Further cal-
culations, which are not reported in this paper, reveal that
the Bragg regime remains in the same wavelength interval
for all incidence angles of light; either the pitch increases
or decreases. However, the reflection amplitude enlarges for
shorter (longer) wavelengths (within the optical band) for the
increasing (decreasing) pitch gradient case; as the angle of
incidence of light grows.

The difference in spectra between the two different pitch
gradients studied here, linear and uniform gradients, is that
for a uniformly varying pitch, spectra show that for longer
wavelengths the Bragg band is better defined than for shorter
wavelengths, under no external applied electric field and with
δ larger than one percent of the starting pitch [17]. It is
because sections with larger local structural periods (peri-
ods with larger constant pitch values) cover a larger part of
the structure, and their Bragg regimes overlap more exten-
sively, which explains why the Bragg-type regime is better
defined for longer wavelengths, corresponding to periods with
the larger pitches in the structure. Moreover, for shorter-
wavelength waves in the Bragg-type band, the transmission
is larger, which is reasonable by noting that the longer wave-
lengths can only stand in sectors of the structure whose length
is large enough to enter in the arrangement. Meanwhile, the
shorter wavelengths can be propagated in all sectors: those
with large and small periods. On the other hand, for SCM with
a linear pitch gradient none of the periods with a particular
pitch occupies larger regions in the medium and the sample is
thinner compared with SCM with a uniformly varying pitch
with the same number of local structural periods and initial
and final pitch in the structure, then the optical band is nearly
uniform for all wavelengths in the Bragg regime. Moreover,
when an external DC electric field is applied, the asymmetry,
peaks, and ripples in the optical bands tend to disappear; for
SCM with either a uniform or linear pitch gradient.

IV. CONCLUSIONS

We studied optical spectra for circularly polarized light
that obliquely impinges on a slab of a structurally chi-
ral medium with either linear pitch gradients or uniformly
varying pitches which locally possess a 4̄2m point-group sym-
metry. We numerically compute the optical spectra by means
of the piecewise uniform approximation of the transfer-matrix
method. The considered chiral medium has a pitch that (a)
linearly increases, or decreases, from an initial pitch at the
beginning of the first local structural period to a final pitch
at the end of the last period and (b) a pitch that uniformly
increases or decreases in subsequent local structural periods.

For both pitch gradients, the optical spectra exhibit a Bragg
broadband which is rippled and blueshifts as the angle of
incidence of the light increases. The chiral structure has an
initial and final pitch pi and p f , respectively, and the optical
band covers from the Bragg band of a SCM with constant
pitch pi to the Bragg band of another SCM with constant
pitch p f . Moreover, the center wavelength and the bandwidth
of the Bragg band are expressed in terms of the medium
parameters and the magnitude of the applied DC electric field;
where the wavelengths of the edges of the broadband are
λ− = pi

√
2ε1ε3/

√
ε1 + ε3 (λ− = p f

√
2ε1ε3/

√
ε1 + ε3) and
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λ+ = p f
√

ε1 (λ+ = pi
√

ε1), when pi < p f (p f < pi), at nor-
mal incidence for no applied electric field and tilt χ = π/4.
Notice that the edges of the optical bands obtained by these
latter expressions and Eqs. (23) and (24), agree with those
obtained by means of our computational simulations.

We found that the bandwidth broadens as the difference
grows between the initial pitch pi and the final pitch p f (the
pitch rate of change δ increases for a given initial pitch pi).
Besides, for a slab of chiral medium and varying pitch with
no applied electric field, when the pitch difference in the
chiral structure increases, the optical band tends to disappear.
However, the Bragg band enhances, when an external low-
frequency (DC) electric field is applied, and even when the
optical band is practically imperceptible, it can be created,
enhanced and broadened by enlarging the DC electric field.

In this study, we presented three examples of quite broad
optical bands, where two of them cover a large region of the
visible spectrum and the remaining one covers a wider region
than that of the visible spectrum. Hence, the appearance of the
media is iridescent, golden and silver, respectively. It is well
known that iridescence is the result of reflection of light in
either, different regions, or a very wide region of the visible
electromagnetic spectrum; for instance, when the reflection
is within the ultraviolet-green region of the electromagnetic
spectrum. The golden color is the result of reflection in a
region of light wavelengths from �525 to 1000 nm, i.e., from
green to infrared. Meanwhile, a silver color medium reflects
a wider interval than that of the visible spectrum, such that
the eye is unable to perceive iridescence [4–14]. Indeed, these
kinds of structural colors that are generated by reflection of
light can be seen in nature in different insects, shells, and
crustaceans.

The difference in spectra, regarding the two different pitch
gradients studied here without an applied DC electric field is
that for larger wavelengths, the Bragg band is better defined
than for shorter wavelengths, for a uniformly varying pitch
sample. However, the asymmetry in the Bragg bands of SCM
with uniformly varying pitch disappears as the amplitude of
the applied electric field increases. It is worth mentioning
that the peaks and ripples exhibited in the optical bands are
smoothed as the amplitude of the applied electric field gets
larger.

In addition, for both (a) the increasing pitch gradient and
(b) the decreasing pitch gradient cases (whenever the edge
pitch values are swapped in the structure, either for linear
or uniformly varying pitch), we found that the optical bands

are in the same wavelength interval, for all values of the
angle of incidence of light. For either linear pitch gradients
or uniformly varying pitch, optical spectra exhibit that at
oblique incidence of light, for the increasing pitch gradient
case, the reflection amplitude is larger (slightly larger for
the uniform gradient) at shorter wavelengths, meanwhile for
the decreasing pitch gradient case the reflection amplitude is
larger at longer wavelengths. This asymmetry in the reflection
band sharpens as the light incidence angle grows whereas it
is smoothed when the amplitude of the applied electric field
increases. This implies that the prevalent reflection colors at
oblique incidence are slightly different whether the varying
pitch is increasing or decreasing in the chiral structure and
depending on the angle of incidence o light and the magnitude
of the applied electric field.

Finally, we deduce an expression of the optical activity for
chiral photonic media with variable pitch that depends on the
material parameters. Besides, we found that the magnitude of
the optical activity, circular dichroism and bandwidth increase
by enlarging the DC electric field, which are related with the
change in the refractive indexes of the electro-optic chiral
medium under the external field.

We found that, even if the optical band is almost absent,
a very broad band could be opened, by imposing a DC elec-
tric field; caused by corresponding electro-optic terms in the
permittivity tensor elements, which are consistent with a great
augmentation in both the optical activity and dichroism.

We expect that the study presented here motivates the fab-
rication of novel photonic devices, chiral photonic structures
with a linear pitch gradient or a uniformly varying pitch,
with possible applications such as circular polarization and
wavelength-broadband filters, where the band can be broad-
ened, enhanced, or even created by an external low-frequency
(DC) electric field. Moreover, the photonic broadband can be
selected in a specific region of the electromagnetic spectrum
by choosing the material parameters, as well as the initial and
final pitch in the structure. The method to fabricate SCM with
varying pitch, we mainly suggest, is physical vapor deposi-
tion, although it is not restricted to this fabrication technique.
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